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In memory of Anna Aloe

Abstract. One of the main tools in geometric function theory is the fact that

the area formula is true for Lipschitz mapping; if f is differentiable a.e. (in

the classic sense) then f can be exhausted up to a set of zero measure; the
restriction of f , set by set, is Lipschitz [6, Theorem 3.18]. The aim of this

survey is to clarify the regularity assumptions for a map to be differentiable

a.e., and to give some auxiliary results when it is not, using the notion of
approximate differentiability.

1. Introduction

Let Ω be a bounded domain of Rn, and let f : Ω→ Ω′ = f(Ω) be a homeomor-
phism (f ∈ Hom(Ω,Ω′) in short). We recall two classical notions:

• f satisfies the Lusin condition (also called condition (N), and denoted as
f ∈ (N)) if

E ⊂ Ω with |E| = 0 implies |f(E)| = 0 (1.1)

where | · | denotes the Lebesgue measure.
• f is a Sobolev homeomorphism if f belongs to W 1,1

loc . For n ≥ 2, a mapping
f is a bi-Sobolev map if f and f−1 are Sobolev homeomorphisms.

For a homeomorphism f : Ω onto−→ Ω′, condition (1.1) holds if and only if f maps
measurable sets to measurable sets. Moreover, if f is differentiable at every point
x of the Borel set B ⊂ Ω and Jf (x) is the Jacobian determinant of f at x, then the
weak area formula holds on B; that is,∫

B

η(f(z))|Jf (z)|dz ≤
∫
f(B)

η(w)dw (1.2)

for any nonnegative Borel-measurable function η on Rn.
Note that for n ≥ 3, there is a homeomorphism of class W 1,n−1

loc ((−1, 1)n,Rn)
such that both f and f−1 are nowhere differentiable [3, Example 5.2]. For this
reason the aim of this survey (based mainly on results contained in [4, 5]) is to
understand when dealing with mappings of W 1,p with p < n − 1, the notion of
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differentiability (that fails in this setting) can be replaced by the notion of approx-
imate differentiability on the change of variable formula.

However, the condition (N) plays a fundamental role for these mappings. Indeed
for such f , condition (N) is equivalent to the area formula∫

B

η(f(z))|Jf (z)|dz =
∫
f(B)

η(w)dw. (1.3)

If the homeomorphism f satisfies the natural assumption f ∈W 1,n
loc (Ω,Rn), then

f satisfies the condition (N). This is due to Reshetnjak [29], and is a sharp result
in the scale of W 1,p(Ω,Rn)-homeomorphisms thanks to an example of Ponomarev
[27, 28] of a W 1,p-homeomorphisms f : [0, 1]n → [0, 1]n, p < n violating condition
(N).

2. Lusin condition and differentiability almost everwhere

If f ∈ Hom(Ω,Ω′) we decompose Ω as

Ω = Rf ∪ Zf ∪ Ef ,
where

Rf = {z ∈ Ω : f is differentiable at z and Jf (z) 6= 0}, (2.1)

Zf = {z ∈ Ω : f is differentiable at z and Jf (z) = 0}, (2.2)

Ef = {z ∈ Ω : f is not differentiable at z } (2.3)

Differentiability is understood in the classical sense. Since f is continuous, these
are Borel sets. Clearly we have

f(Rf ) = Rf−1 . (2.4)

Let us recall the weak area formula from Federer [6, Theorem 3.1.8]. Let B ⊂ Ω
be a Borel measurable set and assume that f : Ω onto−→ Ω′ is a homeomorphism such
that f is differentiable at every point of B, then for any η : Rn → [0,+∞[ Borel
measurable function we have∫

B

η(f(z))|Jf (z)|dz ≤
∫
f(B)

η(w)dw (2.5)

This follows from the area formula (1.3) which is valid for Lipschitz mappings and
from the fact that the set of differentiability can be exhausted up to a set of zero
measure by sets the restriction to which of f is Lipschitz [[6] Theorem 3.1.8]. Hence,
for an a.e. differentiable homeomorphism on Ω we can decompose Ω into pairwise
disjoint sets

Ω = Z ∪ ∪∞k=1Ωk (2.6)
such that |Z| = 0 and fΩk

is Lipschitz.
We note the following consequence of (2.5). If B′ ⊂ f(Ω) is a Borel subset with

|B′| = 0, then Jf (x) = 0 for a.e. x ∈ f−1(B′). Indeed∫
f−1(B′)

|Jf (z)|dz ≤
∫
B′

dw = |B′| = 0.

