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INFINITELY MANY SMALL ENERGY SOLUTIONS FOR A
FRACTIONAL KIRCHHOFF EQUATION INVOLVING

SUBLINEAR NONLINEARITIES

VINCENZO AMBROSIO

Abstract. This article is devoted to the study of the following fractional
Kirchhoff equation

M
“ZZ

R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy

”
(−∆)su + V (x)u = f(x, u) in RN ,

where (−∆)s is the fractional Laplacian, M : R+ → R+ is the Kirchhoff term,
V : RN → R is a positive continuous potential and f(x, u) is only locally

defined for |u| small. By combining a variant of the symmetric Mountain Pass

with a Moser iteration argument, we prove the existence of infinitely many
weak solutions converging to zero in L∞(RN )-norm.

1. Introduction

In the previous two decades, the study of nonlocal problems driven by the frac-
tional and nonlocal operators has received a tremendous popularity because of their
intriguing structure and the great application in many different context such as op-
timization, finance, phase transition phenomena, population dynamics, quantum
mechanics, game theory; see [14, 30] and references therein for more details.

In this article we deal with the fractional Kirchhoff equation

M
(∫∫

R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy

)
(−∆)su+ V (x)u = f(x, u) in RN , (1.1)

where s ∈ (0, 1), N > 2s, M : R+ → R+ is a Kirchhoff function which is assumed
to be continuous and satisfies the following conditions:

(A1) there exists m0 > 0 such that inft∈R+ M(t) ≥ m0;
(A2) there exist a, b, ν > 0 such that M(t) ≤ a+ btν for all t ≥ 0.

A typical example of Kirchhoff function is given by

M(t) = a+ bγtγ−1, a, b ≥ 0, a+ b > 0, (1.2)

and

γ

{
∈ (1,∞) if b > 0
= 1 if b = 0.

2010 Mathematics Subject Classification. 47G20, 35R11, 35A15, 58E05.
Key words and phrases. Fractional Kirchhoff equation; sublinear nonlinearity;

symmetric mountain pass.
c©2018 Texas State University.

Published September 15, 2018.
1



2 VINCENZO AMBROSIO EJDE-2018/CONF/25

When M is of the type (1.2), problem (1.1) is said to be non-degenerate when a > 0
and b ≥ 0, while it is called degenerate if a = 0 and b > 0.

The potential V : RN → R is a positive continuous function such that
(A3) infx∈RN V (x) > 0 and there exist r > 0 and α > N such that

lim
|y|→∞

L
({
x ∈ Br(y) :

V (x)
|x|α

≤ A
})

= 0 ∀A > 0.

The fractional Laplacian (−∆)su of a smooth function u : RN → R is defined by

F((−∆)su)(k) = |k|2sF(u)(k), k ∈ RN ,
where F denotes the Fourier transform, that is,

F(u)(k) =
1

(2π)N

∫
RN

e−ıkẋu(x) dx.

Equivalently, (−∆)su can be represented by

(−∆)su(x) = −1
2
C(N, s)

∫
RN

(u(x+ y) + u(x− y)− 2u(x))
|y|N+2s

dy,

where C(N, s) is a dimensional constant depending only on N and s, precisely given
by

C(N, s) =
(∫

RN

1− cos(x1)
|x|N+2s

dx
)−1

.

When M(t) = a+ bt, s = 1 and p = 2, problem (1.1) is related to the stationary
analogue of the Kirchhoff equation

ρ utt −
(p0

h
+

E

2L

∫ L

0

|ux|2 dx
)
uxx = 0, (1.3)

which was proposed by Kirchhoff [24] in 1883 as a generalization of the well-known
D’Alembert’s wave equation for free vibrations of elastic strings. The Kirchhoff’s
model takes into account the changes in length of the string produced by transverse
vibrations. Here u = u(x, t) is the transverse string displacement at the space
coordinate x and time t, L is the length of the string, h is the area of the cross
section, E is Young’s modulus of the material, ρ is the mass density, and p0 is the
initial tension. Since we cannot review the huge bibliography on Kirchhoff equation,
we only mention the early works [13], [27], [34] and some interesting results obtained
in [1, 2, 17, 22, 26, 33, 40].

