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STRUCTURE OF THE SOLUTION SET FOR TWO-POINT
BOUNDARY-VALUE PROBLEMS

GIOVANNI ANELLO

Abstract. We present some results on the structure of the set of solutions

of a two-point problem for a class of quasilinear differential equations. These
equations involve nonlinearities expressed by a combination of powers which

are allowed to be singular at 0. Also we point out some open questions.

1. Introduction

Let p ∈]1,+∞[, and let f :]0,+∞[→ R be a continuous function. We consider
the quasilinear two-point problem

−(|u′|p−2u′)′ = f(u) in ]0, 1[,

u > 0 in ]0, 1[,

u(0) = u(1) = 0.

(1.1)

In the following, a solution to problem (1.1) will be understood in the weak sense.
By definition, a function u ∈W 1,p

0 (]0, 1[) is a weak solution to (1.1) if∫ 1

0

(|u′|p−2u′v′ − f(u)v)dt = 0

for all v ∈ W 1,p
0 (]0, 1[). By regularity results, a solution to (1.1) is at least of class

C1 in [0, 1].
It is well known that problem (1.1) has at most one solution when the condition

the function t ∈]0,+∞[→ f(t)t1−p is strictly decreasing in ]0,+∞[ (1.2)

holds (see for instance [12, 15]). One of the simplest function satisfying this condi-
tion is

f(t) = λts−1, t > 0,
where s ∈]0, p[ and λ > 0. In this case, we know that a solution u exists [15], and
it can be explicitly computed by quadratures. In particular, one has

u(t) =

{
G−1(t), for 0 ≤ t ≤ 1/2,
G−1(1− t), for 1/2 ≤ t ≤ 1,
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where

G(x) = c1

∫ x

0

(cs2 − τs)−1/pdτ, x ∈ [0, c2]

and c1, c2 are positive constants depending on s, p, λ.
Then, it is quite natural to ask ourselves what happens when the function

f(t) = λts−1 is perturbed by a term which makes condition (1.2) no longer satisfied.
Among the cases studied in the literature, we point out the following two ones:

(1) f(t) = λts−1 + tq−1, with 0 < s < p < q;
(2) f(t) = λts−1 − tr−1, with 0 < r < s < p.

As we shall see in both cases (1) and (2), the existence and/or uniqueness may
not hold for all λ > 0. Case (1) is within the framework of concave-convex positive
nonlinearities, while case (2) is a typical convex-concave nonlinearities which is
negative exactly in a bounded right neighborhood of zero. The behavior on varying
of the parameter λ of the solution set of problem (1.1) associated to the nonlinearity
defined in (1) is quite different, in fact the opposite, with respect to that associated
to the nonlinearity defined in (2).

In Sections 2 and 3, we present some results concerning the solution set of prob-
lem (1.1) for f given by (1) and (2), respectively. More precisely, we describe how
the solution set behaves when varying of λ. Some extensions to other classes of
nonlinearities as well as to problems in higher dimension are presented in Section
4.

2. Behavior of the solution set for f(t) = λts−1 + tq−1

Let p ∈]1,+∞[, s ∈]0, p[, q ∈]p,+∞[ and λ ∈]0,+∞[. In this section we consider
the quasilinear problem

−(|u′|p−2u′)′ = λus−1 + uq−1 in ]0, 1[,

u > 0 in ]0, 1[,

u(0) = u(1) = 0.

(2.1)

This problem is the one-dimensional quasilinear version of the Dirichlet problem

−∆u = λus−1 + uq−1 in Ω,
u > 0 in Ω,

u
∣∣
∂Ω

= 0,

(2.2)

where Ω is a bounded open domain in Rn, s ∈]1, 2[ and q ∈]2,+∞[. Problem (2.2)
was studied in [1], where the following result was established:

Theorem 2.1 ([1, Theorem 2.3]). There exists Λ > 0 such that problem (2.2)
admits:

• at least one solution, for λ ∈]0,Λ],
• at least two solutions, for λ ∈]0,Λ[ and with q ≤ 2n

n−2 , if n ≥ 3,
• no solution for λ > Λ.

