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INFINITELY MANY SMALL ENERGY SOLUTIONS FOR A
FRACTIONAL KIRCHHOFF EQUATION INVOLVING
SUBLINEAR NONLINEARITIES

VINCENZO AMBROSIO

ABSTRACT. This article is devoted to the study of the following fractional
Kirchhoff equation

_ 2
//]RzN ‘Ta(cx— y‘;\ifgsl dx dy)(*A)Su+V(m)u:f(x,u) in RY,

S

where (—A)® is the fractional Laplacian, M : R; — Ry is the Kirchhoff term,
VRN - R is a positive continuous potential and f(z,u) is only locally
defined for |u| small. By combining a variant of the symmetric Mountain Pass
with a Moser iteration argument, we prove the existence of infinitely many
weak solutions converging to zero in L (R )-norm.

1. INTRODUCTION

In the previous two decades, the study of nonlocal problems driven by the frac-
tional and nonlocal operators has received a tremendous popularity because of their
intriguing structure and the great application in many different context such as op-
timization, finance, phase transition phenomena, population dynamics, quantum
mechanics, game theory; see [14] [30] and references therein for more details.

In this article we deal with the fractional Kirchhoff equation

//RZN = y|N+2)8| dr d?/) (—A)u+V(z)u= f(z,u) in RY, (1.1)

where s € (0,1), N > 2s, M : Ry — R is a Kirchhoff function which is assumed
to be continuous and satisfies the following conditions:

(A1) there exists mg > 0 such that inf,cg, M(t) > mo;

(A2) there exist a,b,v > 0 such that M (t) < a + bt” for all ¢ > 0.

A typical example of Kirchhoff function is given by
M(t)=a+byt""", a,b>0, a+b>0, (1.2)

and

€(l,00) itb>0
Y .

=1 if b=0.
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When M is of the type (1.2]), problem (|1.1)) is said to be non-degenerate when a > 0
and b > 0, while it is called degenerate if a = 0 and b > 0.
The potential V : RV — R is a positive continuous function such that

(A3) inf,cpn V(2) > 0 and there exist 7 > 0 and o > N such that

lim E({m € B.(y) : Viz) < A}) =0 VA>0.

|y|—o0 |1’|a -
The fractional Laplacian (—A)*u of a smooth function u : RY — R is defined by
F(=A)u)(k) = [k*F(u)(k), keRY,
where F denotes the Fourier transform, that is,

Fu)(k) = (271)]\, /RN e *y(z) da.

Equivalently, (—A)*u can be represented by

(~8)ula) = —5C(N.) [ DL EE N Z 2,

where C'(N, s) is a dimensional constant depending only on N and s, precisely given

N (1) !
1 — cos(x -

When M(t) = a+bt, s =1 and p = 2, problem (1.1)) is related to the stationary
analogue of the Kirchhoff equation

E L
P ULt — (% + E 0 Iua:|2 dm)umw = 07 (13)

which was proposed by Kirchhoff [24] in 1883 as a generalization of the well-known
D’Alembert’s wave equation for free vibrations of elastic strings. The Kirchhoff’s
model takes into account the changes in length of the string produced by transverse
vibrations. Here u = w(z,t) is the transverse string displacement at the space
coordinate x and time ¢, L is the length of the string, h is the area of the cross
section, F is Young’s modulus of the material, p is the mass density, and pq is the
initial tension. Since we cannot review the huge bibliography on Kirchhoff equation,
we only mention the early works [13], [27], [34] and some interesting results obtained
in [11 2} 17, 221 26, [33], [40].

More recently, in [20] the authors introduced a stationary Kirchhoff model in
fractional setting, which takes into account the nonlocal aspect of the tension arising
from nonlocal measurements of the fractional length of the string; see Appendix in
[20] for a more detailed physical description of the fractional Kirchhoff model. After
that, several existence and multiplicity results for fractional Kirchhoff problems
have been established by many authors [12] 10} 1T, I8, 9] 29} 3T, B5] B6].