More recently, in [20] the authors introduced a stationary Kirchhoff model in
fractional setting, which takes into account the nonlocal aspect of the tension arising
from nonlocal measurements of the fractional length of the string; see Appendix in
[20] for a more detailed physical description of the fractional Kirchhoff model. After
that, several existence and multiplicity results for fractional Kirchhoff problems
have been established by many authors [12, 10, 11, 18, 19, 29, 31, 35, 36].

We also note that, when M(t) ≡ 1, the equation (1.1) becomes the stationary
fractional Schrödinger equation

(−∆)su+ V (x)u = f(x, u) in RN (1.4)

derived by Laskin in [25] as a result of expanding the Feynman path integral from
Brownian-like to Lévy like quantum mechanical paths. Equation (1.4) has been
extensively investigated in the last years: see for instance [3, 5, 6, 7, 9, 8, 16, 21,
28, 38, 39] and the references therein.
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Motivated by the above papers, in this work we focus our attention on the exis-
tence of infinitely many solutions for (1.1) without any growth conditions imposed
on f(x, u) at infinity with respect to u. More precisely, along this paper, we assume
that f : RN × R→ R satisfies the following assumptions:

(A4) there exists δ > 0 such that f ∈ C(RN × [−δ, δ]) and f(x,−t) = −f(x, t)
for all x ∈ RN and |t| ≤ δ;

(A5) there exists a ball Br0(x0) ⊂ RN such that

lim inf
t→0

(
inf

x∈Br0 (x0)

F (x, t)
t2

)
> −∞,

lim sup
t→0

(
inf

x∈Br0 (x0)

F (x, t)
t2

)
=∞,

where F (x, t) =
∫ t
0
f(x, z) dz;

(A6) there exist τ > 0 and g ∈ C([−τ, τ ],R+) such that |f(x, t)| ≤ g(t) for all
x ∈ RN and |t| ≤ τ .

Before stating our main result, we recall some useful facts on fractional Sobolev
spaces and we fix the notation.

The fractional Sobolev space Hs(RN ) is defined by

Hs(RN ) = {u ∈ L2(RN ) : [u] <∞},

where [u] denotes the so-called Gagliardo seminorm, that is

[u]2 =
∫∫

R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy = 2C(N, s)−1

∫
RN
|(−∆)

s
2u|2dx,

and Hs(RN ) is equipped with the norm

‖u‖Hs(RN ) =
√

[u]2 + |u|22.

We recall that Hs(RN ) is continuously embedded into Lq(RN ) for any q ∈ [2, 2∗s]
and compactly embedded into Lqloc(RN ) for any q ∈ [1, 2∗s); see [14, 30].

To study our problem (1.1), we introduce the fractional space

XV =
{
u ∈ Hs(RN ) : |u|2V :=

∫
RN

V (x)u2 dx <∞
}

endowed with the norm
‖u‖ =

√
[u]2 + |u|2V .

Definition 1.1. We say that u ∈ XV is a weak solution to (1.1) if

M([u]2)
∫∫

R2N

(u(x)− u(y))(ϕ(x)− ϕ(y))
|x− y|N+2s

dx dy +
∫

RN
V (x)uϕdx

=
∫

RN
f(x, u)ϕdx

for all ϕ ∈ XV .

It is clear that weak solutions to (1.1) can be found as critical points of the
Euler-Lagrange functional

I(u) =
1
2
M([u]2) +

1
2
|u|2V −

∫
RN

F (x, u)dx,
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where M(t) =
∫ t
0
M(τ) dτ .

Now, we state the main result of this paper.

Theorem 1.2. Assume that (A1)–(A6) hold. Then there exists a sequence (un) ⊂
XV ∩ L∞(RN ) such that I(un) < 0 and |un|∞ → 0 as nto∞.

