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Abstract. We show the existence of ground state solutions to the following

stationary system coming from some coupled fractional dispersive equations
such as: nonlinear fractional Schrödinger (NLFS) equations (for dimension

n = 1, 2, 3) or NLFS and fractional Korteweg-de Vries equations (for n = 1),

(−∆)su+ λ1u = u3 + βuv, u ∈W s,2(Rn)

(−∆)sv + λ2v =
1

2
v2 +

1

2
βu2, v ∈W s,2(Rn),

where λj > 0, j = 1, 2, β ∈ R, n = 1, 2, 3, and n
4
< s < 1. Precisely, we prove

the existence of a positive radially symmetric ground state for any β > 0.

1. Introduction

In this article we study the existence of ground state solutions to the following
stationary system coming from some coupled nonlocal fractional dispersive equa-
tions such as: nonlinear fractional Schrödinger (NLFS) equations (for dimension
n = 1, 2, 3) or NLFS and fractional Korteweg-de Vries equations (FKdV) (for n = 1)

(−∆)su+ λ1u = u3 + βuv, u ∈W s,2(Rn)

(−∆)sv + λ2v =
1
2
v2 +

1
2
βu2, v ∈W s,2(Rn),

(1.1)

where W s,2(Rn) denotes the fractional Sobolev space, n = 1, 2, 3. λj > 0, j = 1, 2,
the coupling factor β ∈ R, and the fraction n

4 < s < 1.
The associated critical Sobolev exponent is defined by 2∗s = 2n

n−2s if n > 2s, and
2∗s =∞ if n ≤ 2s. As a consequence, since n

4 < s < 1 we have that 2∗s > 4.
It is well known that the fractional Laplacian (−∆)s, 0 < s < 1, is a nonlocal

diffusive type operator. It arises in several physical phenomena like flames prop-
agation and chemical reactions in liquids, population dynamics, geophysical fluid
dynamics, in probability, American options in finance, in α-stable Lévy processes,
etc; see for instance [7, 11, 20].
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In the one-dimensional case, when s = 1, (1.1) comes from the following system
of coupled nonlinear Schödinger (NLS) and Korteweg-de Vries (KdV) equations

ift + fxx + |f |2f + βfg = 0

gt + gxxx + ggx +
1
2
β(|f |2)x = 0,

(1.2)

where f = f(x, t) ∈ C while g = g(x, t) ∈ R, and β ∈ R is the real coupling
coefficient. System (1.2) appears in phenomena of interactions between short and
long dispersive waves, arising in fluid mechanics, such as the interactions of capillary
- gravity water waves. Indeed, f represents the short-wave, while g stands for the
long-wave. For more details, see for instance [2, 21, 29] and the references therein.

Looking for “traveling-wave” solutions, namely solutions to (1.2) of the form

(f(x, t), g(x, t)) =
(
eiωtei

c
2xu(x− ct), v(x− ct)

)
with u, v real functions, and choosing λ1 = ω+ c2

4 , λ2 = c, one finds that u, v solve
the problem

−u′′ + λ1u = u3 + βuv

−v′′ + λ2v =
1
2
v2 +

1
2
βu2.

(1.3)

This system has been studied, among others, in [2, 3, 18, 19, 23, 24]. Also, note
that system (1.3) corresponds to system (1.1) when s = 1 and n = 1.

On the other hand, for n = 2, 3, and s = 1, system (1.1) corresponds to (1.3)

−∆u+ λ1u = u3 + βuv

−∆v + λ2v =
1
2
v2 +

1
2
βu2,

(1.4)

for which the existence of bound and ground states have been studied in [18, 19]. We
observe that system (1.4) can be seen as a stationary version of a time dependent
coupled NLS system when one looks for solitary wave solutions, and (u, v) are the
corresponding standing waves solutions of (1.4) (see for instance [19, section 6]). It
is well known that systems of NLS-NLS time-dependent equations have applications
in nonlinear Optics, Hartree-Fock theory for Bose-Einstein condensates, among
other physical phenomena; see for instance the earlier mathematical works [1, 4, 5,
6, 9, 33, 36, 37, 38], the more recent list (far from complete) [15, 17, 22, 35, 39] and
references therein. See also a close related work; [16], in which was studied a close
system of coupled NLFS equations.

Here we are interested in system (1.1), consisting of coupled NLS equations
involving the so called fractional Laplacian operator (or fractional Schrödinger op-
erator, (−∆)s + λ Id).

