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NONHOMOGENEOUS SUBLINEAR FRACTIONAL
SCHRÖDINGER EQUATIONS

TERESA ISERNIA

Abstract. We study the existence, uniqueness and multiplicity for the sub-
linear fractional problem

(−∆)su + V (x)u + a(x)|u|p sgn(u) = f in RN ,

where s ∈ (0, 1), N > 2s, (−∆)s is the fractional Laplacian, p ∈ (0, 1), f ∈
L2(RN ) ∩ L

p+1
p (RN ), V : RN → R and a : RN → R are positive bounded

functions.

1. Introduction

In this article we consider the nonlinear fractional Schrödinger equation

(−∆)su+ V (x)u+ a(x)|u|p sgn(u) = f in RN

u ∈ Hs(RN ) ∩ Lp+1(RN )
(1.1)

where N > 2s, s ∈ (0, 1), p ∈ (0, 1), f ∈ L2(RN ) ∩ L(p+1)/p(RN ), V : RN → R and
a : RN → R are positive bounded functions. The nonlocal operator (−∆)s is the
fractional Laplacian which is defined as

(−∆)su(x) = CN,s P.V.
∫

RN

u(x)− u(y)
|x− y|N+2s

dy,

for any u : RN → R sufficiently smooth. The symbol P.V. stands for the Cauchy
principal value and CN,s is a dimensional constant depending on N and s; see [11].

In the previous decade a great attention has been devoted to the study of frac-
tional and nonlocal operators of elliptic type since these operators arise in a quite
natural way in many different contexts such as phase transition phenomena, mini-
mal surface, game theory, continuum mechanics, crystal dislocation, optimization,
water waves and so on. For more details the interested reader may consult [13, 22]
and references therein.

A basic motivation for the study of problem (1.1) is related to the search of
standing wave solutions of the type ψ(x, t) = u(x)e−ıct for the time dependent
fractional Schrödinger equation

ı
∂ψ

∂t
= (−∆)sψ + (V (x) + c)ψ − g(|ψ|) (1.2)
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where V : RN → R is an external potential and g is a suitable nonlinearity. The
fractional Schrödinger equation (1.2) was introduced by Laskin [20] and it is a
fundamental equation of fractional quantum mechanic in the study of particles on
stochastic fields modeled by Levy processes.

Very recently, the study of problems of fractional Schrödinger equations has at-
tracted the attention of many mathematicians. Indeed several existence and multi-
plicity results have been established, under different assumptions on the potential
V and nonlinear term, by using suitable variational methods; see [3, 4, 5, 6, 7,
8, 14, 15, 16, 17]. In particular way, a special attention has been devoted to the
study of fractional Schrödinger equations involving superlinear nonlinearities; see
for instance [1, 2, 23]. On the contrary, to our knowledge, only few results deal
with fractional problems with sublinear terms; see [18, 19, 25].

The aim of this article is to consider equation (1.1) under the following assump-
tions:

(H1) f ∈ L2(RN ) ∩ L
p+1
p (RN ), f ≥ 0 (f 6≡ 0);

(H2) V ∈ L∞(RN ) and lim|x|→∞ V (x) = v∞ ≥ 0;
(H3) a ∈ L∞(RN ), lim|x|→∞ a(x) = a∞ > 0 and there exists α > 0 such that

a(x) > α a.e. in RN .
Our main result is the following theorem.

Theorem 1.1. Assume that (H1)–(H3) hold. Then, there exists a positive constant
c, such that for every f > 0 a.e. in RN , ‖f‖L2(RN ) < c, problem (1.1) admits a
nonnegative solution u1 ∈ Hs(RN )∩Lp+1(RN ) that converges to zero in Hs(RN )∩
Lp+1(RN ) as ‖f‖L2(RN ) tends to zero. Moreover:

(i) if ∫∫
R2N

|ψ(x)− ψ(y)|2

|x− y|N+2s
dx dy +

∫
RN

V (x)ψ2dx ≥ 0 (1.3)

for every ψ ∈ C∞c (RN ), then the solution u1 is unique;
(ii) if ∫∫

R2N

|ψ(x)− ψ(y)|2

|x− y|N+2s
dx dy +

∫
RN

V (x)ψ2dx < 0 (1.4)

for some ψ ∈ C∞c (RN ), then there exists a second solution u2 6= u1.

We note that when s = 1 Theorem 1.1 can be seen as the fractional analogue of
[9, Theorem 1.1] in which the author studies existence, multiplicity and uniqueness
of the corresponding nonhomogeneous elliptic equation

−∆u+ V (x)u+ a(x)|u|p sgn(u) = f in RN .