We give a sketch of the proof of Theorem 1.2. Firstly we extend the nonlinear
term f(x, u) and we introduce a modified fractional Kirchhoff equation. By using
a suitable variant of the Symmetric Mountain Pass Theorem due to Kajikiya [23],
we prove that the modified problem admits infinitely many small energy solutions
(un) ⊂ XV such that un → 0 in XV . Finally, using a Moser iteration argument
[32], we prove that un → 0 in L∞(RN ) as nto∞ and that (un) is indeed a sequence
of solutions of the original problem (1.1).

The plan of the paper is the following: in Section 2 we collect some useful results
which will be used along the paper. The Section 3 is devoted to the proof of
Theorem 1.2.

2. preliminaries

From now on, we fix s ∈ (0, 1) and N > 2s. We begin proving the following
compactness result.

Lemma 2.1. The space XV is compactly embedded into Lp(RN ) for any p ∈ [1, 2∗s).

Proof. For any y ∈ RN and A > 0 we define the two sets

CA(y) =
{
x ∈ Br(y) :

V (x)
|x|α

≤ A
}
,

DA(y) =
{
x ∈ Br(y) :

V (x)
|x|α

> A
}
.

Let (un) be a bounded sequence in XV and, up to a subsequence, we may assume
that

un ⇀ u in XV .

We aim to prove that un → u in Lp(RN ) for any p ∈ [1, 2∗s).
Firstly, we consider the case p = 1. Set vn = un−u. Take a sequence (yi) ⊂ RN

such that RN ⊂ ∪∞i=1Br(yi) and each x ∈ RN is covered by at most 2N such balls.
Then, for all R > 2r we can see that∫

BcR

|vn| dx ≤
∑

|yi|≥R−r

∫
Br(yi)

|vn|dx

=
∑

|yi|≥R−r

(∫
CA(yi)

|vn|dx+
∫
DA(yi)

|vn|dx
)
.

(2.1)

Let us note that for all |yi| ≥ R− r (i ∈ N) we have∫
CA(yi)

|vn|dx ≤
(∫

CA(yi)

|vn|2dx
)1/2

L(CA(yi))1/2

≤ C
(∫

Br(yi)

|(−∆)
s
2 vn|2 + V (x)v2

n dx
)1/2

L(CA(yi))1/2.
(2.2)
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On the other hand∫
DA(yi)

|vn|dx

=
∫
DA(yi)∩{|x|α|vn|≤1}

|vn|dx+
∫
DA(yi)∩{|x|α|vn|>1}

|vn|dx

≤
∫
DA(yi)∩{|x|α|vn|≤1}

|x|−α dx+
∫
DA(yi)∩{|x|α|vn|>1}

(|x|α|vn|)|x|−α dx

≤
∫
DA(yi)∩{|x|α|vn|≤1}

|x|−α dx+
∫
DA(yi)∩{|x|α|vn|>1}

|x|α|vn|2 dx

≤
∫
DA(yi)∩{|x|α|vn|≤1}

|x|−α dx+
∫
DA(yi)∩{|x|α|vn|>1}

V (x)
A
|vn|2 dx.

(2.3)

Putting together (2.1), (2.2) and (2.3) we obtain∫
BcR

|vn| dx ≤ 2NC
(∫

BcR−2r

|(−∆)
s
2 vn|2 + V (x)|vn|2 dx

)1/2

sup
|y|≥R−r

L(CA(y))1/2

+ 2N
∫
BcR−2r

|x|−α dx+
2N

A

∫
BcR−2r

V (x)|vn|2 dx

≤ C sup
|y|≥R−r

L(CA(y))1/2 +
C

(R− 2r)α−N
+
C

A
.

Now, fixed ε > 0 we can take A > 0 sufficiently large such that
C

A
<
ε

3
.

Let R > 0 be big enough in such way that
C

(R− 2r)α−N
<
ε

3
,

sup
|y|≥R−r

L(CA(y))1/2 <
ε

3
.

Then we can deduce that vn → 0 in L1(BcR). Since vn → 0 in L1(BR) in view of
the compact embedding Hs(RN ) ⊂⊂ L1(BR), we can infer that vn → 0 in L1(RN ).