We also note that, when M (t) = 1, the equation becomes the stationary
fractional Schrodinger equation

(—A)u+V(z)u = f(x,u) in RY (1.4)

derived by Laskin in [25] as a result of expanding the Feynman path integral from
Brownian-like to Lévy like quantum mechanical paths. Equation has been
extensively investigated in the last years: see for instance [3| 5] [6], [7, @, 8] [16] 2T,
28, [38], 9] and the references therein.
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Motivated by the above papers, in this work we focus our attention on the exis-
tence of infinitely many solutions for without any growth conditions imposed
on f(x,u) at infinity with respect to u. More precisely, along this paper, we assume
that f: RV x R — R satisfies the following assumptions:

(A4) there exists 6 > 0 such that f € C(RY x [-6,8]) and f(x, —t) = —f(z,t)

for all z € RY and |¢| < 6;
(A5) there exists a ball B, (zo) C RY such that

F(x,t
liminf( inf (=, )) > —00,
t—0 \z€B,y(zo) 12

( . F(.Z’,t))

inf
©€Byo (v0) 12

lim sup
t—0

)

where F(x,t) fo x,2)dz;

(A6) there exist 7 > 0 and g € C’([ 7,7],R4) such that |f(x,t)| < g(¢) for all
z € RY and |t| < 7.

Before stating our main result, we recall some useful facts on fractional Sobolev

spaces and we fix the notation.
The fractional Sobolev space H*(R") is defined by

HY(RY) = {u € L2(RY) : [u] < oo},

where [u] denotes the so-called Gagliardo seminorm, that is

)|2 71/ s 2
drdy = 2C(N —A)2ul?d

and H*(RY) is equipped with the norm

[l sy = 3/ [ul® + [ul3.

We recall that H*(RY) is continuously embedded into LI(RY) for any ¢ € [2,2%]
and compactly embedded into L _(RY) for any ¢ € [1,2%); see [14, [30].
To study our problem (1.1}), we introduce the fractional space

Xy = {ue H'RY) : Jul} = / V(z)u® dz < oo}
RN

endowed with the norm
[ull = /[u]® + |ul3.

Definition 1.1. We say that u € Xy is a weak solution to ([L.1)) if
u(®)(e(z) — ¢(y))
//RZN |a: [ dx dy + V(z)up dz

RN
= / [z, u)pdz
RN

for all p € Xy

It is clear that weak solutions to (1.1)) can be found as critical points of the
Euler-Lagrange functional

T() = M) + 5l — [ Flowde
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where M(t) = [ M(7)dr.
Now, we state the main result of this paper.

Theorem 1.2. Assume that (A1)—(AG6) hold. Then there exists a sequence (uy,) C
Xy N L®(RN) such that I(u,) < 0 and |uy,|eo — 0 as ntoco.

We give a sketch of the proof of Theorem Firstly we extend the nonlinear
term f(z,u) and we introduce a modified fractional Kirchhoff equation. By using
a suitable variant of the Symmetric Mountain Pass Theorem due to Kajikiya [23],
we prove that the modified problem admits infinitely many small energy solutions
(un) C Xy such that w, — 0 in Xy. Finally, using a Moser iteration argument
[32], we prove that u,, — 0 in L>(RY) as ntooo and that (u,) is indeed a sequence
of solutions of the original problem .

The plan of the paper is the following: in Section 2 we collect some useful results
which will be used along the paper. The Section 3 is devoted to the proof of
Theorem

2. PRELIMINARIES

From now on, we fix s € (0,1) and N > 2s. We begin proving the following
compactness result.

Lemma 2.1. The space Xy is compactly embedded into LP(RY) for any p € [1,2%).