Note that in dimension n = 1, (1.1) can also be seen as a system of coupled
NLFS-FKdV equations. In this case, (1.1) is the corresponding stationary system
when one looks for travelling-wave solutions of the time-dependent system

ift −As f + |f |2f + βfg = 0

gt − (As g)x + ggx +
1
2
β(|f |2)x = 0,

(1.5)

where As stands for the nonlocal fractional Laplacian (−∆)s in dimension n = 1.
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While for n = 1, 2, 3, (1.1) can be seen as the stationary system when one
looks for standing wave solutions of the time-dependent system of coupled NLFS
equations

ift − (−∆)sf + |f |2f + βfg = 0

igt − (−∆)sg + β|f |2 = 0.
(1.6)

The main goal of this manuscript is to demonstrate that for any β > 0, problem
(1.1) has a positive radially symmetric ground state ũ = (ũ, ṽ) ∈ W s,2(Rn) ×
W s,2(Rn); see Theorems 4.1 and 4.2.

Notice that, for any β ∈ R, (1.1) has a unique semi-trivial positive radially
symmetric solution, that we denote by v2 = (0, V2), where V2(x) is the unique
positive radially symmetric ground state of −(∆)sv + λ2v = 1

2v
2 in W s,2(Rn);

[27, 28]. Since we are interested in positive ground states, then we have to show that
they are different from the semi-trivial solution v2. To do so, we will demonstrate
some properties of the semi-trivial solution which will allow us to show that v2 is not
a ground state. For example, we will show that there exists a constant Λ > 0 such
that for β > Λ, v2 is a saddle point of the associated energy functional constrained
on the corresponding Nehari Manifold, which actually is a natural restriction. When
β < Λ then v2 is a strict local minimum of the energy functional on the Nehari
Manifold. In this case, we exclude that v2 is a ground state by the construction of a
function in the Nehari Manifold with energy lower than the energy of v2. Precisely,
we will demonstrate that there exists a positive radially symmetric ground state of
(1.1), ũ 6= v2, either: β > Λ (see Theorem 4.1) or 0 < β ≤ Λ and λ2 large enough
(see Theorem 4.2).

This article is organized as follows. In Section 2 we introduce notation and
preliminaries, dealing with some background on the fractional Laplacian and we
give the definition of ground state. Section 3 contains some results on the method
of the natural constraint and the main properties about the semi-trivial solution
v2, that we will use in the proof of the main existence results stated and proved in
Section 4. Finally, in Section 5 we study the existence of ground states for some
systems with an arbitrary number of coupled equations.

2. Preliminaries and notation

The nonlocal fractional Laplacian operator (−∆)s in Rn is defined on the Schwartz
class of functions g ∈ S through the Fourier transform,

[(−∆)
α
2 g]∧(ξ) = (2π|ξ|)αĝ(ξ), (2.1)

or via the Riesz potential, see for example [31, 40]. Note that s = 1 corresponds
to the standard local Laplacian operator. See also [32, 25, 27, 28], where the frac-
tional Schrödinger operator ((−∆)s+Id) is defined and are analyzed some problems
dealing with.

There is another way to define this operator. If s = 1/2 the square root of the
Laplacian acting on a function u in the whole space Rn, can be calculated as the
normal derivative on the boundary of its harmonic extension to the upper half-
space Rn+1

+ , this is so-called Dirichlet to Neumann operator. Caffarelli-Silvestre;
[14], have shown that this operator can be realized in a local way by using one more
variable and the so called s-harmonic extension.

More precisely, given u a regular function defined in Rn we define its s-harmonic
extension to the upper half-space Rn+1

+ by w = Exts(u), as the solution to the
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problem
−div(y1−2s∇w) = 0 in Rn+1

+

w = u on Rn × {y = 0}.
(2.2)

The main relevance of the s-harmonic extension comes from the following identity

lim
y→0+

y1−2s ∂w

∂y
(x, y) = − 1

κs
(−∆)su(x), (2.3)

where κs is a positive constant. The above Dirichlet-Neumann process (2.2)-(2.3)
provides a formula for the fractional Laplacian, equivalent to that obtained from
Fourier Transform by (2.1). In that case, the s-harmonic extension and the frac-
tional Laplacian have explicit expressions in terms of the Poisson and the Riesz
kernels, respectively,

w(x, y) = P sy ∗ u(x) = cn,sy
2s

∫
Rn

u(z)

(|x− z|2 + y2)
n+2s

2

dz,

(−∆)su(x) = dn,s P.V.
∫

Rn

u(x)− u(z)
|x− z|n+2s

dz.

(2.4)

The natural functional spaces are the homogeneous fractional Sobolev space Ḣs(Rn)
and the weighted Sobolev space X2s(Rn+1

+ ), that can be defined as the completion
of C∞0 (Rn+1

+ ) and C∞0 (Rn), respectively, under the norms

‖φ‖2X2s = κs

∫
Rn+1

+

y1−2s|∇φ(x, y)|2 dxdy,

‖ψ‖2
Ḣs

=
∫

Rn
|2πξ|2s|ψ̂(ξ)|2 dξ =

∫
Rn
|(−∆)s/2ψ(x)|2 dx,

where κs is the constant in (2.3). Notice that, the constants in (2.4) and κs satisfy
the identity s cn,sκs = dn,s, and their explicit value can be seen in [12].