In the same paper, the authors proposed to study, on varying of λ, the exact
structure of the solution set of problem (2.2) in the one-dimensional case. This
question was addressed in [16] for the quasilinear case, and in [14] for the semilinear
case. In both these papers, a complete description of the solution set was given. In
the semilinear case, the result obtained in [14] gives also some additional qualitative
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properties of the solutions. Since we are only interested in studying the structure
of the solution set, here it is sufficient to report the main result of [16]

Theorem 2.2 ([16, Theorem 1]). Assume p ∈]1,+∞[, s ∈ [1, p[ and q ∈]p,+∞[.
There exists Λ > 0 such that problem (2.1) admits:

• exactly two solutions for λ ∈]0,Λ[,
• exactly one solution, for λ = Λ,
• no solution for λ ∈]Λ,+∞[.

This theorem is proved by using the so called “shooting method” which allows
to convert a two-point problem into an algebraic equation. In particular, if we
consider problem (2.1), we can see that there exists a one to one correspondence
between the set of solutions of (2.1) and the set of solutions of the equation (in the
unknown c ∈ R+)

T (c) =
1
2

(p− 1
p

)1/p

λ
1
p ·
q−p
q−s (2.3)

where

T (c) :=
∫ c

0

(cs
s

+
cq

q
− ts

s
− tq

q

)−1/p

dt, c > 0,

is the so called time map associated to the problem. In addiction, for each solution
c0 > 0 of equation (2.3), the corresponding solution u : [0, 1] → [0, c0] to (2.1) is
implicitly defined by∫ u(x)

0

(cs0
s

+
cq0
q
− ts

s
− tq

q

)−1/p

dt =
( p

p− 1

)1/p

λ
1
p
q−p
q−s x, x ∈ [0,

1
2

],

u(x) = u(1− x), x ∈]1/2, 1].

Thus, solving problem (2.1) is equivalent to solving equation (2.3) in R+. The
number of solutions of (2.3) can be computed by studying the profile of T . In [16],
the authors find that T has the following profile shown in Figure 1 (from which
Theorem 2.2 easily follows). By using the same method, in [17] it is proved that
conclusion of Theorem 2.2 holds also in the singular case s ∈]0, 1[.

-

6

Figure 1. Profile of the time map T

We notice that, being

f(t) = λts−1 + tq−1 > 0, for t > 0,

every positive solution u to (2.1) satisfies the Hopf boundary condition

u′(0) > 0, u′(1) < 0,

that is u belongs to the interior P of the positive cone of C1([0, 1]), defined by

P := {u ∈ C1([0, 1]) : u > 0 in ]0, 1[, u′(0) > 0, u′(1) < 0}. (2.4)
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This property does not hold if we consider the nonlinearity f(t) = λts−1 − tr−1

defined in (2). We deal with this case in the next section. We will see that, with
this nonlinearity, problem (1.1) admits solutions belonging to the set

P0 := {u ∈ C1([0, 1]) : u > 0 in ]0, 1[, u′(0) = u′(1) = 0} (2.5)

for some value of the parameter λ.

3. Behavior of the solution set for f(t) = λts−1 − tr−1

Let p ∈]1,+∞[, s ∈]0, p[, r ∈]0, s[ and λ ∈]0,+∞[. Let us consider the problem

−(|u′|p−2u′)′ = λus−1 − ur−1, in ]0, 1[,

u > 0, in ]0, 1[,

u(0) = u(1) = 0.

(3.1)

We will see that an exact multiplicity result analogous to Theorem 2.2 holds
for problem (3.1). A substantial difference, in this case, is that, contrarily to the
conclusion of Theorem 2.2, a solution exists for λ large, and does not exist for λ
small. More precisely, there exists Λ > 0 such that solutions exist for λ ≥ Λ and
do not exist for λ ∈]0,+Λ[. As quoted above, another difference to be point out is
that, due to the particular structure of the nonlinearity f , which is negative and
not Lipschitz continuous near 0, the Hopf boundary condition u′(0) > 0, u′(1) < 0
might not be true for a solution u to (3.1). Indeed, we will see that for a certain
value of the parameter λ, a solution u satisfying u′(0) = u′(1) = 0 exists.