Proof. For any y € RY and A > 0 we define the two sets

Caly) = {x € B-(y) : FE < A},

Da(y) = {z € B,(y) :

Let (u,) be a bounded sequence in Xy and, up to a subsequence, we may assume
that

U, = u in Xy
We aim to prove that u, — u in LP(RY) for any p € [1,2}).
Firstly, we consider the case p = 1. Set v,, = u,, —u. Take a sequence (y;) C RY

such that RY € U2, B,.(y;) and each = € RY is covered by at most 2V such balls.
Then, for all R > 2r we can see that

|vp | da < / |vy, |dx
/B;2 Z Br(yi)

lyi|>R—r (2.1)
= Z (/ |vy, |dx +/ |Un\dx).
lyi|>R—r 7 Ca(yi) Da(y:)
Let us note that for all |y;| > R — r (i € N) we have
1/2
[ walde< ([ poalds) " eicaw)
Ca(yi) Cal(yi) (22)

2 2 2 1/2 1/2
<O [ A=A) kv + V@pdde) L(Calw)
Br(y:)
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On the other hand
/ |vp, |dx
Da(yi)
:/ \vn|dx+/ |vp|dx
Da(yi)n{|z]|*|v,|<1} D 4 (yi){|z|*|vn|>1}
</ ol da+ [ (e o)zl dz  (2.3)
Da(yi)n{|z]|*|v,|<1} Da(yi)n{|z]*]|vn|>1}
g/ \x|_adac+/ (2] on |2 dz
D a(y:)n{|z|®|va| <1} D a(yi)n{|z|*|vn|>1}
V(z)

S/ \J;|_"dm—|—/ |vn|? de.
Da(y){|z|*[va| <1} Da(in{lzlafon>1) A

Putting together (2.1]), (2.2) and (2.3) we obtain

/ |on| dzz < 2Nc(/
B B

CAVS . |2 2 1/2 1/2
[(=A)zv,|* + V() |v,|* dx sup L(Cal(y))

R R—2r ly|>R—r
2N
+2N/ |~ do+ 2 V(@) [vn|? da
B Bh o
C C
<C sup L(C vy, - 4z
Now, fixed € > 0 we can take A > 0 sufficiently large such that
g ¢
A T3
Let R > 0 be big enough in such way that
¢ e
(R—2r)e—N = 3’
sup  L(Ca(y)Y? < =
ly|>R—r 3

Then we can deduce that v, — 0 in L'(B%). Since v, — 0 in L'(Bg) in view of
the compact embedding H*(RY) CC L'(Bg), we can infer that v, — 0 in L}(RY).
When p € (1,2%) we can use an interpolation argument and the strong conver-
gence in L' (RY) to obtain the thesis. Indeed, taking 6 € (0, 1) such that
1 1-4
29
PR

S

we can see that

‘vn|p < |Un|§|vn

21" < Cloalllvall' =% < Clual]

and recalling that |v,]|1 — 0 as n — oo we can conclude that |v,|, — 0 as n —
0. |

3. A VARIANT OF THE SYMMETRIC MOUNTAIN PAsS LEMMA

To prove the existence of infinitely many solutions to (|1.1)) which tend to zero, we
will use a variant of the Symmetric Mountain Pass Lemma [4]. Firstly, we recall the
definition of genus and some its fundamental properties; see [37] for more details.
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Let E be a Banach space and A a subset of E. We say that A is symmetric if
u € A implies that —u € A. Let T" be the family of closed symmetric subsets A of
E such that 0 ¢ A, that is,

I'={AcC E\{0}: Aisclosed in F and symmetric with respect to the origin}.
For A € T, we define

V(4) = inf{m € N: 3¢ € C(A,R™\{0}), ¢(z) = —¢(—2)}.

If there is no mapping ¢ as above for any m € N, then v(A) = oo. Let us denote by
T'j the family of closed symmetric subsets A of F such that 0 ¢ A and v(A) > k.
Then we have the following result.