Remark 2.1. The s-harmonic extension operator defined by (2.2) is an isometry
between the spaces Ḣs(Rn) and X2s(Rn+1

+ ), i.e.,

‖ϕ‖Ḣs = ‖Es(ϕ)‖X2s , ∀ϕ ∈ Ḣs(Rn). (2.5)

Even more, we have the following inequality for the trace Tr(w) = w(·, 0),

‖Tr(w)‖Ḣs ≤ ‖w‖X2s , ∀w ∈ X2s(Rn+1
+ ), (2.6)

see [12] for more details.

Let us introduce the following notation:
• E = W s,2(Rn), denotes the fractional Sobolev space, endowed with scalar

product and norm

(u | v)j =
∫

Rn
[(−∆)s/2u(−∆)s/2v + λjuv]dx, ‖u‖2j = (u | u)j , j = 1, 2;

• E = E × E; the elements in E will be denoted by u = (u, v); as a norm in
E we will take ‖u‖ = ‖u‖2E = ‖u‖21 + ‖v‖22;

• X = X2s(Rn+1
+ ), X = X ×X;

• for u ∈ E, the notation u ≥ 0, resp. u > 0, means that u, v ≥ 0, resp.
u, v > 0, for all j = 1, 2.
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Remark 2.2. If we define
∂w

∂νs
= −κs lim

y→0+
y1−2s ∂w

∂y
,

we can reformulate problem (1.1) as

−div(y1−2s∇w1) = 0 in Rn+1
+

−div(y1−2s∇w2) = 0 in Rn+1
+

∂w1

∂νs
+ λ1w1 = w3

1 + βw1w2 on R× {y = 0}

∂w2

∂νs
+ λ2w2 =

1
2
w2

2 +
1
2
βw2

1 on R× {y = 0},

(2.7)

with w = (w1, w2) ∈ X.
Note that if w ∈ X is solution of (2.7), then Tr(w(x, y)) = w(x, 0) ∈ E is a

solution of (1.1), or equivalently, if u ∈ E is a solution of (1.1), then Exts(u) ∈ X
is a solution of (2.7).

The introduction of this problem is only for the interested reader. As we will
see along the paper, it is not necessary to make use of problem (2.7), i.e., all the
results for (1.1) are going to be proved without using the s-harmonic extension to
the upper half space, Es(·).

For u = (u, v) ∈ E, we set

I1(u) =
1
2

∫
Rn

(|(−∆)s/2u|2 + λ1u
2)dx− 1

4

∫
Rn
u4dx,

I2(v) =
1
2

∫
Rn

(|(−∆)s/2v|2 + λ2v
2)dx− 1

6

∫
Rn
v3dx,

Φ(u) = I1(u) + I2(v)− 1
2
β

∫
Rn
u2v dx.

(2.8)

We also write

Gβ(u) =
1
4

∫
Rn
u4dx+

1
6

∫
Rn
v3dx+

1
2
β

∫
Rn
u2v dx,

and using this notation we can rewrite the energy functional as

Φ(u) =
1
2
‖u‖2 −Gβ(u), u ∈ E.

We observe that Gβ makes sense because n
4 < s < 1 ⇒ 2∗s > 4 which implies the

continuous Sobolev embedding E ↪→ L4(Rn). Even more, any critical point u ∈ E
of Φ, gives rise to a solution of (1.1).

Definition 2.3. A non-negative critical point ũ ∈ E \ {0} is called a ground state
of (1.1) if its energy Φ(ũ) is minimal among all the non-trivial critical points of Φ.

3. Nehari manifold and properties of v2

Let us set

Ψ(u) = (∇Φ(u)|u) = (I ′1(u)|u) + (I ′2(v)|v)− 3
2
β

∫
Rn
u2v dx.

We define the Nehari manifold by

N = {u ∈ E \ {0} : Ψ(u) = 0}.
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Then, one has that

(∇Ψ(u) | u) = −‖u‖2 −
∫

Rn
u4 dx < 0 ∀u ∈ N , (3.1)

thusN is a smooth manifold locally near any point u 6= 0 with Ψ(u) = 0. Moreover,
Φ′′(0) = I ′′1 (0)+I ′′2 (0) is positive definite, so we infer that 0 is a strict local minimum
for Φ. As a consequence, 0 is an isolated point of the set {Ψ(u) = 0}, proving that
N is a smooth complete manifold of codimension 1, and on the other hand there
exists a constant ρ > 0 so that

‖u‖2 > ρ ∀u ∈ N . (3.2)

Furthermore, by (3.1) and (3.2) we can show that u ∈ E \ {0} is a critical point of
Φ if and only if u ∈ N is a critical point of Φ constrained on N . As a consequence,
we have the following result.

