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GLOBAL WEAK SOLUTIONS TO DEGENERATE COUPLED
DIFFUSION-CONVECTION-DISPERSION PROCESSES AND

HEAT TRANSPORT IN POROUS MEDIA

MICHAL BENEŠ, LUKÁŠ KRUPIČKA

Abstract. In this contribution we prove the existence of weak solutions to

degenerate parabolic systems arising from the coupled moisture movement,
transport of dissolved species and heat transfer through partially saturated

porous materials. Physically motivated mixed Dirichlet-Neumann boundary

conditions and initial conditions are considered. Existence of a global weak
solution of the problem is proved by means of semidiscretization in time and by

passing to the limit from discrete approximations. Degeneration occurs in the
nonlinear transport coefficients which are not assumed to be bounded below

and above by positive constants. Degeneracies in all transport coefficients are

overcome by proving suitable a priori L∞-estimates for the approximations of
primary unknowns of the system.

1. Introduction

Let Ω be a bounded domain in R2, Ω ∈ C0,1 and let ΓD and ΓN be open disjoint
subsets of ∂Ω (not necessarily connected) such that ΓD 6= ∅ and the ∂Ω\(ΓD ∪ΓN )
is a finite set. Let T ∈ (0,∞) be fixed throughout the paper, I = (0, T ) and
QT = Ω× I denotes the space-time cylinder, ΓDT = ΓD × I and ΓNT = ΓN × I.

We shall study the following initial boundary value problem in QT ,

∂tb(u) = ∇ · [a(θ)∇u], (1.1)

∂t[b(u)w] = ∇ · [b(u)Dw(u)∇w] +∇ · [wa(θ)∇u], (1.2)

∂t[b(u)θ + %θ] = ∇ · [λ(θ, u)∇θ] +∇ · [θa(θ)∇u], (1.3)

with the mixed-type boundary conditions

u = 0, w = 0, θ = 0 on ΓDT , (1.4)

∇u · n = 0, ∇w · n = 0, ∇θ · n = 0 on ΓNT (1.5)

and the initial conditions

u(·, 0) = u0, w(·, 0) = w0, θ(·, 0) = θ0 in Ω. (1.6)
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System 1.1–1.6 arises from the coupled moisture movement, transport of dis-
solved species and heat transfer through the porous system [4, 20]. For simplicity,
the gravity terms and external sources are not included since they do not affect the
analysis. For specific applications we refer the reader to e.g. [19]. Here u : QT → R,
w : QT → R and θ : QT → R are the unknown functions. In particular, u cor-
responds to the Kirchhoff transformation of the matric potential [2], w represents
concentration of dissolved species and θ represents the temperature of the porous
system. Further, a : R → R, Dw : R → R, b : R → R, λ : R2 → R, u0 : Ω → R,
w0 : Ω → R, and θ0 : Ω → R are given functions, % is a real positive constant and
n is the outward unit normal vector. In this paper we study the existence of the
weak solution to (1.1)–(1.6).

Nowadays, description of heat, moisture or soluble/non-soluble contaminant
transport in concrete, soil or rock porous matrix is frequently based on time depen-
dent models. Coupled transport processes (diffusion processes, heat conduction,
moister flow, contaminant transport or coupled flows through porous media) are
typically associated with systems of strongly nonlinear degenerate parabolic partial
differential equations of type (written in terms of operators A, Ψ, F )

∂tΨ(u)−∇ ·A(u,∇u) = F (u), (1.7)

where u stands for the unknown vector of state variables. There is no complete
theory for such general problems. However, some particular results assuming special
structure of operators A and Ψ and growth conditions on F can be found in the
literature, see [22].

Most theoretical results on parabolic systems exclude the case of non-symmetrical
parabolic parts [2, 8, 13].

Giaquinta and Modica [10] proved the local-in-time solvability of quasilinear
diagonal parabolic systems with nonlinear boundary conditions (without assuming
any growth condition), see also [23].