For example, if f−1 is differentiable a.e. on f(Ω), then Jf (x) = 0 for a.e. x ∈
f−1(Ef−1) where

Ef−1 = {z ∈ Ω : f−1 is not differentiable at z}.
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We say that the area formula holds for f on B if (2.5) is valid as an equality;
that is, ∫

B

η(f(z))|Jf (z)|dz =
∫
f(B)

η(w)dw (2.7)

for all η : Rn → [0,+∞[ Borel measurable function.
For a Sobolev homeomorphisms f ∈W 1,1(Ω,Rn) (that is if the coordinate func-

tions of f belong to the Sobolev space W 1,1(Ω) of L1-functions u : Ω → R whose
gradient |∇u| belongs to L1(Ω)) it is well known that there exists a set Ω̃ of full
measure such that the area formula holds for f on Ω̃. Also, the area formula holds
on each set on which the Lusin condition (N) is satisfied (this follows from the
area formula for Lipschitz mappings, from the a.e. approximate differentiability
of f (see [6, Theorem 3.1.4]) and the already mentioned general property of a.e.
differentiable functions [6, Theorem 3.1.8], namely that Ω can be exhausted up to
a set of measure zero by sets the restriction to which of f is Lipschitz continuous).

So, if we choose the Borel set B = Zf as defined in (2.2) then by (1.3), we deduce

|f(Zf )| = 0

which is a weak version of the classical Sard lemma.
Let f : Ω onto−→ Ω′ be a homeomorphism. Then f maps every Borel set B ⊂ Ω

onto a Borel set. Note that here we need to restrict ourselves to Borel sets B only
since the homeomorphic image of a measurable set need not remain measurable.

In fact if f is a Cantor type homeomorphism f : [0, 1] → [0, 2] such that a zero
set N0, |N0| = 0 is mapped to a positive set P ′0 = f(N0), |P ′0| > 0 and E′ is a non
measurable set contained in P ′0 (recall that every set of Lebesgue positive measure
contains a non measurable subset) then f−1(E′) is contained in the null set N0

hence it is measurable.
The question of the differentiability in the classical sense of a homeomorphisms

has a rather simple positive answer in the case n = 2 thanks to a classical Theorem
by Gehring-Lehto (see [10, 19, 22]).

Theorem 2.1. Let Ω and Ω′ be bounded domains in the plane and suppose that
f ∈ Hom(Ω,Ω′) has finite partial derivatives a.e. in Ω, then f is differentiable a.e.
in Ω.

As a consequence, if f = (u, v) : Ω ⊂ R2 onto−→ Ω′ ⊂ R2 is a Sobolev-homeomor-
phism, then f and f−1 are differentiable a.e. ([16]). The fairly well-known Theorem
of Gehring-Lehto is one of the few facts from real analysis that carry geometric
information up from the infinitesimal level. Its proof uses properties of the plane,
in fact the Theorem at this stage of generality (f a BV -homeomorphism or f a
W 1,1-homeomorphism) is false in higher dimension.

In the general case n ≥ 2, the minimal integrability conditions on the partial
derivatives of a Sobolev homeomorphism f ∈W 1,1

loc (Ω,Rn) needed to guarantee a.e.
differentiability have been found by J. Onninen [26], generalizing a classical result
of Stein [32].

It turns out that if f ∈ W 1,1(Ω,Rn) and |Df | ∈ Ln−1,1(Ω) (where the Lorentz
space Lp,1(Ω), 1 ≤ p < ∞ is defined as the class of all measurable functions
u : Ω→ R such that

‖u‖Lp,1(Ω) = p

∫ ∞
0

|{z ∈ Ω : |u(z)| > t}|1/pdt
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is finite) then the homeomorphisms f and f−1 are differentiable a.e.
This is sharp after an example of a W 1,n−1-homeomorphism f (n ≥ 3) which

is bi-Sobolev (that is, f−1 ∈ W 1,1) and both f, f−1 are nowhere differentiable [3].
Let us prove the following useful result which generalizes [19, Lemma 3.4].