Lemma 3.1. u ∈ E is a non-trivial critical point of Φ if and only if u ∈ N and is
a constrained critical point of Φ on N .

Remark 3.2. (i) By the previous arguments, the Nehari manifold N is a natu-
ral constraint of Φ. Also, it is relevant to point out that working on the Nehari
manifold, the functional Φ satisfies the following expression,

Φ|N (u) =
1
6
‖u‖2 +

1
12

∫
Rn
u4dx =: F (u), (3.3)

then using (3.2) into (3.3) we obtain

Φ(u) ≥ 1
6
‖u‖2 > 1

6
ρ ∀u ∈ N . (3.4)

Therefore, by (3.4) the functional Φ is bounded from below on N , as a consequence
we will minimize it on the Nehari manifold. To do so, a remark about compactness
is in order.

(ii) Analyzing the Palais-Smale (PS) condition, we remember that working on the
radial setting, H = Eradial, the embedding of H into L4(Rn) is compact for n = 2, 3,
but in dimension n = 1, the embedding of E or H into Lq(R) for 2 < q < 2∗s is not
compact; see [34, Remarque I.1]. However, we will analyze all the dimensional cases
n = 1, 2, 3, proving that for a PS sequence of Φ on N , we can find a subsequence
for which the weak limit is non-trivial and it is a solution of (1.1). This fact jointly
with some properties of the Schwarz symmetrization will allow us to demonstrate
the existence of positive radially symmetric ground states to (1.1). Notice that one
could also try to work in the cone of non-negative radially decreasing functions,
where one has the required compactness, in the one-dimensional case, thanks to
Berestycki and Lions [10], but this is not our approach.

Remark 3.3. It is known [27, 28] that the equation

(−∆)sv + v = v2, (3.5)

with v ∈ E, v 6≡ 0, has a unique radially symmetric and positive solution, that we
will denote by V . Indeed V is a non-degenerate ground state of (3.5) in H.

Clearly, for every β ∈ R, (1.1) already possesses a semi-trivial solution given by

v2 = (0, V2),

where
V2(x) = 2λ2V (λ1/2s

2 x) (3.6)
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is the unique positive radially symmetric solution of (−∆)sv + λ2v = 1
2v

2 in E.

To study some useful properties of v2, we define the corresponding Nehari man-
ifold associated to I2 in (2.8),

N2 =
{
v ∈ E : (I ′2(v)|v) = 0

}
=
{
v ∈ E : ‖v‖22 −

1
2

∫
Rn
v3dx = 0

}
.

Let us denote Tv2N the tangent space to N on v2. Since

h = (h1, h2) ∈ Tv2N ⇐⇒ (V2|h2)2 =
3
4

∫
Rn
V 2

2 h2 dx,

it follows that
(h1, h2) ∈ Tv2N ⇐⇒ h2 ∈ TV2N2. (3.7)

Proposition 3.4. There exists Λ > 0 such that:
(i) if β < Λ, then v2 is a strict minimum of Φ constrained on N ,
(ii) for any β > Λ, then v2 is a saddle point of Φ constrained on N with

infN Φ < Φ(v2).

Proof. First, we observe that if D2ΦN denotes the second derivative of Φ con-
strained on N . Using that Φ′(v2) = 0 we have that D2ΦN (v2)[h]2 = Φ′′(v2)[h]2

for all h ∈ Tv2N .
(i) We define

Λ = inf
ϕ∈E\{0}

‖ϕ‖21∫
Rn V2ϕ2dx

. (3.8)

We have that for h ∈ Tv2N ,

Φ′′(v2)[h]2 = ‖h1‖21 + I ′′2 (V2)[h2]2 − β
∫

Rn
V2h

2
1dx. (3.9)

Let us take h = (h1, h2) ∈ Tv2N , by (3.7) h2 ∈ TV2N2, then using that V2 is the
minimum of I2 on N2, there exists a constant c > 0 such that

I ′′2 (V2)[h2]2 ≥ c‖h2‖22. (3.10)

From (3.10) jointly with (3.9), for β < Λ, there exists another constant c1 > 0 such
that,

Φ′′(v2)[h]2 ≥ c1(‖h1‖21 + ‖h2‖2), (3.11)

which proves that v2 is a strict local minimum of Φ on N .
(ii) According to (3.7), h = (h1, 0) ∈ Tv2N for any h1 ∈ E. We have that, for