When p ∈ (1, 2∗s) we can use an interpolation argument and the strong conver-
gence in L1(RN ) to obtain the thesis. Indeed, taking θ ∈ (0, 1) such that

1
p

= θ +
1− θ

2∗s
,

we can see that

|vn|p ≤ |vn|θ1|vn|1−θ2∗s
≤ C|vn|θ1‖vn‖1−θ ≤ C|vn|θ1

and recalling that |vn|1 → 0 as n → ∞ we can conclude that |vn|p → 0 as n →
∞. �

3. A variant of the Symmetric Mountain Pass Lemma

To prove the existence of infinitely many solutions to (1.1) which tend to zero, we
will use a variant of the Symmetric Mountain Pass Lemma [4]. Firstly, we recall the
definition of genus and some its fundamental properties; see [37] for more details.



6 VINCENZO AMBROSIO EJDE-2018/CONF/25

Let E be a Banach space and A a subset of E. We say that A is symmetric if
u ∈ A implies that −u ∈ A. Let Γ be the family of closed symmetric subsets A of
E such that 0 /∈ A, that is,

Γ = {A ⊂ E \ {0} : A is closed in E and symmetric with respect to the origin}.

For A ∈ Γ, we define

γ(A) = inf{m ∈ N : ∃φ ∈ C(A,Rm \ {0}), φ(x) = −φ(−x)}.

If there is no mapping φ as above for any m ∈ N, then γ(A) =∞. Let us denote by
Γk the family of closed symmetric subsets A of E such that 0 /∈ A and γ(A) ≥ k.
Then we have the following result.

Proposition 3.1. Let A and B be closed symmetric subset of E which do not
contain the origin. Then we have

(i) If there exists an odd continuous mapping from A to B, then γ(A) ≤ γ(B).
(ii) If there is an odd homeomorphism from A onto B, then γ(A) = γ(B).

(iii) If γ(B) <∞, then γ(A \B) ≥ γ(A)− γ(B).
(iv) The n-dimensional sphere Sn has a genus of n + 1 by the Borsuk-Ulam

Theorem.
(v) If A is compact, then γ(A) < ∞ and there exist δ > 0 and a closed and

symmetric neighborhood Nδ(A) = {x ∈ E : ‖x − A‖ ≤ δ} of A such that
γ(Nδ(A)) = γ(A).

Also we recall the following result due to Kajikija [23].

Theorem 3.2. Let E be an infinite-dimensional Banach space and J ∈ C1(E,R)
be a functional satisfying the conditions below:

(A7) J (u) is even, bounded from below, J (0) = 0 and I(u) satisfies the local
Palais-Smale condition; that is for some c∗ > 0, in the case when every
sequence {uk} in E satisfying J (uk) → c < c∗ and J ′(uk) → 0 in E∗ has
a convergent subsequence;

(A8) For each k ∈ N, there exist an Ak ∈ Γk such that supu∈Ak J (u) < 0.
Then either (i) or (ii) below holds.

(i) There exists a sequence {uk} such that J ′(uk) = 0, J (uk) < 0 and {uk}
converges to zero.

(ii) There exist two sequences {uk} and {vk} such that J ′(uk) = 0, J (uk) = 0,
uk 6= 0, limk→∞ uk = 0, J ′(vk) = 0, J (vk) < 0, limk→∞ J (vk) = 0 and
{vk} converges to a non-zero limit.

4. proof of Theorem 1.2

Take ` > 0 be such that ` < 1
2 min{δ, τ}, where δ and τ are as in (A4) and (A6).

Let us define a function h ∈ C1(R,R) such that

0 ≤ h(t) ≤ 1,

h(−t) = h(t) for all t ∈ R,
h(t) = 1 if |t| ≤ `,
h(t) = 0 if |t| ≥ 2`,

h is decreasing in [`, 2`].
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Set f̃(x, t) = f(x, t)h(t) and we denote

F̃ (x, t) =
∫ t

0

f̃(x, z)dz for (x, t) ∈ RN × R.