The time map T associated to problem (3.1) has the expression

T (c) =
∫ c

0

(cs
s
− cr

r
− ts

s
+
tr

r

)−1/p

dt, c ≥ t(r) :=
(s
r

) 1
s−r .

Here, t(r) is the unique positive solution of the equation ts

s −
tr

r = 0. As for problem
(2.1), to each solution c0 ∈ [t(r),+∞[ of the equation

T (c) =
1
2

(p− 1
p

)1/p

λ
1
p ·
p−s
s−r , (3.2)

corresponds a unique solution u : [0, 1]→ [0, c0], implicitly defined by∫ u(x)

0

(cs0
s

+
cq0
q
− ts

s
− tq

q

)−1/p

dt =
( p

p− 1
)1/p

λ
1
p
p−s
s−r x, x ∈ [0,

1
2

],

u(x) = u(1− x), x ∈]1/2, 1].

For the nonsingular case r > 1, a complete description of the solution set of problem
(3.1) was given in [10], where the following result was established.

Theorem 3.1 ([10, Theorem 1]). Assume p ∈]1,∞[ s ∈]1, p[ and r ∈]1, s[. There
exist two positive constants Λ1,Λ2, with Λ1 < Λ2, such that problem (3.1) admits:

• no solution if λ ∈]0,Λ1[;
• a unique solution uλ if λ ∈ {Λ1}∪]Λ2,+∞[, such that uλ ∈ P;
• exactly two solutions uλ, vλ if λ ∈]Λ1,Λ2], such that uλ, vλ ∈ P, if λ < Λ2,

and uλ ∈ P, vλ ∈ P0, if λ = Λ2.

Here, P and P0 are the sets defined in 2.4 and 2.5, respectively. It is interesting
noticing that the solution vΛ2 ∈ P0 yields, for λ > Λ2, a continuum of nonnegative
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solutions to problem (3.1) compactly supported in ]0, 1[. We get these solutions by
putting

u(x) = (b− a)
p
p−r vΛ2(

x− a
b− a

), if x ∈ [a, b]

u(x) = 0, if x ∈ [0, 1] \ [a, b]

for each couple of numbers a, b ∈]0, 1[, such that b− a =
(

Λ2
λ

) 1
p
p−r
s−r .

Concerning the singular case r ∈]0, 1[, we can mention the results proved in [13]
for p = 2 and s = 1 and in [17] for p = 2 and 1 < s < 2, summarized by the
following Theorem.

Theorem 3.2. Assume p = 2, s ∈ [1, 2[ and r ∈]0, 1[. There exists Λ1 > 0 and, if
r ∈]1− s

2 , 1[, there exists Λ2 ∈]λ1,+∞[ such that problem (3.1) admits:

• no solution if λ ∈]0,Λ1[,
• a unique solution if r ∈]0, 1− s

2 ] and λ ∈ [Λ1,+∞[,
• a unique solution if r ∈]1− s

2 , 1[ and λ ∈ {Λ1}∪]Λ2,+∞[,
• exactly two solutions if r ∈]1− s

2 , 1[ and λ ∈]Λ1,Λ2].

Note that Theorem 3.2 highlights a dependence on the exponent r of the number
of the solutions. We will see how this dependence derives from the behavior of the
time map near the endpoint t0(r) of its domain.

With some restriction, the quasilinear singular case was addressed in [11], where
problem (3.1) was studied for p ∈]1,+∞[, s ∈] p

p+1 , p[ and r ∈]0, s[. In this setting,
a complete description of the set of solutions is given by the following result

Theorem 3.3 ([11, Theorem 2]). Assume p ∈]1,+∞[, s ∈] p
p+1 , 2[ and r ∈ [ p

p+1 , s[.
There exists Λ1 > 0 and Λ2 ∈]Λ1,+∞[ such that problem (3.1) admits:

• no solution if λ ∈]0,Λ1[,
• a unique solution uλ, if λ ∈ {Λ1}∪]Λ2,+∞[, such that uλ ∈ P,
• exactly two solutions uλ, vλ, if λ ∈]Λ1,Λ2], such that uλ, vλ ∈ P, if λ < Λ2,

and uλ ∈ P, vλ ∈ P0, if λ = Λ2.