β > Λ, there exists h̃ ∈ E with

Λ <
‖h̃‖21∫

Rn V2h̃2dx
< β,

thus, taking h0 = (h̃, 0) ∈ Tv2N , by (3.9) we find

Φ′′(v2)[h0]2 = ‖h̃‖21 − β
∫

Rn
V2h̃

2dx < 0. (3.12)

On the other hand, by (3.7), and using again that V2 is the minimum of I2 on N2,
we have that there exists c > 0 such that

I ′′2 (V2)[h]2 ≥ c‖h‖22, ∀h ∈ TV2N2.
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Finally, by (3.9), Φ′′(v2)[(0, h)]2 = I ′′2 (V2)[h]2 for any h ∈ TV2N2. Thus we have
that there exists a constant c > 0 such that

Φ′′(v2)[h1]2 ≥ c‖h1‖2, ∀h1 = (0, h1) ∈ Tv2N .
�

4. Ground state solutions

The first result on the existence of ground states is given for the coupling pa-
rameter β > Λ in the following theorem.

Theorem 4.1. Assume β > Λ, then Φ has a positive radially symmetric ground
state ũ, and there holds Φ(ũ) < Φ(v2).

Proof. By the Ekeland’s variational principle; [26], there exists a PS sequence
{uk}k∈N ⊂ N , i.e.,

Φ(uk)→ cN = inf
N

Φ, (4.1)

∇NΦ(uk)→ 0. (4.2)

By (3.3) and (4.1), we find that {uk} is a bounded sequence on E, hence for a
subsequence, we can assume that

uk ⇀ u0 weakly in E, (4.3)

uk → u0 strongly in Lqloc(R) = Lqloc(R)× Lqloc(R) ∀1 ≤ q < 2∗s, (4.4)

and also uk → u0 a. e. in Rn. Since N is closed we have that u0 ∈ N , even more,
using that 0 is an isolated point the set {Ψ(u) = 0} we infer that u0 6= 0. On the
other hand, the constrained gradient satisfies

∇NΦ(uk) = Φ′(uk)− ηkΨ′(uk)→ 0, (4.5)

where ηk is the corresponding Lagrange multiplier. Taking the scalar product with
uk in (4.5), since uk ∈ N we have that (Φ′(uk) | uk) = Ψ(uk) = 0, then we
infer that ηk(Ψ′(uk) | uk) → 0; this jointly with (3.1),(3.3) and the fact that
‖Ψ′(uk)‖ ≤ C <∞ imply that ηk → 0 and therefore Φ′(uk)→ 0.

As a consequence of the discussion above, although we do not know that uk → u0

in E, we infer that u0 ∈ N is a non-trivial critical point of Φ and by Lemma 3.1 it
is also a non-trivial critical point of Φ on N .

Moreover, using that u0 ∈ N jointly with (3.3) and the Fatou’s Lemma, we find

Φ(u0) = F (u0) ≤ lim inf
k→∞

F (uk) = lim inf
k→∞

Φ(uk) = cN .

As a consequence, u0 is a least energy solution of (1.1). By Proposition 3.4-(ii)
we know that necessarily Φ(u0) < Φ(v2). Additionally, by the maximum principle
in the fractional setting; [13], applied to the second equation in (1.1), we have that
v0 > 0. To show that also u0 > 0, first we prove the following result.
Claim. We can assume without loss of generality that u0 ≥ 0.

To prove this, we consider |u0| = (|u0|, v0), then we have two cases:
Case 1. If |u0| ∈ N , by the Stroock-Varopoulos inequality [41, 42],

‖(−∆)s/2(|u|)‖L2 ≤ ‖(−∆)s/2(u)‖L2 , (4.6)

we have, in particular, that ‖|u|‖1 ≤ ‖u‖1, then we obtain

Φ(|u0|) ≤ Φ(u0) = cN .
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Then, by similar arguments as in [43, Theorem 4.3], we have that |u0| is a non-
negative ground state.

Case 2. If |u0| 6∈ N , we take the unique t > 0, t 6= 1 such that t|u0| ∈ N , which
comes from

‖ |u0| ‖2 = t2
∫

Rn
u4

0dx+ t
(1

2

∫
Rn
v3
0 dx+

3
2
β

∫
Rn
u2

0v0 dx
)
. (4.7)

Since u0 ∈ N , then

‖u0 ‖2 =
∫

Rn
u4

0dx+
1
2

∫
Rn
v3
0 dx+

3
2
β

∫
Rn
u2

0v0 dx. (4.8)

By (4.7), (4.8) and again the Stroock-Varopoulos inequality (4.6), we infer that

t2
∫

Rn
u4

0dx+ t
(1

2

∫
Rn
v3
0 dx+

3
2
β

∫
Rn
u2

0v0 dx
)

≤
∫

Rn
u4

0dx+
1
2

∫
Rn
v3
0 dx+

3
2
β

∫
Rn
u2

0v0 dx.

