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GENERALIZED BIHARMONIC PROBLEMS WITH VARIABLE
EXPONENT AND NAVIER BOUNDARY CONDITION

RAMZI ALSAEDI, VICENŢIU D. RĂDULESCU

Abstract. We study a class of biharmonic problems with Navier boundary
condition and involving a generalized differential operator and competing non-

linearities with variable exponent. The main result of this paper establishes a

sufficient condition for the existence of nontrivial weak solutions, in relation-
ship with the values of a positive parameter. The proofs combine variational

methods with analytic arguments. The approach developed in this paper al-

lows the treatment of several classes of nonhomogeneous biharmonic problems
with variable growth arising in applied sciences, including the capillarity equa-

tion and the mean curvature problem.

1. Introduction

The interest in recent years to the mathematical analysis of partial differential
equations driven by nonhomogeneous differential operators is motivated by their
numerous applications to various fields. We refer, e.g., to phenomena in the ap-
plied sciences that are characterized by the fact that the associated energy density
changes its ellipticity and growth properties according to the point. Such models
have been studied starting with the pioneering papers by Halsey [11] and Zhikov
[29, 30], in close relationship with the qualitative mathematical analysis of strongly
anisotropic materials in the context of the homogenization and nonlinear elasticity.

In the framework of materials with non-homogeneities, the standard approach
based on the classical theory of Lp and W 1,p Lebesgue and Sobolev spaces is in-
adequate. We refer to electrorheological (smart) fluids or to phenomena in image
processing, which should enable that the exponent p is varying, see Chen, Levine
and Rao [6], and Ruzicka [25]. For instance, we refer to the Winslow effect of some
fluids (like lithium polymetachrylate) in which the viscosity in an electrical field
is inversely proportional to the strength of the field. The field induces string-like
formations in the fluid, which are parallel to the field. They can raise the viscosity
by as much as five orders of magnitude. This corresponds to electrorheological
(non-Newtonian) fluids, which are mathematically described by means of nonlinear
equations with variable exponent. Such a study corresponds to the abstract set-
ting of variable exponents Lebesgue and Sobolev spaces, Lp(x) and W 1,p(x), where
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p is a real-valued function. The theory of function spaces with variable exponent
has been rigorously developed in the monograph of Diening, Hästo, Harjulehto and
Ruzicka [10] while the recent book by Rădulescu and Repovš [22] is devoted to the
thorough variational and topological analysis of several classes of problems with one
or more variable exponents; see also the survey papers of Harjulehto, Hästö, Le and
Nuortio [12] and Rădulescu [20]. We also refer to Mingione et al. [2, 8, 9], Cencelj,
Rădulescu and Repovš [4] Cencelj, Repovš and Virk [5], and Repovš [24] for related
results. The abstract setting of p(x)-biharmonic problems with singular weights
has been recently considered by Kefi and Rădulescu [13] in relationship with micro-
electromechanical phenomena, surface diffusion on solids, thin film theory, flow in
Hele-Shaw cells and phase field models of multiphasic systems. The present paper
complements some results contained in [13] to more general operators. In such a
way, we extend the approach developed in Chorfi and Rădulescu [7] to generalized
biharmonic operators.

The study of elliptic problems with variable exponent has been recently extended
by Kim and Kim [14] to a new class of non-homogeneous differential operators.
Their contribution is a step forward in the analysis of nonlinear problems with
variable exponent since it enables the understanding of problems with possible lack
of uniform convexity. More precisely, in [14] they studied problems of the type

−div(φ(x, |∇u|)∇u) = f(x, u) in Ω
u = 0 on ∂Ω,

(1.1)

where Ω ⊂ RN is a bounded domain with smooth boundary. The nonlinear term
f : Ω × R → R satisfies the Carathéodory condition and the function φ(x, t) is of
type |t|p(x)−2 with p : Ω→ (1,∞) continuous.

In the special case when φ(x, t) = |t|p(x)−2, the operator involved in problem
(1.1) reduces to the p(x)-Laplacian, that is,

∆p(x)u = div(|∇u|p(x)−2∇u).

In many papers (see, e.g., [17, Hypothesis (A4), p. 2629]), the functional Φ induced
by the principal part of problem (1.1) is assumed to be uniformly convex, namely,
there exists k > 0 such that for all x ∈ Ω and all ξ, ψ ∈ RN ,

Φ
(
x,
ξ + ψ

2

)
≤ 1

2
Φ(x, ξ) +

1
2

Φ(x, ψ)− k |ξ − ψ|p(x).