Thus, for r ≥ p
p+1 , Theorem 3.3 extends Theorem 3.1 to the case of singular

exponents. Actually, [11, Theorem 2] gives also the following partial information
concerning the case r ∈]0, p

p+1 [.

Theorem 3.4 ([11, Theorem 2]). Assume p ∈]1,+∞[, s ∈] p
p+1 , p[ and r ∈]0, p

p+1 [.
Then, there exist δ1, δ2 > 0, with δ1 + δ2 ≤ p

p+1 , such that

• if r ∈] p
p+1 − δ1,

p
p+1 [, the same conclusion as Theorem 3.3 holds;

• if r ∈]0, δ2[, there exists Λ1 > 0 such that problem (3.1) admits no solution
for λ ∈]0,Λ1[ and a unique solution uλ, if λ ∈ [Λ1,+∞[, such that uλ ∈ P.

Theorems 3.1 and 3.4 are all consequences of the way the profile of the time map
varies in dependence of the exponent r. Figure 2 illustrates the various profiles of
the time map obtained in [10, 11]

Note that, for p = 2 and s ∈ [1, p[ and r ∈]0, s[, the results of [16, 17], says
that δ1 + δ2 = p

p+1 = 2
3 , with δ1 = 1 − s

2 and δ2 = s
2 −

1
3 . We also point out that

Theorems 3.1–3.4 give no information in the case s ∈]0, p
p+1 [

From the results presented in this section, the following questions naturally arise:
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-

6

(s/r)
1
s−r

•

if r > p
p+1 − δ2, s >

p
p+1

-

6

(s/r)
1
s−r

•

if 0 < r < δ1

-

6

?����

(s/r)
1
s−r

•

if δ1 ≤ r ≤ p
p+1 − δ2

Figure 2. Profile of the time map in dependance of r

(1) When p ∈]1,+∞[ and s ∈] p
p+1 , p[, is it true, in light of Theorem 3.2, that

the numbers δ1, δ2 in Theorem 3.4 are related by δ1 + δ2 = p
p+1?

(2) What happens when s ∈]0, p
p+1 [?

An answer to these questions would allow to complete the study of the set of
solutions of problem (3.1), for all p ∈]1,+∞[, s ∈]0, p[, r ∈]0, s[, and λ > 0.

Of course, the question is knowing the profile of the time map near 0 on varying
of the exponent r. Indeed, we can see that the number of the solutions of equation
(3.2) (which amounts to the number of solutions of (3.1)) depends on the way the
profile of the time map T ”starts” from endpoint t(r) := (s/r)

1
s−r of its domain. In

particular, since in [11] it is proved that T has at most a critical point in ]t(r),+∞[,
what we needs is knowing when T is increasing or decreasing near t(r) according
to the values of r. Routine arguments show that

• T is of class C1 in ]t(r),+∞[;
• there exists (finite or infinite) the limit limc→t(r) T

′(c).
So, in view of the above considerations, we are led to study the sign of the

extended real function

ξ(r) = lim
c→t(r)

T ′(c), r ∈]0, s[.

From [16, 17], it is known that for p = 2 and s ∈ [1, 2[, one has
• ξ(r) > 0, in ]0, 1− s

2 [,
• ξ(r) = 0, at r = 1− s

2 ,
• ξ(r) < 0, in ]1− s

2 , s[.
For the quasilinear case p ∈]1,+∞[, by [10, 11] we know that

(i) ξ(r) = −∞, if r ∈ [ p
p+1 , s[,

(ii) ξ(r) ∈]0,+∞[, if r is near 0,
(iii) ξ(r) ∈]−∞, 0[, if r is less than and near p

p+1 .