Proposition 2.2 ([4]). If f is a Sobolev homeomorphism such that Jf ≥ 0, then
f−1 satisfies condition (N), if and only if, Jf (z) > 0 for a.e. z ∈ Ω.

Proof. Suppose first that f−1 ∈ (N) and denote by Ω̃ a subset of Ω of full measure
such that the area formula (2.7) with B = Ω̃ holds true. Hence,

|f({z ∈ Ω̃ : Jf (z) = 0})| = 0

and by condition (N), for f−1 we have

|{z ∈ Ω : Jf (z) = 0}| = |{z ∈ Ω̃ : Jf (z) = 0} ∪ (Ω \ Ω̃)| = 0.

Conversely, suppose Jf (z) > 0 a.e. and let us prove that f−1 ∈ (N). Assuming by
contradiction that there exists |N ′0| = 0, N ′0 ⊂ Ω′ with |f−1(N ′0)| > 0, then we have∫

f−1(N ′0)

Jf ≤ |f(f−1(N ′0))| = |N ′0| = 0.

Hence Jf = 0 on the positive set f−1(N ′0) ⊂ Ω and this is a contradiction. �

Let us prove a simple characterization of condition (N) for a function f .

Proposition 2.3 ([4]). If f : Ω onto−→ Ω′ is a Sobolev homemorphism, Jf ≥ 0 and∫
B

Jf = |f(B)|

for any Borel set B ⊂ Ω, then f ∈ (N) on every Borel set B ⊂ Ω.

Proof. By contradiction, assume that there exists a subset E ⊂ B : |E| = 0 and
|f(E)| > 0. Then∫

B

Jf =
∫
B\E

Jf ≤ |f(B \ E)| = |f(B)| − |f(E)| < |f(B)|

which is a contradiction. �

An interesting application of condition (N) is the following result on the inverse
of an a.e. differentiable homeomorphism, which in the plane and has an interesting
counterpart.

Proposition 2.4 ([4]). Let f ∈ Hom(Ω,Ω′) be differentiable a.e.. If f satisfies
condition (N), then the inverse f−1 is differentiable a.e..

Proof. We notice that the area formula (1.3) holds on each set on which f satis-
fies condition (N); in particular it holds on Rf ∪ Zf , that is the set where f is
differentiable: ∫

Rf∪Zf

η(f(z))|Jf (z)|dz =
∫
f(Rf∪Zf )

η(w)dw. (2.8)

In particular, we have the following version of Sard Lemma,

|f(Zf )| = 0. (2.9)
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Since f is differentiable a.e., Ef has measure zero and by condition (N), f(Ef ) has
measure zero. We note that f−1 is differentiable in f(Rf ) which is a subset of full
measure of f(Ω); indeed,

f(Ω) \ f(Rf ) = f(Zf ) ∪ f(Ef )

has measure zero by (2.9) and condition (N). �

By A4B, we denote the set (A∪B)\(A∩B). By A = B a.e. we mean |A4B| = 0.

Proposition 2.5. Let f ∈ Hom(Ω,Ω′) and assume that f and f−1 are differen-
tiable a.e. and both satisfy condition (N), then f essentially maps Ef to Zf−1 and
f−1 maps Ef−1 to Zf in the sense that

|f(Ef )4Zf−1 | = |f(Ef−1)4Zf | = 0.

3. Differentiability versus approximate differentiability

As we have already observed the notion of differentiability can not guaranteed for
homeomorphism that are in W 1,n−1. To avoid this problem the notion of approx-
imate differentiability comes to the play, so we would like to know if some results
presented in the previous section are still valid. For example, let us consider the
following issue: let Ω and Ω′ be domains in Rn, if f : Ω onto−→ Ω′ is a homeomorphism
approximately differentiable at x0 ∈ Ω with nonzero Jacobian, Jf (x0) 6= 0 , is it
true that f−1 is approximately differentiable at y0 = f(x0) and that

Jf−1(y0) =
1

Jf (x0)
? (3.1)

This is true for n = 1, because a homeomorphism h : [a, b] ⊂ R onto−→ [a′, b′] ⊂ R
is strictly monotone, hence approximate differentiability is equivalent to ordinary
differentiability [15].