(4.9)

Using that t 6= 1, as a consequence of (4.9) we deduce that 0 < t < 1 and the
inequality in (4.9) is strict. Hence, by (3.3) jointly with (4.6) and t < 1 we obtain

Φ(t|u0|) = t2‖ |u0| ‖2 + t4
1
12

∫
Rn
u4

0dx

< ‖ |u0| ‖2 +
1
12

∫
Rn
u4

0dx

≤ Φ(u0) = cN .

This is a contradiction because t|u0| ∈ N . Therefore |u0| ∈ N and the claim is
proved.

Once we can assume without loss of generality that u0 ≥ 0, by the maximum
principle applied to the first equation in (1.1) we find u0 > 0 proving that indeed
u0 is a positive ground state.

To complete the proof, we have to show that the ground state is indeed radially
symmetric.

If u0 is not radially symmetric, we set ũ = u?0 = (u?0, v
?
0), where u?0, v

?
0 denote the

Schwarz symmetric functions associated to u0, v0 respectively. By the properties of
the Schwarz symmetrization; see for instance [30] for the fractional setting and [8]
for the classical one, there hold

‖u?‖2 ≤ ‖u‖2, Gβ(u?) ≥ Gβ(u). (4.10)

Furthermore, there exists a unique t? > 0 such that t? ũ ∈ N . If t? = 1, by (4.10)
we have Φ(ũ) ≤ Φ(u0) = cN with ũ ∈ N thus ũ is a positive radially symmetric
ground state of (1.1).

On the contrary, i.e., if t? 6= 1, as in (4.7), t? comes from

‖ũ‖2 = t2?

∫
Rn

(u?0)4dx+ t?

(1
2

∫
Rn

(v?0)3dx+
3
2
β

∫
Rn

(u?0)2v?0 dx
)
. (4.11)
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Because u0 ∈ N , (4.10), (4.11), that u0 > 0 and that t? > 0, we find∫
Rn
u4

0 dx+
1
2

∫
Rn
v3
0 dx+

3
2
β

∫
Rn
u2

0v0 dx

≥ t2?
∫

Rn
u4

0dx+ t?

(1
2

∫
Rn
v3
0 dx+

3
2
β

∫
Rn
u2

0v0 dx
)
.

(4.12)

Thus, using that 0 < t? 6= 1 in (4.12), we obtain 0 < t? < 1, this and (4.10) show
that

Φ(t? ũ) =
1
6
t2?‖u?‖2 +

1
12
t4?

∫
Rn

(u?0)4 dx <
1
6
‖u0‖2 +

1
12

∫
Rn
u4

0 dx = Φ(u0) = cN ,

(4.13)
with t?ũ ∈ N which is a contradiction with (4.13), proving that t? = 1 and as
above, the proof is complete. �

The second result about existence of ground states cover the range 0 < β ≤ Λ,
provided λ2 is large enough.

Theorem 4.2. There exists Λ2 > 0 such that if λ2 > Λ2, System (1.1) has a
radially symmetric ground state ũ > 0 for every 0 < β ≤ Λ.

Proof. Arguing as in the proof of Theorem 4.1, we prove that there exists a radially
symmetric ground state ũ ≥ 0. Moreover, in Theorem 4.1 for β > Λ we proved that
ũ > 0. Now we need to show that for 0 < β ≤ Λ indeed ũ > 0 which follows by
the maximum principle provided ũ 6= v2. Taking into account Proposition 3.4-(i),
v2 is a strict local minimum of Φ on N , and this does not guarantee that u0 6≡ v2.
Following [19], the idea consists on the construction of a function u0 = (u0, v0) ∈ N
with Φ(u0) < Φ(v2). To do so, since v2 = (0, V2) is a local minimum of Φ on N
provided 0 < β < Λ, we cannot find u0 in a neighborhood of v2 on N . Thus, we
define u0 = t(V2, V2) where t > 0 is the unique value such that u0 ∈ N .

Now, we show that

u0 = t(V2, V2) ∈ N with Φ(u0) < Φ(v2),

for λ2 large enough.
Notice that t > 0 comes from Ψ(u0) = 0, i.e.,

t2‖(V2, V2)‖2 − t4
∫

Rn
V 4

2 dx−
1
2
t3(1 + 3β)

∫
Rn
V 3

2 dx = 0. (4.14)

We also have
‖(V2, V2)‖2 = 2‖V2‖22 + (λ1 − λ2)

∫
Rn
V 2

2 dx. (4.15)

Moreover, since V2 ∈ N2, we have

‖V2‖22 −
1
2

∫
Rn
V 3

2 dx = 0. (4.16)

Substituting (4.15) and (4.16) in (4.14) it follows

t2
(∫

Rn
V 3

2 dx+ (λ1 − λ2)
∫

Rn
V 2

2 dx
)
−t4

∫
Rn
V 4

2 dx−
1
2
t3(1 + 3β)

∫
Rn
V 3

2 dx = 0.