The sign of ξ(r) described above is deduced by properties of hypergeometric
functions. This approach seems not working in the uncovered cases. By using a
different approach, in [7] the sign of ξ(r) has been determined for each p ∈]1,+∞[,
s ∈]0, p[, and r ∈]0, s[. Let us outline the idea introduced in [7]. Set τs,p =
min{s, p

p+1}. After noticing that

r ∈]0, τs,p[→ ξ(r), (3.3)
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is a C1 real function, in [7] it is proved that there exists a function

γ :]0,min{s, p

p+ 1
}[→ R

satisfying

γ(r)ξ(r)− ξ′(r) > 0, for all r ∈]0, τs,p[

Then, setting

φ(r) = γ(r)ξ(r)− ξ′(r), r ∈]0, τs,p[,

and solving the previous equation for ξ, one has

ξ(r) = e
R r
r0
γ(σ)dσ

(
k −

∫ r

r0

φ(σ)e−
R σ
r0
γ(τ)dτ

dσ
)

for some k ∈ R and r0 ∈]0, τs,p[. This clearly implies that ξ may change sign at
most only once in ]0, τs,p[. Therefore, if s ≥ p

p+1 , recalling (i)–(iii), one infers that
there exists r∗ = r∗(s) ∈]0, p

p+1 [ such that

ξ−1(]0,+∞[) =]0, r∗[, ξ−1(0) = r∗, ξ−1(]−∞, 0[) =]r∗,
p

p+ 1
[,

ξ(r) = −∞, if r ∈ [
p

p+ 1
, s[.

When s ≤ p
p+1 , to know whether or not ξ changes sign in ]0, s[, one needs to study

the behavior of ξ near s. To this end, in [7] the authors prove that there exists a
positive constant k such that

lim
r→s−

(s− r)1/pξ(r) = k.

Hence, ξ is positive near s, and thus in the whole interval ]0, s[.
As a consequence of these facts, we have the following result which completes

the study of the set of solutions of problem (3.1).

Theorem 3.5 ([7, Theorem 1]). Let p > 1, s ∈]0, p[ and r ∈]0, s[. Then,
there exists Λ1 > 0 and, for each s ∈ [ p

p+1 , p[, there exists r∗(s) ∈]0, p
p+1 [ with the

following properties:

• if s ∈ [ p
p+1 , p[ and r ∈]r∗(s), p

p+1 [, there exists Λ2 ∈]Λ1,+∞[ such that
problem (3.1) admits:
(a) a unique solution if either λ ∈ {Λ1}∪]Λ2,+∞[;
(b) exactly two solutions if λ ∈]Λ1,Λ2];

• if s ∈ [ p
p+1 , p[, r ∈]0, r∗(s)] and λ ∈ [Λ1,+∞[, problem (3.1) admits a

unique solution;
• if s ∈]0, p

p+1 [ and λ ∈ [Λ1,+∞[ problem (3.1) admits a unique solution;
• if λ ∈]0,Λ1[, problem (3.1) admits no solution .

Remark 3.6. Similarly to Theorem 3.1, the solutions corresponding to each λ ∈
[Λ1,+∞[\{Λ2} and one of the solutions corresponding to λ = Λ2 belong to P.
While, the other solution corresponding to λ = Λ2 belongs to P0. In the nonsingular
case r > 1, this yields, in same way as for Theorem 3.1, the existence of a continuum
of nonnegative solutions for each λ ∈]Λ2,+∞[.
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4. Perturbations from problem (3.1)

In this section we present some results on the effects that certain perturbation
terms yield on number of solutions of problem (3.1).

Let p ∈]1,+∞[ and let λp be the first eigenvalue of the one dimensional p-
Laplacian in ]0, 1[, with Dirichlet boundary conditions. The explicit expression of
λp is given by

λp :== (p− 1)(2π)p
(
p sin

π

p

)−p
.

We first investigate the effect of adding the resonance term λpt in the nonlinearity
f(t) = λts−1 − tr−1, where s ∈]0, p[, r ∈]0, s[ and λ > 0.