Recall that f is approximately differentiable at x0 ∈ Ω with approximate gradient
Df(x0), if there is a set A ⊂ Ω of density one at x0, i.e.

lim
r→0

|A ∩ Br(x0)|
|Br(x0)|

= 1 , (3.2)

where Br(x) denotes the closed ball of center x and radius r, such that

lim
y→x0, y∈A

|f(y)− f(x0)−Df(x0)(y − x0)|
|y − x0|

= 0. (3.3)

Lebesgue’s density Theorem guarantees that almost every point of a measurable
set A ⊂ Ω is a point of density one for A [30, p. 129]. In view of the notion of
approximate differentiability, we decompose the set Ω in a different way than in
Section 2:

Ω = Rf ∪Zf ∪ Ef ,

where

Rf = {x ∈ Ω : f is approximately differentiable at x and Jf (x) 6= 0},
Zf = {x ∈ Ω : f is approximately differentiable at x and Jf (x) = 0},

Ef = {x ∈ Ω : f is not approximately differentiable at x}

The following version of chain rule was established in [7, 14, 15].
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Theorem 3.1. Let f : Ω ⊂ Rn onto−→ Ω′ ⊂ Rn be a bi-Sobolev map. Then f and
f−1 are approximately differentiable a.e. and there exists a Borel set B ⊂ Rf with
|Rf \B| = 0 such that f(B) ⊂ Rf−1 where

Rf−1 = {y ∈ Ω′ : f−1 is approximately differentiable at y and Jf−1(y) 6= 0} (3.4)

with |Rf−1 \ f(B)| = 0. Also we have

Df−1(y) =
(
Df(f−1(y))

)−1 ∀y ∈ f(B).

The proof in [15] relies on the fact that if g : Ω → Rn is a Lipschitz map and
Jg(x0) 6= 0 for a point x0 ∈ Ω, then

A being a set of density 1 at x0 implies g(A) is a set of density 1 at g(x0). (3.5)

So we are naturally induced to consider the following problem: how density
points of measurable sets are transformed under Sobolev or bi-Sobolev maps?

Actually a result of Buczolich [2] guarantees the preservation of density points
of Ω under any bi-Lipschitz map f : Ω ⊂ Rn onto−→ Ω′ ⊂ Rn.

Note that if f : Ω onto−→ Ω′ preserves density points, then f satisfies the Lusin
(N )-property.

Let us emphasize that for almost every x ∈ Ω the density of E at x is one if
and only if the density of f(E) at f(x) is one. Here we want to prove that, under
suitable assumptions on f , for all x ∈ Ω we have preservations of density points.

3.1. Density points for n = 1. We shall consider here Q-quasiminimizers, Q ≥ 1,
of the one-dimensional Dirichlet integral

u→
∫
|u′|pdx p > 1 (3.6)

whose definition goes back to Giaquinta-Giusti [12, 11, 20]). Let (a, b) be an open
interval in R and h ∈ W 1,p

loc ((a, b)); then h is a Q-quasiminimizer of (3.6) if for all
[c, d] ⊂ (a, b) ∫ d

c

|h′|pdx ≤ Q
∫ d

c

|k′|pdx (3.7)

whenever k ∈ h + W 1,p
0 ((c, d)). We say that h is a quasiminimizer of a Dirichlet

integral if there exists p > 1 such that h is a quasiminimizer of (3.6).
Note that if h : (a, b) → (a′, b′) satisfies the bi-Lipschitz condition, i.e. there

exists L > 1 such that
1
L
≤ |h′(x)| ≤ L (3.8)

for a.e. x ∈ (a, b), then for any p > 1 it satisfies (3.7) with Q = L2. Indeed, by
(3.8) we have

1
d− c

∫ d

c

(h′)2 ≤ L

d− c

∫ d

c

h′ ≤
(
L–
∫ d

c

h′
)
L–
∫ d

c

h′.

Hence

–
∫ d

c

(h′)2 ≤ L2
(

–
∫ d

c

h′
)2

.

In [4] the authors proved that quasiminimizers (which are far away from being bi-
Lipschitz mappings) are W 1,r-biSobolev maps (that is f, f−1 ∈ W 1,r for a certain
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r > 1) and preserve density points. We emphasize that this can be interpreted also
as a regularity result for one dimensional Q-quasiminima.