(4.17)
Hence, applying the scaling (3.6) yields∫

Rn
V r2 dx = 2rλr−

n
2s

2

∫
Rn
V r dx. (4.18)
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Subsequently, substituting (4.18) for r = 2, 3, 4 into (4.17) and dividing in (4.17)
by 23λ

3− n
2s

2 t2 we have∫
Rn
V 3 dx+

λ1 − λ2

2λ2

∫
Rn
V 2 dx−2λ2t

2

∫
Rn
V 4 dx−1

2
t(1+3β)

∫
Rn
V 3 dx = 0. (4.19)

Moreover, by (3.3), (4.15) and (4.16) we find respectively the expressions

Φ(u0) =
1
6
t2
(∫

Rn
V 3

2 dx+ (λ1 − λ2)
∫

Rn
V 2

2 dx
)

+
1
12
t4
∫

Rn
V 4

2 dx, (4.20)

Φ(v2) = I2(V2) =
1
2
‖V2‖22 −

1
6

∫
Rn
V 3

2 =
1
12

∫
Rn
V 3

2 . (4.21)

By (4.20), (4.21) we have Φ(u0) < Φ(v2) is equivalent to

1
6
t2
(∫

Rn
V 3

2 dx+ (λ1 − λ2)
∫

Rn
V 2

2 dx
)

+
1
12
t4
∫

Rn
V 4

2 dx−
1
12

∫
Rn
V 3

2 dx < 0,
(4.22)

and then, applying again (4.18) and multiplying (4.22) by 6λ
n
2s−3
2 , we actually have

t2
(∫

Rn
V 3 dx+

λ1 − λ2

λ2

∫
Rn
V 2 dx

)
+

1
2
t4λ2

∫
Rn
V 4 dx− 1

2

∫
Rn
V 3 dx < 0. (4.23)

For λ2 large enough we find that (4.19) will provide us with (4.23). Therefore, there
exists a positive constant Λ2 such that for λ2 > Λ2 inequality (4.23) holds, proving
that

Φ(ũ) ≤ Φ(u0) < Φ(v2).
Finally, this shows that ũ 6= v2 and we finish. �

5. Systems with more than 2 equations

In this last subsection, we deal with some extended systems of (1.1) to more
than two equations. We start with the study of the following system coming from
NLFS-2FKdV equations if n = 1 or 3NLFS equations if n = 1, 2, 3,

(−∆)su+ λ0u = u3 + β1uv1 + β2uv2,

(−∆)sv1 + λ1v1 =
1
2
v2
1 +

1
2
β1u

2,

(−∆)sv2 + λ2v2 =
1
2
v2
2 +

1
2
β2u

2,

(5.1)

where u, v1, v2 ∈ E. This system can be seen as a perturbation of (1.1) when |β1|
or |β2| is small.

We use similar notation as in previous sections with natural meaning, for exam-
ple, E = E × E × E, 0 = (0, 0, 0),

Φ(u) =
1
2
‖u‖2 − 1

4

∫
Rn
u4 dx− 1

6

∫
Rn

(v3
1 + v3

2) dx− 1
2

∫
Rn
u2(β1v1 + β2v2) dx

(5.2)

N = {u ∈ E \ {0} : (Φ′(u)|u) = 0}, (5.3)

Let U∗, V ∗j be the unique positive radially symmetric solutions of (−∆)su+λ0u =
u3, (−∆)sv + λjv = 1

2v
2 in E respectively, j = 1, 2; see [27, 28].
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Remark 5.1. The unique non-negative semi-trivial solutions of (5.1) are given by
v∗1 = (0, V ∗1 , 0), v∗2 = (0, 0, V ∗2 ) and v∗12 = (0, V ∗1 , V

∗
2 ).

As in Section 4, the first result about existence of ground states is the following
theorem.

Theorem 5.2. Assume βj > Λj for j = 1, 2, then (5.1) has a positive radially
symmetric ground state ũ.