The following result, proved in [8] and reported here in an equivalent statement
(which we can easily get by rescaling u), gives a complete answer for the nonsingular
case r > 1

Theorem 4.1. Let p > 1, s ∈]1, p[ and r ∈]1, s[. Then, there exists Λ1 > 0 such
that the problem

−(|u′|p−2u′)′ = λpu
p−1 + λus−1 − ur−1 in ]0, 1[,

u > 0 in ]0, 1[,

u(0) = u(1) = 0

(4.1)

admits

• a unique solution uλ, for λ ∈]0,Λ1], such that uλ ∈ P;
• a unique solution uλ, for λ = Λ1, such that uλ ∈ P0;
• no solution for λ > λ1.

So, by perturbing problem (3.1) with the resonance term λpu
p−1, we get an

opposite behavior of the solution set on varying of λ. In addiction, when a solution
to (4.1) exists, it is unique.

The proof of Theorem 4.1 is again based on the shooting method. However,
differently to the proofs of the results presented so far, in this case the parameter
λ is involved in the expression of the time map Tλ, which is given by:

Tλ(c) =
∫ c

0

(λp
p
cp +

λ

s
cs − cr

r
− λp

p
tp − λ

s
ts +

tr

r

)−1/p

dt, c > t(λ).

where t(λ) > 0 is the unique solution of the equation λp
p t

p + λ
s t
s − 1

r t
r = 0. The

number of solutions of problem (4.1) amounts exactly to the number of solutions
of the equation

Tλ(c) = ξp :=
1
2
( p

p− 1
)1/p

.

The conclusion of Theorem 4.1 derives from the profile time map Tλ, depicted in
Figure 3 for λ < Λ1, λ = Λ1 and λ > Λ1:

Remark 4.2. If Λ1 is as in Theorem 4.1, then for λ ∈]Λ1,+∞[, we can show
that there exists a continuum of nonnegative solutions compactly supported in
]0, 1[. Nevertheless, in this case, these solutions cannot be obtained by rescaling
the solution that belongs to P0, as in Theorems 3.1 and 3.5. Instead, they are
obtained (see [8]) by showing that for each λ ∈]Λ1,+∞[, there exists δ ∈]0, 1[ such
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ξp

-

6

t(λ)
•

if λ ∈]0,Λ1[

ξp

-

6

t(λ)
•

if λ = Λ1

-

6

t(λ)
•

if λ > Λ1

ξp

Figure 3. Profile of the time map associated with (4.1)

that for each compact interval [a, b] ⊂]0, 1[, with b − a = δ, there is a (unique)
solution v to the problem

−(|u′|p−2u′)′ = λpu
p−1 + λus−1 − ur−1 in ]a, b[,

u > 0 in ]a, b[,

u(a) = u(b) = u′(a) = u′(b) = 0.

Then, we get a continuum of nonnegative solutions compactly supported in ]0, 1[
to problem (Pλ) on varying of [a, b] ⊂]0, 1[, with b− a = δ, by considering the zero
extension of v to the whole ]0, 1[.

Of course, a question worth of investigation is to study the solution set of problem
(4.1) in the singular cases r ∈]0, 1[ or s ∈]0, 1[. The approach could be similar as
that of Theorem 3.5, but the fact that there is no way to drop out the dependence
of the time map from the parameter λ makes the argument more complicated.
However, some evidence leads to conjecture that the same conclusion would hold.

We now pass to consider what effect a (p− 1)-superlinear perturbation yields on
problem (3.1). Let p, s, r, q, σ, λ be positive numbers, with 1 < r < s < p < q. We
are going to consider the problem

−(|u′|p−2u′)′ = σuq−1 + λus−1 − ur−1 in ]0, 1[,

u > 0 in ]0, 1[,

u(0) = u(1) = 0

Setting v = σ
1
q−pu, ρ = λσ

p−s
q−p , and µ = σ

p−r
q−p , this problem can be reformulated as

−(|v′|p−2v′)′ = vq−1 + ρvs−1 − µvr−1 in ]0, 1[,

v > 0 in ]0, 1[,

v(0) = v(1) = 0,

(4.2)

Problem (4.2) has been considered in [9] (see also [3] for the N -dimensional case).
The time map associated to (4.2) has a somewhat complicate structure and an

exact multiplicity result seems quite hard to obtain in this case. Some information
are provided by the following result, proved in [9].