Proposition 3.1. Let A and B be closed symmetric subset of E which do not
contain the origin. Then we have

(i) If there exists an odd continuous mapping from A to B, then v(A) < v(B).
(i1) If there is an odd homeomorphism from A onto B, then v(A) = v(B).
i) 1f 1(B) < oo, then 7(A\ B) > 4(A) — 1(B).
) The n-dimensional sphere S™ has a genus of n + 1 by the Borsuk-Ulam
Theorem.
(v) If A is compact, then v(A) < oo and there exist § > 0 and a closed and
symmetric neighborhood Ns(A) = {x € E : ||z — A|| < 8} of A such that

7(Ns(A)) = 7(A).
Also we recall the following result due to Kajikija [23].

1v

(
R

Theorem 3.2. Let E be an infinite-dimensional Banach space and J € C1(E,R)
be a functional satisfying the conditions below:

(AT) J(u) is even, bounded from below, J(0) = 0 and I(u) satisfies the local
Palais-Smale condition; that is for some ¢* > 0, in the case when every
sequence {ur} in E satisfying J (ux) — ¢ < ¢* and J'(ux) — 0 in E* has
a convergent subsequence;

(A8) For each k € N, there exist an Ay, € Ty, such that sup,c4, J(u) < 0.

Then either (i) or (ii) below holds.

(i) There exists a sequence {ug} such that J'(ux) = 0, J(ur) < 0 and {ux}
converges to zero.

(ii) There exist two sequences {ug} and {vi} such that J'(ux) =0, J(ug) =0,
Uk 7& 0, limg o0 U, = 0, j’(vk) =0, j(’l)k) <0, limg o j(’Uk) =0 and
{vr} converges to a non-zero limit.

4. PROOF OF THEOREM

Take £ > 0 be such that ¢ < £ min{é, 7}, where § and 7 are as in (A4) and (AG6).
Let us define a function h € C*(R,R) such that

0<h(t) <1,

h(—t) = h(t) forallte R,
h(t)y=1 if |¢t] <,
h(t) =0 if |t| > 2¢,

h is decreasing in [¢, 2£].
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Set f(x,t) = f(x,t)h(t) and we denote
F(z,t) = /t f(z,2)dz for (z,t) € RN x R.
0
Let us consider the equation

//RZN |z — |N+2)5| dx dl/) (=A)*u+V(z)u = f(z,u) in RY, (4.1)

and we observe that if u is a weak solution to (4.1)) such that |u|. < ¢ then w is
also a solution to (|1.1)). For this reason we look for critical points of the functional
J : Xy — R defined as

T = gM(P)+ lult = [ Flowde.

In view of (A6) we can see that there exists Cp > 0 such that
|f(x,t)| < Cy for any (z,t) € RN x R (4)
|F(z,t)| < Colt| for any (z,t) € RN x R. .

Therefore, using Lemma[2.1] we can deduce that 7 is well-defined on Xy. Moreover,
it is easy to verify that J € C! (XV,R). We also note that for all u, ¢ € Xy,

R I i e

+/RN V(z)upde — /]RN f(z,u)pde.

Next we show that J satisfies the assumptions of Theorem [3.2}

Lemma 4.1. J is bounded from below and satisfies the (PS) condition on Xy .
Proof. By using (A1), (4.2) and Lemma we can see that for all u € Xy,

min{mg, 1} ]
2

which implies that J is bounded from below.
Let (uy) be a (PS) sequence at the level ¢ € R, that is

J(u,) — ¢ and  J'(up) — 0.
Then we can use (4.3 to show that
c+o(l) =T (un) > ClH“n||2 = Callun],

which gives the boundedness of (u,) in Xy . Then, in view of Lemma we may
assume that

T 2 ~Co [ luldo = Culul - Callul (43
R

Uy, — u in Xy,
u, —u in LP(RY) for all p € [1,2F).