The existence of weak solutions to more general non-diagonal systems like (1.7)
subject to mixed boundary conditions has been proven in [2]. The authors proved
an existence result assuming the operator Ψ to be only (weak) monotone and sub-
gradient. This result has been extended in [8], where the authors presented the local
existence of the weak solutions for the system with nonlinear Neumann boundary
conditions and under more general growth conditions on nonlinearities in u. These
results, however, are not applicable if Ψ does not take the subgradient structure,
which is typical of coupled transport models in porous media. Thus, the analysis
needs to exploit the specific structure of such problems.

The existence of a local-in-time strong solution for moisture and heat transfer
in multi-layer porous structures modelling by the doubly nonlinear parabolic sys-
tem is proven in [5]. In [21], the author proved the existence of the solution to
the purely diffusive hygro-thermal model allowing non-symmetrical operators Ψ,
but requiring non-realistic symmetry in the elliptic part. In [7, 12], the authors
studied the existence, uniqueness and regularity of coupled quasilinear equations
modeling evolution of fluid species influenced by thermal, electrical and diffusive
forces. In [15, 16, 17], the authors studied a model of specific structure of a heat
and mass transfer arising from textile industry and proved the global existence for
one-dimensional problems in [15, 16] and three-dimensional problems in [17].
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In the present paper we extend our previous existence result for coupled heat and
mass flows in porous media [6] to more general problem (including the convection-
dispersion equation) modeling coupled moisture, solute and heat transport in porous
media. This leads to a fully nonlinear degenerate parabolic system with natural
(critical) growths and degeneracies in all transport coefficients.

The rest of this paper is organized as follows. In Section 2, we introduce basic
notation and suitable function spaces and specify our assumptions on data and
coefficient functions in the problem. In Section 3, we formulate the problem in the
variational sense and state the main result, the global-in-time existence of the weak
solution. The main result is proved by an approximation procedure in Section 4.
First we formulate the semi-discrete scheme and prove the existence of its solu-
tion. The crucial a priori estimates and uniform boundness of time interpolants are
proved in part 4.2. Finally, we conclude that the solutions of semi-discrete scheme
converge and the limit is the solution of the original problem (Subsection 4.3).

Remark 1.1. The present analysis can be straightforwardly extended to a setting
with nonhomogeneous boundary conditions (see [6] for details). Here we work
with homogeneous boundary conditions, ignoring the gravity terms and excluding
external sources to simplify the presentation and avoid unnecessary technicalities
in the existence result.

2. Preliminaries

2.1. Notation and some properties of Sobolev spaces. Vectors and vector
functions are denoted by boldface letters. Throughout the paper, we will always
use positive constants C, c, c1, c2, . . . , which are not specified and which may differ
from line to line. Throughout this paper we suppose s, q, s′ ∈ [1,∞], s′ denotes the
conjugate exponent to s > 1, 1/s + 1/s′ = 1. Ls(Ω) denotes the usual Lebesgue
space equipped with the norm ‖ · ‖Ls(Ω) and W k,s(Ω), k ≥ 0 (k need not to be
an integer, see [14]), denotes the usual Sobolev-Slobodecki space with the norm
‖ · ‖Wk,s(Ω). We define

W 1,2
ΓD

(Ω) :=
{
v ∈W 1,2(Ω) : v

∣∣
ΓD

= 0
}
.

By E∗ we denote the space of all continuous, linear forms on Banach space E and by
〈·, ·〉 we denote the duality between E and E∗. By Ls(I;E) we denote the Bochner
space (see [1]). Therefore, Ls(I;E)∗ = Ls

′
(I;E∗).

2.2. Structure and data properties. We start by introducing our assumptions
on functions in (1.1)–(1.6).

(i) b ∈ C1(R), 0 < b′(ξ) < b∗ and

0 < b(ξ) ≤ b2 < +∞ ∀ξ ∈ R (b2, b∗ = const).

(ii) a, Dw ∈ C(R) and λ ∈ C(R2) such that

0 < a(ξ), 0 < Dw(ξ) ∀ξ ∈ R,
0 < λ(ξ, ζ) ∀ξ, ζ ∈ R.