We recall that in the classical setting, sublinear problems in the whole RN in
presence of a small perturbation have been widely investigated by many authors;
see [9, 10, 12, 24]. In this paper, motivated by [9, 10], we continue the study started
in [19] introducing the potentials a(x) and V (x). Borrowing some ideas from [9],
we prove different existence and multiplicity results for (1.1). Clearly, due to the
nonlocality of the fractional Laplacian (−∆)s, a more careful analysis is needed to
prove that the arguments developed in [9] also work in our setting.

The plan of this article is the following. In Section 2 we collect some useful
preliminary results which we will use along the paper. In Section 3 we prove the
existence of a first solution to (1.1) provided that f is sufficiently small in L2 sense.
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The last section is devoted to the proof of a second solution different from the
previous one.

2. Preliminary results

In this section we briefly recall some properties of the fractional Sobolev spaces,
and we introduce some notation that will be used.

For any s ∈ (0, 1), we define the homogeneous fractional Sobolev space

Ds,2(RN ) =
{
u ∈ L2∗s (RN ) :

∫∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy < +∞

}
which is the completion of C∞c (RN ) under the norm given by

‖u‖2Ds,2(RN ) =
∫∫

R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy.

The fractional Sobolev space Hs(RN ) can be described as

Hs(RN ) =
{
u ∈ L2(RN ) :

|u(x)− u(y)|
|x− y|N2 +s

∈ L2(RN × RN )
}
.

In this case the norm is defined as

‖u‖Hs(RN ) =
(∫∫

R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy +

∫
RN
|u|2dx

)1/2

.

For the readers’ convenience we recall the following embeddings.

Theorem 2.1 ([13]). Let s ∈ (0, 1) and N > 2s. Then there exists a sharp constant
S∗ = S(N, s) > 0 such that for any u ∈ Ds,2(RN ),

‖u‖2
L2∗s (RN )

≤ S∗
∫∫

R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy.

Moreover, Hs(RN ) is continuously embedded in Lq(RN ) for any q ∈ [2, 2∗s] and
compactly in Lqloc(RN ) for any q ∈ [1, 2∗s).

Let X := Hs(RN ) ∩ Lp+1(RN ) equipped with the norm

‖u‖2 :=
∫∫

R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy +

∫
RN
|u|p+1dx.

Since we are interested in weak solutions to (1.1), we look for critical points of the
functional I : X→ R defined by

I(u) =
1
2

∫∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy +

1
2

∫
RN

V (x)|u|2dx+
1

p+ 1

∫
RN

a(x)|u|p+1dx

−
∫

RN
fu dx.

It is standard to check that I is well-defined in X, I ∈ C1(X,R) and its differential
is given by

〈I ′(u), ϕ〉 =
∫∫

R2N

(u(x)− u(y))(ϕ(x)− ϕ(y))
|x− y|N+2s

dx dy +
∫

RN
V (x)uϕdx

+
∫

RN
a(x)|u|pϕdx−

∫
RN

fϕ dx

for any u, ϕ ∈ X.
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We begin by proving the following Lemma to obtain the existence of a local
minimum for I.

Lemma 2.2. Assume that (H1)–(H3) hold. Then, there exist positive constants
κ, ρ and L such that if ‖f‖L2(RN ) < L then I(u) ≥ κ whenever ‖u‖ = ρ.

Proof. Let u ∈ X. By using (H2), (H3), Hölder inequality and Young inequality we
obtain

I(u) ≥ 1
2

∫∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy −

‖V ‖L∞(RN )

2

∫
RN
|u|2dx

+
α

p+ 1

∫
RN
|u|p+1dx−

(∫
RN
|f |2dx

)1/2(∫
RN
|u|2dx

)1/2

≥ 1
2

∫∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy −

‖V ‖L∞(RN )

2

∫
RN
|u|2dx

+
α

p+ 1

∫
RN
|u|p+1dx− 1

2

∫
RN
|f |2dx− 1

2

∫
RN
|u|2dx

=
1
2

∫∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy − 1

2
(
‖V ‖L∞(RN ) + 1

) ∫
RN
|u|2dx

+
α

p+ 1

∫
RN
|u|p+1dx− 1

2

∫
RN
|f |2dx.

(2.1)

Now, by interpolation, there exists r = (2∗s−2)(p+1)
2(2∗s−(p+1)) ∈ (0, 1) such that∫

RN
|u|2dx ≤

(∫
RN
|u|p+1dx

) 2r
p+1
(∫

RN
|u|2

∗
sdx
) 2(1−r)

2∗s

≤ S1−r
∗

(∫
RN
|u|p+1dx

) 2r
p+1
(∫∫

R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy

)1−r

≤ α

(p+ 1)(‖V ‖L∞(RN ) + 1)

∫
RN
|u|p+1dx

+ C1

(∫∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy

) (1−r)(p+1)
p+1−2r

(2.2)

where we used Theorem 2.1, Hölder inequality and Young inequality. Therefore,
putting together (2.1) and (2.2), we obtain