However, since the function Ψ(x, t) = tp is not uniformly convex for t > 0 and 1 <
p < 2, this condition is not applicable to all p-Laplacian problems. An important
feature of the abstract setting developed in [14] is that the main results are obtained
without any uniform convexity assumption.

In this article, we extend some results of [13] in the framework of general
biharmonic operators with variable exponent, as studied in [14]. We develop
the study of biharmonic problems with Navier boundary condition for equations
driven by the operator ∆(φ(x, |∆u|)∆u), where φ is as in (1.1). Notice that
if φ(x, t) = |t|p(x)−2, then we obtain the p(x)-biharmonic operator defined by
∆2
p(x)u = ∆(|∆u|p(x)−2∆u).
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2. Abstract framework and preliminary results

Throughout this article we assume that Ω ⊂ RN is a bounded domain with
smooth boundary. Set

C+(Ω) = {h ∈ C(Ω), h(x) > 1 for all x ∈ Ω}.

Assume that p ∈ C+(Ω) and let

p+ = sup
x∈Ω

p(x) and p− = inf
x∈Ω

p(x).

We define the Lebesgue space with variable exponent by

Lp(x)(Ω) =
{
u : u is measurable and

∫
Ω

|u(x)|p(x) dx <∞
}
.

This function space is a Banach space if it is endowed with the norm

|u|p(x) = inf
{
µ > 0;

∫
Ω

|u(x)
µ
|p(x) dx ≤ 1

}
.

This norm is also called the Luxemburg norm. Then Lp(x)(Ω) is reflexive if and
only if 1 < p− ≤ p+ <∞ and continuous functions with compact support are dense
in Lp(x)(Ω) if p+ <∞.

The standard inclusion between Lebesgue spaces generalizes to the framework
of spaces with variable exponent, namely if 0 < |Ω| < ∞ and p1, p2 are variable
exponents such that p1 ≤ p2 in Ω then there exists the continuous embedding
Lp2(x)(Ω) ↪→ Lp1(x)(Ω).

Let Lp
′(x)(Ω) denote the conjugate space of Lp(x)(Ω), where 1/p(x)+1/p′(x) = 1.

Then for all u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω) the following Hölder-type inequality
holds: ∣∣ ∫

Ω

uv dx
∣∣ ≤ ( 1

p−
+

1
p′−

)
|u|p(x)|v|p′(x) . (2.1)

An important role in analytic arguments on Lebesgue spaces with variable expo-
nent is played by the modular of Lp(x)(Ω), which is the map ρp(x) : Lp(x)(Ω) → R
defined by

ρp(x)(u) =
∫

Ω

|u|p(x) dx.

If (un), u ∈ Lp(x)(Ω) and p+ <∞ then the following properties hold:

|u|p(x) > 1 ⇒ |u|p
−

p(x) ≤ ρp(x)(u) ≤ |u|p
+

p(x), (2.2)

|u|p(x) < 1 ⇒ |u|p
+

p(x) ≤ ρp(x)(u) ≤ |u|p
−

p(x), (2.3)

|un − u|p(x) → 0 ⇔ ρp(x)(un − u)→ 0. (2.4)

We define the variable exponent Sobolev space by

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)}.

On W 1,p(x)(Ω) we may consider one of the following equivalent norms

‖u‖p(x) = |u|p(x) + |∇u|p(x)

or

‖u‖p(x) = inf
{
µ > 0;

∫
Ω

(
|∇u(x)

µ
|p(x) + |u(x)

µ
|p(x)

)
dx ≤ 1

}
.
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Zhikov [30] showed that smooth functions are in general not dense in W 1,p(x)(Ω).
This property is in relationship with the Lavrentiev phenomenon, which asserts that
there exist variational problems for which the infimum over the smooth functions is
strictly greater than the infimum over all functions that satisfy the same boundary
conditions. We refer to [22, pp. 12-13] for more details.

Let W 1,p(x)
0 (Ω) denote the closure of the set of compactly supported W 1,p(x)-

functions with respect to the norm ‖u‖p(x). When smooth functions are dense, we
can also use the closure of C∞0 (Ω) in W 1,p(x)(Ω). Using the Poincaré inequality, the
space W 1,p(x)

0 (Ω) can be defined, in an equivalent manner, as the closure of C∞0 (Ω)
with respect to the norm

‖u‖p(x) = |∇u|p(x).