Let us consider the equation

M
(∫∫

R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy

)
(−∆)su+ V (x)u = f̃(x, u) in RN , (4.1)

and we observe that if u is a weak solution to (4.1) such that |u|∞ ≤ ` then u is
also a solution to (1.1). For this reason we look for critical points of the functional
J : XV → R defined as

J (u) =
1
2
M([u]2) +

1
2
|u|2V −

∫
RN

F̃ (x, u) dx.

In view of (A6) we can see that there exists C0 > 0 such that

|f̃(x, t)| ≤ C0 for any (x, t) ∈ RN × R

|F̃ (x, t)| ≤ C0|t| for any (x, t) ∈ RN × R.
(4.2)

Therefore, using Lemma 2.1, we can deduce that J is well-defined on XV . Moreover,
it is easy to verify that J ∈ C1(XV ,R). We also note that for all u, ϕ ∈ XV ,

〈J ′(u), ϕ〉 = M([u]2)
∫∫

R2N

(u(x)− u(y))(ϕ(x)− ϕ(y))
|x− y|N+2s

dx dy

+
∫

RN
V (x)uϕdx−

∫
RN

f̃(x, u)ϕdx.

Next we show that J satisfies the assumptions of Theorem 3.2.

Lemma 4.1. J is bounded from below and satisfies the (PS) condition on XV .

Proof. By using (A1), (4.2) and Lemma 2.1 we can see that for all u ∈ XV ,

J (u) ≥ min{m0, 1}
2

‖u‖2 − C0

∫
RN
|u|dx ≥ C1‖u‖2 − C2‖u‖ (4.3)

which implies that J is bounded from below.
Let (un) be a (PS) sequence at the level c ∈ R, that is

J (un)→ c and J ′(un)→ 0.

Then we can use (4.3) to show that

c+ o(1) = J (un) ≥ C1‖un‖2 − C2‖un‖,

which gives the boundedness of (un) in XV . Then, in view of Lemma 2.1, we may
assume that

un ⇀ u in XV ,

un → u in Lp(RN ) for all p ∈ [1, 2∗s).

In particular, from (A4), (4.2) and the Dominated Convergence Theorem, we can
infer that∫

RN
f̃(x, un)un dx =

∫
RN

f̃(x, u)u dx+ o(1) =
∫

RN
f̃(x, un)u dx.
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Let us assume that [un] → t0 ≥ 0. Taking into account (A1), 〈J ′(un), un〉 = o(1)
and 〈J ′(un), u〉 = o(1) we can see that

M(t20)[un]2 + |un|2V =
∫

RN
f̃(x, u)udx+ o(1) = M(t20)[u]2 + |u|2V ,

from which we can easily deduce the thesis. �

Lemma 4.2. For each k ∈ N, there exists a closed symmetric subset Ak ⊂ X such
that 0 ∈ Ak, the genus γ(Ak) ≥ k and supu∈Ak J (u) < 0.

Proof. For any r > 0 we define

D(r) = {x ∈ RN : 0 ≤ xi ≤ r for all i = 1, . . . , N}

By using (A5) we take ` sufficiently small such that there exists a positive constant
C and two sequences of positive numbers δn → 0 and Mn → ∞ as n → ∞ such
that

F (x, u) ≥ −Cu2 ∀x ∈ D(r0), |u| ≤ 2` (4.4)

F (x, δn) ≥Mnδ
2
n ∀x ∈ D(r0), n ∈ N. (4.5)

Fix k ∈ N and we construct Ak ∈ Γk satisfying (A8). Let p ∈ N be the smallest
integer that satisfies pN ≥ k. We divide D(r0) equally into pN small cubes by
planes parallel to each face of D(r0). Denote them by Di with 1 ≤ i ≤ pN . We use
Di with1 ≤ i ≤ k only. Set a = r0/p. Then the edge of Di has the length of a.We
make a cube Ei in Di such that Ei has the same center as that of Di, the faces of
Ei and Di are parallel and the edge of Ei has the length of a/2.