(iii) (Initial data) Assume u0, w0, θ0 ∈ L∞(Ω), such that

−∞ < u1 < u0 < 0 a.e. in Ω (u1 = const). (2.1)
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2.3. Auxiliary results.

Remark 2.1 ([2, Section 1.1]). Let us note that (i) implies that there is a (strictly)
convex C1-function Φ : R→ R, Φ(0) = 0, Φ′(0) = 0, such that b(z)− b(0) = Φ′(z)
for all z ∈ R. Introduce the Legendre transform

B(z) :=
∫ 1

0

(b(z)− b(sz))z ds =
∫ z

0

(b(z)− b(s)) ds.

Let us present some properties of B [2]:

B(z) :=
∫ 1

0

(b(z)− b(sz))z ds ≥ 0 ∀z ∈ R,

B(s)−B(r) ≥ (b(s)− b(r))r ∀r, s ∈ R,
b(z)z − Φ(z) + Φ(0) = B(z) ≤ b(z)z ∀z ∈ R.

3. Main result

The aim of this paper is to prove the existence of a weak solution to problem
(1.1)–(1.6). First we formulate our problem in a variational sense.

Definition 3.1. A weak solution of (1.1)–(1.6) is a triplet [u,w, θ] such that

u ∈ L2(I;W 1,2
ΓD

(Ω)), w ∈ L2(I;W 1,2
ΓD

(Ω)) ∩ L∞(QT ),

θ ∈ L2(I;W 1,2
ΓD

(Ω)) ∩ L∞(QT ),

which satisfies

−
∫
QT

b(u)∂tφ dxdt+
∫
QT

a(θ)∇u · ∇φ dxdt =
∫

Ω

b(u0)φ(x, 0) dx (3.1)

for any φ ∈ L2(I;W 1,2
ΓD

(Ω)) ∩W 1,1(I;L∞(Ω)) with φ(·, T ) = 0;

−
∫
QT

b(u)w∂tη dxdt+
∫
QT

b(u)Dw(u)∇w · ∇η dxdt

+
∫
QT

wa(θ)∇u · ∇η dxdt

=
∫

Ω

b(u0)w0η(x, 0) dx

(3.2)

for any η ∈ L2(I;W 1,2
ΓD

(Ω)) ∩W 1,1(I;L∞(Ω)) with η(·, T ) = 0;

−
∫
QT

[b(u)θ + %θ]∂tψ dxdt+
∫
QT

λ(θ, u)∇θ · ∇ψ dxdt

+
∫
QT

θa(θ)∇u · ∇ψ dxdt

=
∫

Ω

[b(u0)θ0 + %θ0]ψ(x, 0) dx

(3.3)

for any ψ ∈ L2(I;W 1,2
ΓD

(Ω)) ∩W 1,1(I;L∞(Ω)) with ψ(·, T ) = 0.

The main result of this paper reads as follows.

Theorem 3.2. Let assumptions (i)–(iii) be satisfied. Then there exists at least one
weak solution of the system (1.1)–(1.6).
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To prove the main result of the paper we use the method of semidiscretization
in time by constructing temporal approximations and limiting procedure. The
proof can be divided into three steps. In the first step we approximate our prob-
lem by means of a semi-implicit time discretization scheme (which preserve the
pseudo-monotone structure of the discrete problem) and prove the existence and
W 1,s(Ω)-regularity (with some s > 2) of temporal approximations. In the second
step we construct piecewise constant time interpolants and derive suitable a priori
estimates. The key point is to establish L∞-estimates to overcome degeneracies in
transport coefficients. Finally, in the third step we pass to the limit from discrete
approximations.