The vector space (W 1,p(x)
0 (Ω), ‖·‖) is a separable and reflexive Banach space. More-

over, if 0 < |Ω| <∞ and p1, p2 are variable exponents such that p1 ≤ p2 in Ω then
there exists a continuous embedding W 1,p2(x)

0 (Ω) ↪→W
1,p1(x)
0 (Ω).

Set

%p(x)(u) =
∫

Ω

|∇u(x)|p(x) dx. (2.5)

If (un), u ∈W 1,p(x)
0 (Ω) then the following properties hold:

‖u‖ > 1 ⇒ ‖u‖p
−
≤ %p(x)(u) ≤ ‖u‖p

+
, (2.6)

‖u‖ < 1 ⇒ ‖u‖p
+
≤ %p(x)(u) ≤ ‖u‖p

−
, (2.7)

‖un − u‖ → 0 ⇔ %p(x)(un − u)→ 0 . (2.8)

Set

p∗(x) =

{
Np(x)
N−p(x) if p(x) < N

+∞ if p(x) ≥ N.

We point out that if p, q ∈ C+(Ω) and q(x) < p?(x) for all x ∈ Ω then the embedding
W

1,p(x)
0 (Ω) ↪→ Lq(x)(Ω) is compact.
For any positive integer k, let

W k,p(x)(Ω) = {u ∈ Lp(x)(Ω) : Dαu ∈ Lp(x)(Ω), |α| ≤ k},

where α = (α1, α2, . . . , αN ) is a multi-index, |α| =
∑N
i=1 αi and

Dαu =
∂|α|u

∂α1x1 . . . ∂αNxN
.

Then W k,p(x)(Ω) is a separable and reflexive Banach space equipped with the norm

‖u‖k,p(x) =
∑
|α|≤k

|Dαu|p(x).

The space W k,p(x)
0 (Ω) is the closure of C∞0 (Ω) in W k,p(x)(Ω).

Next, we recall some properties of the space

X := W
1,p(x)
0 (Ω) ∩W 2,p(x)(Ω).

For any u ∈ X we have ‖u‖ = ‖u‖1,p(x) + ‖u‖2,p(x), thus

‖u‖ = |u|p(x) + |∇u|p(x) +
∑
|α|=2

|Dαu|p(x).
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In Zang and Fu [28], the equivalence of the norms was proved, and they even
established that the norm |∆u|p(x) is equivalent to the norm ‖u‖ (see [28, Theorem
4.4]). Note that (X , ‖ · ‖) is a separable and reflexive Banach space.

We recall that the critical Sobolev exponent is defined as

p∗(x) =

{
Np(x)
N−2p(x) , if p(x) < N

2 ,

+∞, if p(x) ≥ N
2 .

Assume that q ∈ C+(Ω) and q(x) < p∗(x) for any x ∈ Ω. Then, by [1, Theorem
3.2], the function space X is continuously and compactly embedded in Lq(x)(Ω).

For a constant function p, the variable exponent Lebesgue and Sobolev spaces
coincide with the standard Lebesgue and Sobolev spaces. As pointed out in [22],
the function spaces with variable exponent have some striking properties, such as:

(i) If 1 < p− ≤ p+ <∞ and p : Ω→ [1,∞) is smooth, then the formula∫
Ω

|u(x)|pdx = p

∫ ∞
0

tp−1 |{x ∈ Ω; |u(x)| > t}| dt

has no variable exponent analogue.
(ii) Variable exponent Lebesgue spaces do not have the mean continuity property.

More precisely, if p is continuous and nonconstant in an open ball B, then there
exists a function u ∈ Lp(x)(B) such that u(x + h) 6∈ Lp(x)(B) for all h ∈ RN with
arbitrary small norm.

(iii) The function spaces with variable exponent are never translation invariant.
The use of convolution is also limited, for instance the Young inequality

|f ∗ g|p(x) ≤ C|f |p(x)‖g‖L1

holds if and only if p is constant.

3. Main result

In this article we assume that Ω ⊂ RN is a bounded domain with smooth bound-
ary.

Let p ∈ C+(Ω) and consider the function φ : Ω× [0,∞) → [0,∞) satisfying the
following hypotheses:

(H1) the mapping φ(·, ξ) is measurable on Ω for all ξ ≥ 0 and φ(x, ·) is locally
absolutely continuous on [0,∞) for almost all x ∈ Ω;

(H2) there exists b > 0 such that

|φ(x, |v|)v| ≤ b|v|p(x)−1

for almost all x ∈ Ω and for all v ∈ RN ;
(H3) there exists c > 0 such that

φ(x, ξ) ≥ cξp(x)−2, φ(x, ξ) + ξ
∂φ

∂ξ
(x, ξ) ≥ cξp(x)−2

for almost all x ∈ Ω and for all ξ > 0.