In particular, from (A4), (4.2) and the Dominated Convergence Theorem, we can
infer that

F (@, )ty de = f(z,u)uds + o(1) = f(@, up)ude.
RN RN RN
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Let us assume that [u,] — tg > 0. Taking into account (A1), (J'(un),un) = o(1)
and (J'(un),u) = o(1) we can see that

AH%WMP+WM%:/)f@wwmﬁﬁﬂ%:MU@M2+W@v
RN
from which we can easily deduce the thesis. [l

Lemma 4.2. For each k € N, there exists a closed symmetric subset A, C X such
that 0 € Ag, the genus v(Ay) > k and sup,¢ 4, J(u) < 0.

Proof. For any r > 0 we define
Diry={zeRN:0<z;<rforalli=1,...,N}

By using (A5) we take ¢ sufficiently small such that there exists a positive constant
C and two sequences of positive numbers ¢, — 0 and M,, — oo as n — oo such
that

F(x,u) > —Cu® Va € D(ro),|u| <20 (4.4)
F(x,6,) > M,02 Vx € D(rg),n € N. (4.5)

Fix k € N and we construct Ay € T’ satisfying (A8). Let p € N be the smallest
integer that satisfies pV > k. We divide D(rg) equally into p” small cubes by
planes parallel to each face of D(rg). Denote them by D; with 1 <1i < p’. We use
D; withl < ¢ < k only. Set a = ro/p. Then the edge of D; has the length of a.We
make a cube E; in D; such that E; has the same center as that of D;, the faces of
E; and D; are parallel and the edge of E; has the length of a/2.

Let us introduce a function ¢ € C(R,R) such that

0 for t € (—o0,0] N [a, ),
E for t € [0, Z]
ot) = 1 for t € [2, 2],
—4 44 forte[2a,a.
Then ¢ € H*(R). Let us define
N
Y(x) = d(x1) - d(2) .- plan) = [[ o),
i=1

and we note that supp(y) = [0,a]”. We define 9;(x) by a parallel translation
Y(x — y;) with a suitable y; € RY such that the support of 9; coincides with D;.
Then

0<¢; <1inRY, ¢;=1onE,;
supp(v;) = D;, and supp(¢;) Nsupp(v;) = 0 text foralli # j.
Finally, let us define

—{tERk: max |t\—1}

Wy = {Z ti; it € Vk}.

i=1
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Since V} is the surface of the k-dimensional cube, it is homeomorphic to the sphere

S¥=1 by an odd mapping. Hence v(Vi) = v(S¥~1) = k. Moreover, v(Wy) =

v(Vi) = k because the mapping (t1,...,tx) — Y. t;1; is odd and homeomorphic.
Since W}, is compact we can find a constant Cj > 0 such that

lull < Cr  Yu € Wi (4.6)

For any t € (0,¢) and u = Zle t;1p; € W we can use the definition of F(z,u) and
the condition (A2) to see that

bEED ey 2 d
T — i
S P =3 [ Rt do

at?
J(tu) < 7\\u||2 +

(4.7)
= *tQH ||2+L2(U i [ k /l (@, ttiy)s) d
5 u 1 U ;1 il? x, tt; ;) dx.

In view of the definition of Vj, there is j € [1, k] such that |¢;| = 1 and |¢;] <1 for
other i. Hence

k
;/D F(z,tt;) doe = /Ej F(x,tm/fi)der/ F(x, tta;) do

Ds\Bs (4.8)
+Z/ F(l‘,ttiwi) dx.
i#j D

Now, by using (4.4)), we note that

/ F(x, ttiah) do + Z/ F(x, ttap;) de > —Criy 2. (4.9)
D;\E; i#] D;
On the other hand, taking into account (A4), |¢;| =1 and ¢); = 1 on E; we obtain
/ F(x,tty;) de = / F(z,t)dx. (4.10)
Ej Ej

Then, putting together (4.7), (4.8), (4.9) and (4.10), for each &,, € (0,¥), we obtain
b2V
v+1

Since d,, — 0 and M,, — co as n — oo we can see that (4.11]) yields J(d,,u) < 0 for
all u € Wy, for some m € N. Then, setting Ay = {0,,u : u € Wy}, we can deduce
that v(Ax) = v(Wx) = k and sup,,c 4, J(u) <O0. O

N
T(6u) < 53[%0,3 + 2 Lol - (g) M,] YueW, (411

Now, we are ready to give the proof of the main result of this paper.