4. Proof of the main result

4.1. Approximations. Let us fix p ∈ N and set τ := T/p (a time step). Further,
let us consider u0

p := u0, w0
p := w0, θ0

p := θ0 a.e. on Ω. We approximate our
evolution problem by a semi-implicit time discretization scheme. Then we define,
in each time step n = 1, . . . , p, a triplet [unp , w

n
p , θ

n
p ] as a solution of the following

recurrence steady problem.
For a given triplet [un−1

p , wn−1
p , θn−1

p ], n = 1, . . . , p, un−1
p ∈ L∞(Ω), wn−1

p ∈
L∞(Ω), θn−1

p ∈ L∞(Ω), find [unp , w
n
p , θ

n
p ], such that unp ∈ W

1,s
ΓD

(Ω), wnp ∈ W
1,s
ΓD

(Ω),
θnp ∈W

1,s
ΓD

(Ω) with some s > 2 and∫
Ω

b(unp )− b(un−1
p )

τ
φdx+

∫
Ω

a(θn−1
p )∇unp · ∇φ dx = 0 (4.1)

for any φ ∈W 1,2
ΓD

(Ω);∫
Ω

b(unp )wnp − b(un−1
p )wn−1

p

τ
η dx

+
∫

Ω

b(un−1
p )Dw(un−1

p )∇wnp · ∇η dx+
∫

Ω

wnp a(θn−1
p )∇unp · ∇η dx = 0

(4.2)

for any η ∈W 1,2
ΓD

(Ω);∫
Ω

b(unp )θnp − b(un−1
p )θn−1

p

τ
ψ dx+

∫
Ω

%
θnp − θn−1

p

τ
ψ dx

+
∫

Ω

λ(θn−1
p , un−1

p )∇θnp · ∇ψdΩ +
∫

Ω

θnp a(θn−1
p )∇unp · ∇ψdΩ = 0

(4.3)

for any ψ ∈W 1,2
ΓD

(Ω).
Next we show the existence of the solution to (4.1)–(4.3).

Theorem 4.1. Let un−1
p ∈ L∞(Ω), wn−1

p ∈ L∞(Ω), θn−1
p ∈ L∞(Ω) be given

and the assumptions (i)–(iii) be satisfied. Then there exists [unp , w
n
p , θ

n
p ], such that

unp ∈ W
1,s
ΓD

(Ω), wnp ∈ W
1,s
ΓD

(Ω) and θnp ∈ W
1,s
ΓD

(Ω) with some s > 2 satisfying (4.1)–
(4.3).

Proof. The proof rests on the W 1,p-regularity of elliptic problems presented in
[9, 11] and the embedding W 1,s

ΓD
(Ω) ⊂ L∞(Ω) if s > 2 (recall that Ω is a bounded

domain in R2).
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The existence of unp ∈ W
1,s
ΓD

(Ω) with some s > 2 and θnp ∈ W
1,2
ΓD

(Ω), solutions
to problems (4.1) and (4.3), respectively, is proven in [6]. The existence of wnp ∈
W 1,2

ΓD
(Ω), the solution to (4.2), can be handled in the same way.

Now, with wnp ∈W
1,2
ΓD

(Ω) in hand, rewrite the equation (4.2) in the form (trans-
ferring the lower-order terms to the right hand side)∫

Ω

b(un−1
p )Dw(un−1

p )∇wnp · ∇η dx

= −
∫

Ω

b(unp )wnp − b(un−1
p )wn−1

p

τ
η dx−

∫
Ω

wnp a(θn−1
p )∇unp · ∇η dx.

Since un−1
p ∈ L∞(Ω), unp ∈ W 1,s

ΓD
(Ω) with some s > 2, wn−1

p ∈ L∞(Ω), θn−1
p ∈

L∞(Ω), both integrals on the right hand side make sense for any η ∈ W 1,r′

ΓD
(Ω),

r′ = r/(r − 1) with some r > 2. Now we are able to apply [9, Theorem 4] to
obtain wnp ∈ W

1,s
ΓD

(Ω) with some s > 2. Analysis similar to the above implies that
θnp ∈W

1,s
ΓD

(Ω) with some s > 2. �

4.2. A priori estimates. In this part we prove some uniform estimates (with
respect to p) for the time interpolants of the solution. In the following estimates,
many different constants will appear. For simplicity of notation, C represents
generic constants which may change their numerical value from one formula to
another but do not depend on p and the functions under consideration.