An interesting consequence of theses assumptions is that φ satisfies a Simon-type
inequality. More precisely, if we denote

Ω1 := {x ∈ Ω : 1 < p(x) < 2} and Ω2 := {x ∈ Ω; p(x) ≥ 2},
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then the following estimate holds for all u, v ∈ RN

〈φ(x, |u|)u− φ(x, |v|)v, u− v〉

≥

{
c(|u|+ |v|)p(x)−2|u− v|2 if x ∈ Ω1 and (u, v) 6= (0, 0)
41−p+c|u− v|p(x) if x ∈ Ω2,

(3.1)

where c is the positive constant from hypothesis (H3).
Let A : W 1,p(x)

0 (Ω)→ R defined by

A(u) =
∫

Ω

∫ |∇u(x)|

0

sφ(x, s) ds dx.

Inequality (3.1) was used in [14] to show that A′ : W 1,p(x)
0 (Ω) → W−1,p′(x)(Ω) is

both a monotone operator and a mapping of type (S+). We refer to Simon [27] for
the initial version of inequality (3.1) in the framework of the p-Laplace operator.

We study the following biharmonic problem with variable growth, competing
reaction terms, and Navier boundary condition

∆(φ(x, |∆u|)∆u) + φ(x, |u|)u = |u|q(x)−2u− |u|r(x)−2u in Ω,
u = ∆u = 0, on ∂Ω,

(3.2)

where q, r are continuous functions.
If φ(x, ξ) = ξp(x)−2 then we obtain the standard p(x)-Laplace biharmonic oper-

ator, that is, ∆2
p(x)u := ∆(|∆u|p(x)−2∆u).

Our abstract setting includes the case φ(x, ξ) = (1 + ξ2)(p(x)−2)/2, which corre-
sponds to the generalized biharmonic mean curvature operator

∆[(1 + |∆u|2)(p(x)−2)/2∆u].

The biharmonic capillarity equation corresponds to

φ(x, ξ) =
(

1 +
ξp(x)√

1 + ξ2p(x)

)
ξp(x)−2, x ∈ Ω, ξ > 0,

hence the corresponding capillary phenomenon is described by the differential op-
erator

∆
[(

1 +
|∆u|p(x)√

1 + |∆u|2p(x)

)
|∆u|p(x)−2∆u

]
.

We say that u is a solution of problem (3.2) if u ∈ X \ {0} with ∆u = 0 on ∂Ω
and ∫

Ω

[φ(x, |∆u|)∆u∆v + φ(x, |u|)uv] dx =
∫

Ω

|u|q(x)−2uvdx−
∫

Ω

|u|r(x)−2uv,

for all v ∈ X . The main result of this paper is the following.

Theorem 3.1. Assume that hypotheses(H1)–(H3) are fulfilled and that

1 < q(x) < r(x) < p(x) < p∗(x) for all x ∈ Ω. (3.3)

Then problem (3.2) has at least one nontrivial weak solution with negative energy.

In the present paper, problem (3.2) is studied for the subcritical case, namely
under the basic hypothesis (3.3), which is crucial for compactness arguments. We
consider that a very interesting research direction is to study the same problem
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in the almost critical setting, hence under the following assumption: there exists
x0 ∈ Ω such that

q(x) < r(x) < p(x) < p∗(x) for all x ∈ Ω \ {x0} and

q(x0) = r(x0) = p(x0) = p∗(x0).
(3.4)

Of course, this hypothesis is not possible if the functions p, q and r are constant.
We conjecture that the result stated in Theorem 3.1 remains true under assumption
(3.4).

4. Proof of Theorem 3.1

Denote

Φ(x, t) :=
∫ t

0

sφ(x, s)ds for all x ∈ Ω.

The energy functional associated to problem (3.2) is E : X → R defined by

E(u) =
∫

Ω

Φ(x, |∆u|)dx+
∫

Ω

Φ(x, |u|)dx−
∫

Ω

|u|q(x)

q(x)
dx+

∫
Ω

|u|r(x)

r(x)
dx.

By hypothesis (3.3), the function space X is continuously embedded into Lq(x)(Ω),
Lr(x)(Ω), and Lp(x)(Ω). We deduce that E is well-defined.