Proof of Theorem[I.3, Tn view of (A4) and the definition of F we know that J is
even and J(0) = 0. Taking into account Lemma Lemma and Theorem
we can deduce that there exists a sequence (u,) C Xy such that J(u,) < 0 and
u, — 0in Xy as n — oo.

Therefore, if we prove that |u,|e < 4, it follows that J(u,) = Z(u,) < 0 and
(uy,) is the desired sequence. In order to achieve our aim, we use a Moser iteration
argument [32].
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For all 3 > 0 and L > 0 we denote by vy, , = unuign and wr, , = unugn, where
ur,n, = min{|u,|, L}. Taking vy, ,, as test function in (4.1]) we can see that

M([un])Q //RQN (un(x) - un(:’/))(vL,ﬂ(l‘) — UL,n(y)) dz dy

T — y|N+2s
+ V(z)utui® dx (4.12)
RN ’
= f(x7un)unuiﬁn
RN ’
By using (4.2)) and 0 < up, < |u,| we have
|/]RN f(x,un)unuiﬂn dx| < Cy /RN |un\25Jr1 = C’o|un|§gﬁ (4.13)

Now, we can argue as in [7] to infer that

[[ ) a0 a0 g 5545,
R2N | - "

T — y‘N-&-Qs

5o (414)

Indeed, to deduce the above estimate, we note that v(t) = ttiﬁ is an increasing
function, so we have

(@ —b)(y(a) —~(b)) 20 for any a,b € R.
Let us consider

_ 1t

£(t) and T(t) = /0 (+ (7)) 2dr.

Then, by applying Jensen inequality we obtain for all a,b € R such that a > b,
&'(a=0b)(v(a) = (b)) = (a = b)(v(a) = ¥(b))

(=) [ o
~@-0) [ C0Ora

a 2
> ([ @)
— (I(b) ~ T(a))2.
The same argument works when a < b. Therefore
&' (a —b)(y(a) — (b)) > |T'(a) — T'(b)|? for any a,b € R. (4.15)
By using , we can see that
ID(un) () = T () @) < (n (@) = un () (unul’, ) (@) = (o’ )(y)).  (4.16)
Since

1 B-1
I'(uy,) > ——u,u ,
( ) = (ﬁ"‘ 1) Ln

and invoking the following Sobolev inequality

Selu %s < [u?* for all u € DH?(RY)

where
D2(RN) = {u e L*(R") : [u] < oo},
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we have

2 2 L y? B—1
[Plwn)]* > 8.0 By > (o) Seun,
which shows that (4.14)) holds.

Putting together (A1), (A3), (4.12), (4.13)) and (4.14) we obtain
mOS* (ﬂ + 1)72|wL,n

and taking the limit as L — oo we deduce that

5 (4.17)

28+1
%;‘ S CO‘un|Qg+1,
Ry IRy
2:(8+1) = [C(B+1)]7 |un|2ﬂ+1 . (4.18)

Set By = 2:2_1 and we define B, for k£ > 1 such that 20,41 +1 = 2%(8x +1). Then,
iterating the formula (4.18)) we can see that

|,

|un|2/3k+1+1 < eTk/|un g? (419)
where i .
_ N log(C6i +1)) 1 26i+1

We note that (r) and (o) are two convergent subsequences and
r:= lim ry > 0,
k—oo
o:= lim oy € (0,1).
k—o0

Taking the limit as &k — oo in (4.19)) and using Lemma we can infer that

|tn oo < 6T|un|gg < Cllun|”.

Recalling that ||u,| — 0 as n — oo we can infer that |u,|ec — 0 asn — co. As a
consequence, we can find ng € N such that |u, |, < £ for all n > ng. This completes
the proof. O
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