Theorem 4.3 ([9, Theorems 2.7 and 2.9]). The set S ⊂ R2 defined by

S := {(ρ, µ) ∈ R2
+ : (4.2) admits at least three solutions belonging to P}
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has nonempty interior. Moreover, there exists ρ∗ ∈]0,+∞] and, for each ρ ∈]0, ρ∗[,
there exist at least two numbers µ1(ρ) and µ2(ρ) such that (Pρ,µi(ρ)) admits at least
a solution belonging to P0, for i = 1, 2.

Besides investigating the exact structure of the solution set of problem (4.2) with
λ instead of µ, on varying of ρ, λ, it would be interesting to give an answer to the
following questions suggested by the conclusion of Theorem 4.3:

(1) Is ρ∗ finite, or is not finite?
(2) What is the structure of the set of solutions belonging to P0?
(3) What about the singular cases r ∈]0, 1[ or s ∈]0, 1[?

Concerning the second question, we conjecture that there are exactly two curves
µ1, µ2 :]0, ρ∗[→]0,+∞[ with no common points such that

(a) for each ρ ∈]0, ρ∗[ and i = 1, 2, problem (4.2), with µi(ρ) instead of µ,
admits a unique solution in P0,

(b) {(ρ, µ) ∈ R2
+: (4.2)has solutions in P0} = graph(µ1) ∪ graph(µ2).

Finally, we give some extensions of the results presented so far to theN -dimensional
case. Let Ω be an open smooth bounded domain in RN . Let us consider the N -
dimensional version of problem (3.1) in the semilinear case p = 2

−∆u = λus−1 − ur−1, in Ω,
u > 0, in Ω,
u = 0, on ∂Ω.

where s ∈]0, 2[, r ∈]0, s[ and λ ∈]0,+∞[. This problem was considered in [2] for
the nonsingular case r > 1, in [5] for the singular case r ∈]0, 1[ and s ∈ [1, 2[, and
in [6] for the ”double” singular case s ∈]0, 1[, r ∈]0, s[. The results obtained in
these papers, proved via variational and approximation techniques, say that there
exists Λ > 0 such that the problem admits at least a solution for λ ∈]Λ,+∞[ and
no solution for λ ∈]0,Λ[. For λ > Λ the existence of a nonzero and nonnegative
solution is also ensured, but the multiplicity of positive solutions is still an open
problem, at least for general bounded domains. For λ = Λ and r > 1, it is proved
in [2] that there exists a nonzero and nonnegative solution. However nothing is said
about the positivity of this solution as well as its possible uniqueness (as in the one
dimensional case). In the singular case, for λ = Λ, it is an open question even the
existence of nonzero and nonnegative solutions.

The last result we present concerns the problem

−∆u = λ1u+ λus−1 − ur−1, in Ω,
u > 0, in Ω,
u = 0, on ∂Ω.

which is the perturbation of the previous problem with the resonant term λ1u,
where λ1 is the first eigenvalue of the Laplacian on Ω. The following recent result,
proved in [4] and reported here in an equivalent statement which one obtains by
rescaling u, highlights, as in the one-dimensional case, an opposite behavior with
respect to the unperturbed problem.

Theorem 4.4. Let s ∈]1, 2[ and r ∈]1, s[. For each λ > 0, there exists a nonzero
and nonnegative solution to the problem

−∆u = λ1u+ λus−1 − ur−1, in Ω,
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u = 0, on ∂Ω.

Moreover, there exists Λ > 0 such that, for each λ ∈]0,Λ[, every nonnegative and
nonzero solutions belongs to P.

It is worth pointing out that the Strong Maximum Principle stated by this result
holds for a nonlinearity f which is neither positive nor Lipschitz continuous near 0,
that is f does not satisfy the sufficient condition typically used to get the validity
of the Strong Maximum Principle for nonnegative solutions of nonlinear elliptic
Dirichlet problem.

Open questions connected to this last result are its possible extensions to singular
cases as well as to more general nonlinearities of the form λ1t+ λf(t).
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