On the other hand, with the same arguments as in [13, Proposition 3.3], the
energy functional E is sequentially lower semicontinuous and of class C1. Moreover,
the mapping E ′ : X → X ∗ is a strictly monotone, bounded homeomorphism and is
of type (S+); that is, if

un ⇀ u in X and lim sup
n→∞

E ′(un)(un − u) ≤ 0,

then un → u in X .

Proof. We split the proof of Theorem 3.1 into several steps.
Step 1. The energy functional E is coercive. Using (H3), we have for all u ∈ X

E(u) ≥ c
∫

Ω

|∆u|p(x)

p(x)
dx+ c

∫
Ω

|u|p(x)

p(x)
dx−

∫
Ω

|u|q(x)

q(x)
dx+

∫
Ω

|u|r(x)

r(x)
dx.

Therefore,

E(u) ≥ c

p+

∫
Ω

|∆u|p(x)dx+
c

p+

∫
Ω

|u|p(x)dx− 1
q−

∫
Ω

|u|q(x)dx+
1
r+

∫
Ω

|u|r(x)dx

≥ c

p+

∫
Ω

|∆u|p(x)dx+
c

p+

∫
Ω

|u|p(x)dx− 1
q−

∫
Ω

|u|q(x)dx.

It follows that for all u ∈ X with ‖u‖ > 1 we have

E(u) ≥ c

p+
‖u‖p

−
− 1
q−
|u|q

+

q(x)dx.

We conclude the proof of Step 1 by using hypothesis (3.3), more precisely the fact
that q− < p+.

The next step shows that the energy E does not satisfy one of the geometric
hypotheses of the mountain pass theorem. More precisely, we show that there
exists a “valley” for E close to the origin, so not far away from the origin, as it is
required by the Ambrosetti-Rabinowitz theorem.
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Step 2. There exists v ∈ X such that E(tv) < 0 for all small enough t > 0. Since
q− < r−, let ε > 0 be such that q− + ε < r−. By continuity, there exists ω b Ω
such that

|q(x)− q−| ≤ ε for all x ∈ ω.
Let v ∈ C∞c (Ω) such that supp(v) ⊂ ω, 0 ≤ v ≤ 1, and v ≡ 1 in a subset of supp(v).

Hypothesis (H2) yields that for all u ∈ X ,

Φ(x, |∆u|) ≤
∣∣ ∫ |∆u|

0

b|s|p(x)−1ds
∣∣ ≤ b |∆u|p(x)

p(x)
,

Φ(x, |u|) ≤

∣∣∣∣∣
∫ |u|

0

b|s|p(x)−1ds

∣∣∣∣∣ ≤ b |u|p(x)

p(x)
.

It follows that∫
Ω

[Φ(x, |∆u|) + Φ(x, |u|)]dx ≤ b
∫

Ω

|∆u|p(x) + |u|p(x)

p(x)
dx.

It follows that for all t ∈ (0, 1) we have∫
Ω

[Φ(x, |∆(tv)|) + Φ(x, |tv|)] dx ≤ b
∫

Ω

tp(x) |∆v|p(x) + |v|p(x)

p(x)
dx

≤ b t
p−

p−

∫
Ω

(
|∆v|p(x) + |v|p(x)|

)
dx

= C1t
p− .

Next, we have ∫
Ω

|tv|q(x)

q(x)
dx ≥ tq

−+ε

q−

∫
ω

|v|q(x)dx = C2 t
q−+ε,∫

Ω

|tv|r(x)

r(x)
dx ≤ tr

−

r−

∫
Ω

|v|r(x)dx = C3 t
r− .

We conclude that
E(tv) ≤ C1t

p− − C2t
q−+ε + C3t

r− , (4.1)

where C1, C2 and C3 are positive constants.
Since q− + ε < r− < p−, relation (4.1) implies that E(tv) < 0, provided that

t > 0 is small enough. Since E is coercive and weakly lower semi-continuous, it
admits a global minimizer u0, which is a critical point of E . By step 2, we have
u0 6= 0.

To show that u0 is a solution of problem (3.2), it remains to show that ∆u0 = 0
on ∂Ω.

Step 3. We have ∆u0 = 0 on ∂Ω.
Since u0 verifies (3.2) in the weak sense, we deduce that u0 satisfies, for all v ∈ X ,∫

Ω

φ(x, |∆u0|)∆u0∆vdx =
∫

Ω

A(x)vdx, (4.2)

where
A(x) := |u0|q(x)−2u0 − |u0|r(x)−2u0 − φ(x, |u0|)u0.
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Let z ∈ X be the unique solution of the linear problem

∆z = A(x) in Ω
z = 0 on ∂Ω.