4.2.1. Construction of temporal interpolants. With the sequences unp , w
n
p , θ

n
p con-

structed in Section 4.1, we define the piecewise constant interpolants φ̄p(t) = φnp
for t ∈ ((n − 1)τ, nτ ] and, in addition, we extend φ̄p for t ≤ 0 by φ̄p(t) = φ0

for t ∈ (−τ, 0]. For a function ϕ we often use the simplified notation ϕ := ϕ(t),
ϕτ (t) := ϕ(t − τ), ∂−τt ϕ(t) := ϕ(t)−ϕ(t−τ)

τ , ∂τt ϕ(t) := ϕ(t+τ)−ϕ(t)
τ . Then, follow-

ing (4.1)–(4.3), the piecewise constant time interpolants ūp ∈ L∞(I;W 1,s
ΓD

(Ω)),
w̄p ∈ L∞(I;W 1,s

ΓD
(Ω)) and θ̄p ∈ L∞(I;W 1,s

ΓD
(Ω)) (with some s > 2) satisfy the

equations ∫
Ω

∂−τt b(ūp(t))φ dx+
∫

Ω

a(θ̄p(t− τ))∇ūp(t) · ∇φ dx = 0 (4.4)

for any φ ∈W 1,2
ΓD

(Ω),∫
Ω

∂−τt [b(ūp(t))w̄p(t)]η dx+
∫

Ω

b(ūp(t− τ))Dw(ūp(t− τ))∇w̄p(t) · ∇η dx

+
∫

Ω

w̄p(t)a(θ̄p(t− τ))∇ūp(t) · ∇η dx = 0
(4.5)

for any η ∈W 1,2
ΓD

(Ω) and∫
Ω

∂−τt
[
b(ūp(t))θ̄p(t) + %θ̄p(t)

]
ψ dx

+
∫

Ω

λ(θ̄p(t− τ), ūp(t− τ))∇θ̄p(t) · ∇ψ dx

+
∫

Ω

θ̄p(t)a(θ̄p(t− τ))∇ūp(t) · ∇ψ dx = 0

(4.6)
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for any ψ ∈W 1,2
ΓD

(Ω).

4.2.2. L∞-bound for ūp, w̄p and θ̄p. First we prove the L∞-estimate for ūp. Let us
set

φ := [b(ūp)− b(u1)]− =

{
b(ūp)− b(u1), ūp < u1,

0, ūp ≥ u1,
(4.7)

as a test function in (4.4). Note that φ vanishes on ΓD. It is a simple matter to
derive

1
2

∫
Ω

[b(ūp(t))− b(u1)]2−dx+
∫
Qt

a(θ̄p(s− τ))b′(ūp(s))|∇ūp(s)|2χ{ūp<u1}dxds ≤ 0

for almost every t ∈ I. Hence we conclude that the set {x ∈ Ω : ūp(x, t) < u1} has
a measure zero for almost every t ∈ I.

Now setting

φ = [b(ūp)− b(0)]+ =

{
b(ūp)− b(0), ūp > 0,
0, ūp ≤ 0,

(4.8)

we obtain, using similar arguments,

1
2

∫
Ω

[b(ūp)− b(0)]2+dx = 0 for almost every t ∈ I.