Let us introduce a function φ ∈ C(R,R) such that

φ(t) =


0 for t ∈ (−∞, 0] ∩ [a,∞),
4t
a for t ∈ [0, a4 ],
1 for t ∈ [a4 ,

3
4a],

− 4t
a + 4 for t ∈ [ 34a, a].

Then φ ∈ Hs(R). Let us define

ψ(x) = φ(x1) · φ(x2) . . . φ(xN ) =
N∏
i=1

φ(xi),

and we note that supp(ψ) = [0, a]N . We define ψi(x) by a parallel translation
ψ(x − yi) with a suitable yi ∈ RN such that the support of ψi coincides with Di.
Then

0 ≤ ψi ≤ 1 in RN , ψi = 1 on Ei,

supp(ψi) = Di, and supp(ψi) ∩ supp(ψj) = ∅ textforalli 6= j.

Finally, let us define

Vk = {t ∈ Rk : max
1≤i≤k

|ti| = 1},

Wk = {
k∑
i=1

tiψi : t ∈ Vk}.
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Since Vk is the surface of the k-dimensional cube, it is homeomorphic to the sphere
Sk−1 by an odd mapping. Hence γ(Vk) = γ(Sk−1) = k. Moreover, γ(Wk) =
γ(Vk) = k because the mapping (t1, . . . , tk) 7→

∑
tiψi is odd and homeomorphic.

Since Wk is compact we can find a constant Ck > 0 such that

‖u‖ ≤ Ck ∀u ∈Wk. (4.6)

For any t ∈ (0, `) and u =
∑k
i=1 tiψi ∈Wk we can use the definition of F̃ (x, u) and

the condition (A2) to see that

J (tu) ≤ at2

2
‖u‖2 +

bt2(ν+1)

ν + 1
‖u‖2(ν+1) −

k∑
i=1

∫
Di

F̃ (x, ttiψi) dx

=
at2

2
‖u‖2 +

bt2(ν+1)

ν + 1
‖u‖2(ν+1) −

k∑
i=1

∫
Di

F (x, ttiψi) dx.

(4.7)

In view of the definition of Vk, there is j ∈ [1, k] such that |tj | = 1 and |ti| ≤ 1 for
other i. Hence

k∑
i=1

∫
Di

F (x, ttiψi) dx =
∫
Ej

F (x, ttiψi) dx+
∫
Dj\Ej

F (x, ttiψi) dx

+
∑
i6=j

∫
Di

F (x, ttiψi) dx.
(4.8)

Now, by using (4.4), we note that∫
Dj\Ej

F (x, ttiψi) dx+
∑
i6=j

∫
Di

F (x, ttiψi) dx ≥ −CrN0 t2. (4.9)

On the other hand, taking into account (A4), |tj | = 1 and ψj = 1 on Ej we obtain∫
Ej

F (x, ttiψi) dx =
∫
Ej

F (x, t) dx. (4.10)

Then, putting together (4.7), (4.8), (4.9) and (4.10), for each δn ∈ (0, `), we obtain

J (δnu) ≤ δ2n
[a
2
C2
k +

bδ2νn
ν + 1

C
2(ν+1)
k + CrN0 −

(a
2

)N
Mn

]
∀u ∈Wk. (4.11)

Since δn → 0 and Mn →∞ as n→∞ we can see that (4.11) yields J (δmu) < 0 for
all u ∈ Wk, for some m ∈ N. Then, setting Ak = {δmu : u ∈ Wk}, we can deduce
that γ(Ak) = γ(Wk) = k and supu∈Ak J (u) < 0. �

Now, we are ready to give the proof of the main result of this paper.

Proof of Theorem 1.2. In view of (A4) and the definition of F̃ we know that J is
even and J (0) = 0. Taking into account Lemma 4.1, Lemma 4.2 and Theorem 3.2
we can deduce that there exists a sequence (un) ⊂ XV such that J (un) < 0 and
un → 0 in XV as n→∞.