(4.3)

It follows that for all v ∈ X ,∫
Ω

φ(x, |∆u0|)∆u0∆vdx =
∫

Ω

(∆z)vdx.

By Green’s formula we deduce that for all v ∈ C∞c (Ω) ⊂ X∫
Ω

φ(x, |∆u0|)∆u0∆vdx =
∫

Ω

z∆vdx. (4.4)

For all w ∈ C∞c (Ω), let v ∈ C∞c (Ω be the unique solution of the problem

∆v = w in Ω
v = 0 on ∂Ω.

Returning to (4.4), we deduce that for all w ∈ C∞c (Ω)∫
Ω

(φ(x, |∆u0|)∆u0 − z)wdx = 0.

Applying [3, Lemma VIII.1] we conclude that

φ(x, |∆u0|)∆u0 − z = 0 in Ω. (4.5)

But z = 0 on ∂Ω. Using hypothesis (H3), relation (4.5) implies that ∆u0 = 0 on
∂Ω. The proof of Theorem 3.1 is now complete. �

A very interesting open problem concerns the same analysis if the left-hand side
of problem (3.2) is replaced either by the differential operator

∆(φ1(x, |∆u|)∆u) + V (x)∆(φ2(x, |∆u|)∆u) (4.6)

or by

∆(φ1(x, |∆u|)∆u) + V (x)∆(φ2(x, |∆u|)∆u) log(e+ |x|), (4.7)

where V is a nonnegative potential and φ1, φ2 satisfy hypotheses (H1)–(H3) cor-
responding to the variable exponents p1(x), p2(x) with p1(x) ≤ p2(x) in Ω. Con-
sidering two different materials with power hardening exponents p1(x) and p2(x),
respectively, the coefficient V (x) dictates the geometry of a composite of the two
materials. When V (x) > 0 then p2(x)-material is present, otherwise the p1(x)-
material is the only one making the composite. Composite materials with locally
different hardening exponents p1(x) and p2(x) can be described using the energies
associated to the differential operators defined in (4.6) and (4.7).

Problems of this type were also motivated by applications to elasticity, homoge-
nization, modelling of strongly anisotropic materials, Lavrentiev phenomenon, etc.
In the case of constant exponents, we refer to the pioneering papers by Marcellini
[15, 16] and Mingione et al. [2, 8, 9]. Double phase problems with variable growth
have been recently considered by Cencelj, Rădulescu and Repovš [4], Rădulescu
and Zhang [23], and Shi, Rădulescu, Repovš and Zhang [26].
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Acknowledgements. V. D. Rădulescu was supported by the Slovenian Research
Agency Grants P1-0292, J1-8131, J1-7025, N1-0064, and N1-0083. The same author
acknowledges the support through a grant of the Romanian Ministry of Research
and Innovation, CNCS–UEFISCDI, project number PN-III-P4-ID-PCE-2016-0130,
within PNCDI III.

References

[1] A. Ayoujil, A. El Amrouss; Continuous spectrum of a fourth-order nonhomogeneous elliptic

equation with variable exponent, Electron. J. Differ. Equations, 2011 no. 24 (2011), 1–12.

[2] P. Baroni, M. Colombo, G. Mingione; Non-autonomous functionals, borderline cases and
related function classes, St. Petersburg Mathematical Journal, 27 (2016), 347–379.
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[7] N. Chorfi, V. D. Rădulescu; Small perturbations of elliptic problems with variable growth,
Applied Mathematics Letters, 74 (2017), 167-173.

[8] M. Colombo, G. Mingione; Bounded minimisers of double phase variational integrals, Archive

for Rational Mechanics and Analysis, 218 (2015), 219-273.
[9] M. Colombo, G. Mingione; Calderón-Zygmund estimates and non-uniformly elliptic opera-

tors, Journal of Functional Analysis, 270 (2016), 1416-1478.
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[13] K. Kefi, V. D. Rădulescu; On a p(x)-biharmonic problem with singular weights, Z. Angew.
Math. Phys., 68 (2017), no. 4, Art. 80, 13 pp.

[14] I. H. Kim, Y. H. Kim; Mountain pass type solutions and positivity of the infimum eigenvalue

for quasilinear elliptic equations with variable exponents, Manuscripta Math., 147 (2015),
169-191.

[15] P. Marcellini; On the definition and the lower semicontinuity of certain quasiconvex integrals,

Ann. Inst. H. Poincaré, Anal. Non Linéaire, 3 (1986), 391-409.
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