Hence the set {x ∈ Ω : ūp(x, t) > 0} has a measure zero for almost every t ∈ I.
Finally, combining the previous arguments, we deduce

‖ūp‖L∞(QT ) ≤ C, (4.9)

where C does not depend on p.
Now we prove a similar estimate for w̄p. Let ` be an odd integer. Using φ =

[`/(`+ 1)](w̄p)`+1 as a test function in (4.4) and η = (w̄p)` in (4.5) and combining
both equations we obtain

1
τ

1
`+ 1

∫
Ω

b(ūp(s))[w̄p(s)]`+1 dx

− 1
τ

1
`+ 1

∫
Ω

b(ūp(s− τ))[w̄p(s− τ)]`+1 dx

+
1
τ

1
`+ 1

∫
Ω

b(ūp(s− τ))[w̄p(s− τ)]`+1 dx

+
1
τ

`

`+ 1

∫
Ω

b(ūp(s− τ))[w̄p(s)]`+1 dx

− 1
τ

∫
Ω

b(ūp(s− τ))w̄p(s− τ)[w̄p(s)]` dx

+
∫

Ω

`[w̄p(s)]`−1b(ūp(s− τ))Dw(ūp(s− τ))∇w̄p(s) · ∇w̄p(s) dx = 0.

(4.10)
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Applying the Young’s inequality we can write for the term in the third line

1
τ

∫
Ω

b(ūp(s− τ))w̄p(s− τ)[w̄p(s)]` dx

≤ 1
τ

1
`+ 1

∫
Ω

b(ūp(s− τ))[w̄p(s− τ)]`+1 dx

+
1
τ

`

`+ 1

∫
Ω

b(ūp(s− τ))[w̄p(s)]`+1 dx.

(4.11)

Combining (4.10) and (4.11) we deduce

1
τ

1
`+ 1

∫
Ω

b(ūp(s))[w̄p(s)]`+1 dx

− 1
τ

1
`+ 1

∫
Ω

b(ūp(s− τ))[w̄p(s− τ)]`+1 dx

+
∫

Ω

`[w̄p(s)]`−1b(ūp(s− τ))Dw(ūp(s− τ))∇w̄p(s) · ∇w̄p(s) dx ≤ 0.

(4.12)

Now, integrating (4.12) over s from 0 to t we obtain∫
Ω

(w̄p(t))`+1b(ūp(t))dx

+
∫

Ωt

(`+ 1)`[w̄p(s)]`−1b(ūp(s− τ))Dw(ūp(s− τ))|∇w̄p(s)|2dxds

≤
∫

Ω

(w0)`+1b (u0) dx.

(4.13)

Note that the second integral in (4.13) is nonnegative (` is supposed to be the odd
integer). Moreover, from (4.13) and (4.9) it follows that

‖w̄p‖L∞(0,T ;L`+1(Ω)) ≤ C, (4.14)

where the constant C is independent of ` and p. Now, let ` → +∞ in (4.14), we
obtain

‖w̄p‖L∞(QT ) ≤ C. (4.15)

In the same manner we arrive at the estimate for θ̄p, i.e.

‖θ̄p‖L∞(QT ) ≤ C. (4.16)

4.2.3. Energy estimates for ūp, w̄p and θ̄p. We test (4.4) with φ = ūp(t) and inte-
grate (4.4) over t from 0 to s. For the parabolic term we can write∫ s

0

∫
Ω

∂−τt b(ūp(t))ūp(t) dxdt ≥ 1
τ

∫ s

s−τ

∫
Ω

B(ūp(t))−B(u0) dxdt. (4.17)

Further, using (4.9) and (4.17), applying the usual estimates for the elliptic part
(see also [2]), we obtain the a priori estimate

sup
0≤t≤T

∫
Ω

B(ūp(t))dx+
∫ T

0

∫
Ω

|∇ūp(t)|2dxdt ≤ C. (4.18)

Now it follows that there exists a function u ∈ L2(I;W 1,2
ΓD

(Ω)) such that, along a
selected subsequence (letting p→∞), we have ūp(t) ⇀ u weakly in L2(I;W 1,2

ΓD
(Ω)).
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Now we prove similar result for w̄p(t). Using η(t) = 2w̄p(t) as a test function in
(4.5) we obtain∫

Ω

∂−τt b(ūp(t))2w̄p(t)2 dx+
∫

Ω

∂−τt w̄p(t)2w̄p(t)b(ūp(t− τ)) dx

+ 2
∫

Ω

b(ūp(t− τ))Dw(ūp(t− τ))∇w̄p(t) · ∇w̄p(t) dx

+
∫

Ω

a(θ̄p(t− τ))∇ūp(t) · 2w̄p(t)∇w̄p(t) dx = 0.