Therefore, if we prove that |un|∞ ≤ `, it follows that J (un) = I(un) < 0 and
(un) is the desired sequence. In order to achieve our aim, we use a Moser iteration
argument [32].
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For all β ≥ 0 and L > 0 we denote by vL,n = unu
2β
L,n and wL,n = unu

β
L,n, where

uL,n = min{|un|, L}. Taking vL,n as test function in (4.1) we can see that

M([un])2
∫∫

R2N

(un(x)− un(y))(vL,n(x)− vL,n(y))
|x− y|N+2s

dx dy

+
∫

RN
V (x)u2

nu
2β
L,n dx

=
∫

RN
f̃(x, un)unu

2β
L,n.

(4.12)

By using (4.2) and 0 ≤ uL,n ≤ |un| we have∣∣ ∫
RN

f̃(x, un)unu
2β
L,n dx

∣∣ ≤ C0

∫
RN
|un|2β+1 = C0|un|2β+1

2β+1. (4.13)

Now, we can argue as in [7] to infer that∫∫
R2N

(un(x)− un(y))(vL,n(x)− vL,n(y))
|x− y|N+2s

dx dy ≥ S∗(β + 1)−2|wL,n|22∗s . (4.14)

Indeed, to deduce the above estimate, we note that γ(t) = tt2βL is an increasing
function, so we have

(a− b)(γ(a)− γ(b)) ≥ 0 for any a, b ∈ R.

Let us consider

E(t) =
|t|2

2
and Γ(t) =

∫ t

0

(γ′(τ))1/2dτ.

Then, by applying Jensen inequality we obtain for all a, b ∈ R such that a > b,

E ′(a− b)(γ(a)− γ(b)) = (a− b)(γ(a)− γ(b))

= (a− b)
∫ a

b

γ′(t)dt

= (a− b)
∫ a

b

(Γ′(t))2dt

≥
(∫ a

b

(Γ′(t))dt
)2

= (Γ(b)− Γ(a))2.

The same argument works when a ≤ b. Therefore

E ′(a− b)(γ(a)− γ(b)) ≥ |Γ(a)− Γ(b)|2 for any a, b ∈ R. (4.15)

By using (4.15), we can see that

|Γ(un)(x)− Γ(un)(y)|2 ≤ (un(x)− un(y))((unu
2β
L,n)(x)− (unu

2β
L,n)(y)). (4.16)

Since
Γ(un) ≥ 1

(β + 1)
unu

β−1
L,n ,

and invoking the following Sobolev inequality

S∗|u|22∗s ≤ [u]2 for all u ∈ Ds,2(RN )

where
Ds,2(RN ) = {u ∈ L2∗s (RN ) : [u] <∞},
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we have
[Γ(un)]2 ≥ S∗|Γ(un)|22∗s ≥

( 1
β + 1

)2

S∗|unuβ−1
L,n |

2
2∗s

(4.17)

which shows that (4.14) holds.
Putting together (A1), (A3), (4.12), (4.13) and (4.14) we obtain

m0S∗(β + 1)−2|wL,n|22∗s ≤ C0|un|2β+1
2β+1,

and taking the limit as L→∞ we deduce that

|un|2∗s(β+1) ≤ [C(β + 1)]
1

β+1 |un|
2β+1

2(β+1)

2β+1 . (4.18)

Set β0 = 2∗s−1
2 and we define βk for k ≥ 1 such that 2βk+1 + 1 = 2∗s(βk + 1). Then,

iterating the formula (4.18) we can see that

|un|2βk+1+1 ≤ erk |un|σk2∗s
(4.19)

where

rk =
k∑
i=0

log(C(βi + 1))
βi + 1

, σk =
k∏
i=0

2βi + 1
2(βi + 1)

.

We note that (rk) and (σk) are two convergent subsequences and

r := lim
k→∞

rk > 0,

σ := lim
k→∞

σk ∈ (0, 1).

Taking the limit as k →∞ in (4.19) and using Lemma 2.1 we can infer that

|un|∞ ≤ er|un|σ2∗s ≤ C‖un‖
σ.

Recalling that ‖un‖ → 0 as n → ∞ we can infer that |un|∞ → 0 as n → ∞. As a
consequence, we can find n0 ∈ N such that |un|∞ ≤ ` for all n ≥ n0. This completes
the proof. �
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