Theorem 3.2 ([4]). Let h ∈ W 1,p
loc ((a, b)), p > 1, be a non-constant Q-quasimini-

mizer of (3.6). Then there exists r > 1 such that h is a W 1,r-biSobolev map which
preserves density points together with its inverse.

3.2. Density points for n = 2. Now, let us consider a special class of bi-Sobolev
maps: the quasiconformal mappings. We will say that f : Ω onto−→ Ω′ is a K-
quasiconformal map, K ≥ 1, if f is a bi-Sobolev map such that

|Df(x)|2 ≤ KJf (x) (3.9)

for a.e. x ∈ Ω. Since f and f−1 satisfy the (N )-condition of Lusin, i.e. they map
sets of measure zero onto sets of measure zero (see [1], [15] ), then for any E ⊂ Ω
measurable, f(E) is measurable; hence for a.e. x ∈ Ω, x is a density point for E
if and only if f(x) is a density point for f(E). We remark that this holds for all
x ∈ Ω, according to a result by Gehring-Kelly [9].

Theorem 3.3 ([9]). If f : Ω onto−→ Ω′ is a K-quasiconformal map, then f and f−1

preserve density points.

This is a consequence of the following invariant form of the area distortion The-
orem: there is a constant C(K) such that for any K-quasiconformal map f , we
have

1
C(K)

( |E|
|Q|

)K
≤ |f(E)|
|f(Q)|

≤ C(K)
( |E|
|Q|

)1/K

(3.10)

for any cube Q ⊂ Ω and for any subset E ⊂ Q [1, Theorem 13.1.5)].

3.3. Density points for n ≥ 2. We say that a homeomorphism f : Ω ⊂ Rn onto−→
Ω′ ⊂ Rn satisfies the uniform area inequality if there exist constants C,α with
0 < α ≤ 1 ≤ C such that

|f(E)|
|f(B)|

≤ C
( |E|
|B|

)α
(3.11)

for any ball B ⊂ Ω and for any measurable set E ⊂ B.

Theorem 3.4. Let f : Ω onto−→ Ω′ be a continuous mapping satisfying the uniform
area inequality (3.11). If f is differentiable at x0 with Jf (x0) 6= 0 and A is a set of
density one at x0, then the density of f(A) at f(x0) is one.

Our aim is to give the chain rule formula (3.1) assuming only that f is an a.e.
approximately differentiable homeomorphism not necessarily of Sobolev class and
with no assumptions on f−1. In this sense the following result is a generalized
version of the inverse function Theorem.

Theorem 3.5 ([5]). Let f : Ω ⊂ Rn onto−→ Ω′ ⊂ Rn be a homeomorphism. If
f is approximately differentiable a.e. then there exists a Borel set B ⊂ Rf with
|B| = |Rf | such that f(B) ⊂ Rf−1 with |f(B)| = |Rf−1 | and

Df−1(f(x))Df(x) = Id Jf−1(f(x))Jf (x) = 1 for all x ∈ B.

Moreover, if |B| > 0 then |f(B)| > 0.

As a consequence, we have the following corollary.
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Corollary 3.6 ([5]). Let f : Ω ⊂ Rn onto−→ Ω′ ⊂ Rn be a homeomorphism. If f is
approximately differentiable a.e. then

|Rf−1 | = |f(Rf )|. (3.12)

Corollary 3.7 ([5]). Let f : Ω ⊂ Rn onto−→ Ω′ ⊂ Rn be a homeomorphism. If
f is approximately differentiable almost everywhere and f satisfies the Lusin (N )
condition, then f−1 is approximately differentiable almost everywhere.

In general, it is not true that f(Rf ) ⊂ Rf−1 , as it happens when f is differ-
entiable in the classical sense. D’Onofrio-Sbordone-Schiattarella [5] provided the
following example.

Example 3.8. Let n ≥ 2. There is a bi-Sobolev homeomorphism f : B1(0) onto−→
B1(0) with f ∈W 1,n (B1(0),Rn) such that f is not differentiable at 0, f is approx-
imately differentiable at 0, Jf (0) 6= 0 and f−1 is not approximately differentiable
at f(0) = 0.

We emphasize that the map in this example satisfies Lusin condition as it belongs
to W 1,n, and it does not preserve density points.
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