(4.19)

One is allowed to use φ(t) = w̄p(t)2 as a test function in (4.4) to obtain∫
Ω

[∂−τt b(ūp(t))]w̄p(t)2 dx+
∫

Ω

a(θ̄p(t− τ))∇ūp(t) · ∇w̄p(t)2 dx = 0. (4.20)

Combining (4.19) and (4.20) we deduce∫
Ω

∂−τt
[
w̄p(t)2b(ūp(t))

]
dx+

∫
Ω

1
τ

[w̄p(t)− w̄p(t− τ)]2 b(ūp(t− τ)) dx

+ 2
∫

Ω

b(ūp(t− τ))Dw(ūp(t− τ))∇w̄p(t) · ∇w̄p(t) dx = 0.
(4.21)

In view of (4.9) we have

b(ūp(t)), b(ūp(t− τ)), Dw(ūp(t− τ)) > C in Ω× (−τ, T ). (4.22)

Recall that C does not depend on p. Now, integrating (4.21) with respect to time
t we obtain

sup
0≤t≤T

∫
Ω

|w̄p(t)|2dΩ +
∫ T

0

‖w̄p(t)‖2W 1,2
ΓD

(Ω)
dΩ ≤ C.

From this we can write
‖w̄p‖L2(I;W 1,2

ΓD
(Ω)) ≤ C. (4.23)

Similarly, we use ψ(t) = 2θ̄p(t) as a test function in (4.6) to obtain∫
Ω

∂−τt b(ūp(t))2θ̄p(t)2 dx+
∫

Ω

∂−τt θ̄p(t)2θ̄p(t)b(ūp(t− τ)) dx

+ 2
∫

Ω

λ(θ̄p(t− τ), ūp(t− τ))∇θ̄p(t) · ∇θ̄p(t) dx

+
∫

Ω

a(θ̄p(t− τ))∇ūp(t) · 2θ̄p(t)∇θ̄p(t) dx ≤ 0.

(4.24)

Using φ(t) = θ̄p(t)2 as a test function in (4.4) we obtain∫
Ω

∂−τt b(ūp(t))θ̄p(t)2 dx+
∫

Ω

a(θ̄p(t− τ))∇ūp(t) · ∇θ̄p(t)2 dx = 0. (4.25)

Combining (4.24) and (4.25) we deduce∫
Ω

∂−τt

[(
θ̄p(t)

)2
b(ūp(t))

]
dx+

∫
Ω

1
τ

[
θ̄p(t)− θ̄p(t− τ)

]2
b(ūp(t− τ)) dx

+ 2
∫

Ω

λ(θ̄p(t− τ), ūp(t− τ))∇θ̄p(t) · ∇θ̄p(t) dx ≤ 0.
(4.26)
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Integrating (4.26) with respect to time t we obtain the a priori estimate (using
(4.9) and (4.16))

sup
0≤t≤T

∫
Ω

|θ̄p(t)|2dx+
∫ T

0

‖θ̄p(t)‖2W 1,2
ΓD

(Ω)
dt ≤ C. (4.27)

From this we have
‖θ̄p‖L2(I;W 1,2

ΓD
(Ω)) ≤ C. (4.28)

4.2.4. Further estimates. To show that ūp converges to u almost everywhere on QT
we follow [2]. Let k ∈ N and use

φ(t) = ∂kτt ūp(s)

for jτ ≤ t ≤ (j + k)τ with (j − 1)τ ≤ s ≤ jτ and 1 ≤ j ≤ T
τ − k, as a test function

in (4.4). For the parabolic term, we can write∫ (j+k)τ

jτ

∫
Ω

∂−τt b(ūp(t)) ∂kτt ūp(t) dxdt

=
1
kτ2

∫ jτ

(j−1)τ

∫
Ω

(b(ūp(t+ kτ))− b(ūp(t))) (ūp(t+ kτ)− ūp(t)) dxdt.