Proof. We define

Λj = inf
ϕ∈E\{0}

‖ϕ‖20∫
Rn V

∗
j ϕ

2dx
j = 1, 2. (5.4)

where ‖ · ‖0 is the norm in E with λ0.
As in Proposition 3.4-(ii), using that βj > Λj , j = 1, 2, one can show that both

v∗1, v∗2 are saddle points of the energy functional Φ (defined by (5.2)) constrained
on the Nehari manifold N (defined by (5.2)). Then

cN = inf
N

Φ < min{Φ(v∗1),Φ(v∗2)} < Φ(v∗12) = Φ(v∗1) + Φ(v∗2). (5.5)

By the Ekeland’s variational principle, there exists a PS sequence {uk}k∈N ⊂ N ,
i.e.,

Φ(uk)→ cN , ∇NΦ(uk)→ 0. (5.6)

The lack of compactness can be circumvent arguing in a similar way as in the proof
of Theorem 4.1, proving that for a subsequence, uk ⇀ ũ weakly in E with ũ � 0,
ũ ∈ N a critical point of Φ satisfying Φ(ũ) = cN , then ũ is a non-negative ground
state.

To prove the positivity of ũ, if one supposes that the first component u∗ ≡ 0,
since the only non-negative solutions of (5.1) are the semi-trivial solutions defined
in Remark 5.1, we obtain a contradiction with (5.5). Furthermore, if the second or
third component vanish then ũ must be 0, and this is not possible because Φ|N is
bounded bellow by a positive constant like in (3.4), then 0 is an isolated point of
the set {u ∈ E : Ψ(u) = (Φ′(u)|u) = 0}, proving that N is a complete manifold, as
in the previous sections. Then, the maximum principle shows that ũ > 0. Finally,
to show that we have a radially symmetric ground state, we argue as in the proof
of Theorem 4.1. �

Furthermore, following the ideas in the proof of Theorem 4.2 we have the fol-
lowing result.

Theorem 5.3. Assume that β1, β2 > 0 (but not necessarily βj > Λj as in Theorem
5.2). Then there exists a positive radially symmetric ground state ũ provided λ1, λ2

are sufficiently large.

Proof. The proof follows the same ideas as the one of Theorem 4.2 with appropriate
changes. For example, to prove the positivity, one has to show that there exists
u0 ∈ N with Φ(u0) < min{Φ(v∗1),Φ(v∗2)}, that holds true provided λ1, λ2 are large
enough. We omit details here. �
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Plainly we can extend these results to systems with an arbitrary number of
equations N > 3 as follows,

(−∆)su+ λ0u = u3 +
N−1∑
k=1

βk uvk

(−∆)svj + λjvj =
1
2
v2
j +

1
2
βju

2; j = 1, · · · , N − 1.

(5.7)

Arguing as in Theorems 5.2 and 5.3 we can show the next result.

Theorem 5.4. There exists a positive radially symmetric ground state of (5.7) if
• either

βk > Λk = inf
ϕ∈E\{0}

‖ϕ‖20∫
Rn V

∗
k ϕ

2dx
; k = 1, · · ·N − 1,

where V ∗k denotes the unique positive radial solution of ∆v + λkv = 1
2v

2 in
E; k = 1, · · · , N − 1,
• or βj > 0 are arbitrary and λj are large enough; j = 1, . . . , N − 1.

Remark 5.5. As was commented in [19] for the local setting, here in the nonlocal
fractional framework, another natural extension of (1.3) to more than two equations
different from (5.1) is the following system coming from 2NLFS-FKdV equations if
n = 1 or 3NLFS equations if n = 1, 2, 3,

(−∆)su1 + λ1u1 = u3
1 + β12u1u

2
2 + β13u1v

(−∆)su2 + λ2u2 = u3
2 +

1
2
β12u

2
1u2 + β23u2v

(−∆)sv + λv =
1
2
v2 +

1
2
β13u

2
1 +

1
2
β23u

2
2.

. (5.8)

We denote Uj the unique positive radially symmetric solution of (−∆)su+λju = u3

in E; j = 1, 2; and V the corresponding positive radially symmetric solution to
(−∆)sv + λv = 1

2v
2 in E.

Note that the non-negative radially symmetric semi-trivial solution (0, 0, V ) is a
strict local minimum of the associated energy functional constrained on the corre-
sponding Nehari manifold provided

βj3 < Λj = inf
ϕ∈E\{0}

‖ϕ‖2λj∫
Rn V ϕ

2dx
j = 1, 2.

While if either β13 > Λ1 or β23 > Λ2 then (0, 0, V ) is a saddle point of Φ on N .
There also exist semi-trivial solutions coming from the solutions studied in Sec-

tion 4, with the first component or the second one ≡ 0. This fact makes different the
analysis of (5.8) with respect to the previous studied systems (5.1) and (5.7). To fin-
ish, one could study more general extended systems of (5.1), (5.8) with N = m+ `;
coming from m-NLFS and `-FKdV coupled equations with m, ` ≥ 2 in the one
dimensional case, or N -NLFS equations if n = 1, 2, 3. Indeed, the existence of pos-
itive ground states it is still unknown in the local setting (s = 1) for this last kind
of systems, including (5.8) with s = 1.
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