Hence, summing over j = 1, . . . , p− k we obtain the estimate
p−k∑
j=1

∫ (j+k)τ

jτ

∫
Ω

∂−τt b(ūp(t))∂kτt ūp(t) dxdt

≥ 1
kτ2

∫ T−kτ

0

∫
Ω

(b(ūp(t+ kτ))− b(ūp(t))) (ūp(t+ kτ)− ūp(t)) dxdt.

(4.29)

Similarly, for the elliptic term, after a little lengthy but straightforward computation
we obtain

p−k∑
j=1

∫ (j+k)τ

jτ

∫
Ω

a(θ̄p(t− τ))∇ūp · ∇∂kτt ūp dxdt

=
k∑
`=1

p−k∑
j=1

∫ (j+`)τ

(j+`−1)τ

∫
Ω

(
a(θ̄p(t− τ))∇ūp

)
· ∇∂kτt ūpdxdt

=
k∑
`=1

∫ T−kτ+`τ

`τ

∫
Ω

a(θ̄p(t− τ))∇ūp(t) · ∇∂kτt ūp(t− `τ) dxdt

≤ c1
τ

∫
QT

|a(θ̄p(t− τ))∇ūp|2 dxdt+
c2
τ

∫
QT

|∇ūp|2 dxdt

≤ C

τ
.

(4.30)

Combining (4.29)–(4.30) and using (4.18) we obtain∫ T−kτ

0

(b(ūp(s+ kτ))− b(ūp(s))) (ūp(s+ kτ)− ūp(s))ds ≤ Ckτ. (4.31)

Using the compactness argument one can show in the same way as in [2, Lemma 1.9]
and [8, Eqs. (2.10)–(2.12)]

b(ūp)→ b(u) in L1(QT ) (4.32)
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and almost everywhere on QT . Since b is strictly monotone, it follows from (4.32)
that [13, Proposition 3.35]

ūp → u almost everywhere on QT . (4.33)

Further, in much the same way as in (4.31), we arrive at∫ T−kτ

0

|b(ūp(s+ kτ))w̄p(s+ kτ)− b(ūp(s))w̄p(s)|2ds ≤ Ckτ. (4.34)

From this we conclude, using (4.15), that∫ T−kτ

0

|w̄p(s+ kτ)− w̄p(s)|2ds ≤ Ckτ. (4.35)

Finally, in a similar way, using (4.16), we arrive at∫ T−kτ

0

|θ̄p(s+ kτ)− θ̄p(s)|2ds ≤ Ckτ. (4.36)

4.3. Passage to the limit. The a priori estimates (4.15), (4.16), (4.18), (4.23),
(4.28), (4.31), (4.35), (4.36) allow us to conclude that there exist u ∈ L2(I;W 1,2

ΓD
(Ω)),

w ∈ L2(I;W 1,2
ΓD

(Ω))∩L∞(QT ) and θ ∈ L2(I;W 1,2
ΓD

(Ω))∩L∞(QT ) such that, letting
p→ +∞ (along a selected subsequence),

ūp ⇀ u weakly in L2(I;W 1,2
ΓD

(Ω)),
ūp → u almost everywhere on QT ,

w̄p ⇀ w weakly in L2(I;W 1,2
ΓD

(Ω)),

w̄p ⇀ w weakly star in L∞(QT ),
w̄p → w almost everywhere on QT ,

θ̄p ⇀ θ weakly in L2(I;W 1,2
ΓD

(Ω)),

θ̄p ⇀ θ weakly star in L∞(QT ),

θ̄p → θ almost everywhere on QT .

The above established convergences are sufficient for taking the limit p → ∞ in
(4.4)–(4.6) (along a selected subsequence) to get the weak solution of the system
(1.1)–(1.6) in the sense of Definition 3.1. This completes the proof of the main
result stated in Theorem 3.2.
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Appliquées, 76 (1997), pp. 991–1015.
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