I(u) ≥ 1
2

∫∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy − 1

2
α

p+ 1

∫
RN
|u|p+1dx

− C1

(∫∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy

) (1−r)(p+1)
p+1−2r

+
α

p+ 1

∫
RN
|u|p+1dx

− 1
2

∫
RN
|f |2dx

=
1
2

∫∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy +

1
2

α

p+ 1

∫
RN
|u|p+1dx

− C1

(∫∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy

) (1−r)(p+1)
p+1−2r

− 1
2

∫
RN
|f |2dx.
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Now, since 2(1−r)(p+1)
p+1−2r > 2, we can see that

1
2

∫∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy − C1

(∫∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy

) (1−r)(p+1)
p+1−2r

≥ 1
4

∫∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy

for
∫∫

R2N
|u(x)−u(y)|2
|x−y|N+2s dx dy ≤ β, with β sufficiently small.

Hence, for
∫∫

R2N
|u(x)−u(y)|2
|x−y|N+2s dx dy ≤ β and ‖u‖Lp+1(RN ) ≤ 1, by using the fact

that for any x ≥ 0 and y ∈ [0, 1] it holds (x+ y)2 ≤ 2x2 + 2yp+1, we obtain

I(u) ≥ 1
4

∫∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy +

α

2(p+ 1)

∫
RN
|u|p+1dx

− 1
2

∫
RN
|f |2dx

≥ min
{1

4
,

α

2(p+ 1)
}(∫∫

R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy −

∫
RN
|u|p+1dx

)
− 1

2

∫
RN
|f |2dx

≥ C2‖u‖2 −
1
2
‖f‖2L2(RN ).

(2.3)

Taking ρ = min{β, 1} and ‖f‖2L2(RN ) = C2ρ
2, then for ‖u‖ = ρ we obtain I(u) ≥

κ := 1
2C2ρ

2. �

Let us define
m := inf

u∈Bρ
I(u), (2.4)

where Bρ = {u ∈ X : ‖u‖ < ρ} and ρ is defined in Lemma 2.2.

Lemma 2.3. Under assumptions (H1)–(H3) it holds −∞ < m < 0.

Proof. In view of (H1) there exists ψ ∈ X such that
∫

RN fψ dx > 0. Then we have

I(tψ) =
t2

2

∫∫
R2N

|ψ(x)− ψ(y)|2

|x− y|N+2s
dx dy +

t2

2

∫
RN

V (x)|ψ|2dx

+
tp+1

p+ 1

∫
RN

a(x)|ψ|p+1dx−
∫

RN
fψ dx < 0

for t sufficiently small. As a consequence m < 0. It is clear that m > −∞ in view
of (2.3). �

3. Existence of a first solution

In this section we study of the existence and uniqueness of solutions to (1.1).

Theorem 3.1. Assume that (H1)–(H3) hold. Then there exists u1 ∈ X which is a
nonnegative solution to (1.1). Moreover u1 converges to zero in X as ‖f‖L2(RN ) →
0.
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Proof. Let {un} ⊂ X be a minimizing sequence of (2.4). Since {un} is bounded in
X, we may assume, up to a subsequence, that

un ⇀ u1 in X,

un → u1 in Lqloc(RN ),∀q ∈ [1, 2∗s),

un → u1 a.e. in RN .

Our aim is to prove that un → u1 in X. Set vn = un − u1. Let us compute I(un):

I(un) = I(vn + u1)

=
1
2

∫∫
R2N

|vn(x)− vn(y)|2

|x− y|N+2s
dx dy +

1
2

∫∫
R2N

|u1(x)− u1(y)|2

|x− y|n+2s
dx dy

+
∫∫

R2N

(vn(x)− vn(y))(u1(x)− u1(y))
|x− y|N+2s

dx dy +
1
2

∫
RN

V (x)|vn|2dx

+
1
2

∫
RN

V (x)|u1|2dx+
∫

RN
V (x)vnu1dx−

∫
RN

fvndx−
∫

RN
fu1 dx

+
1

p+ 1

∫
RN

a(x)(|un|p+1 − (|u1|p+1 + |vn|p+1))dx

+
1

p+ 1

∫
RN

a(x)|u1|p+1dx+
1

p+ 1

∫
RN

a(x)|vn|p+1dx

= I(u1) +
1
2

∫∫
R2N

|vn(x)− vn(y)|2

|x− y|N+2s
dx dy +

1
2

∫
RN

V (x)|vn|2dx

+
1

p+ 1

∫
RN

a(x)|vn|p+1dx−
∫

RN
fvndx

+
∫∫

R2N

(vn(x)− vn(y))(u1(x)− u1(y))
|x− y|N+2s

dx dy +
∫

RN
V (x)vnu1dx

+
1

p+ 1

∫
RN

a(x)(|un|p+1 − (|u1|p+1 + |vn|p+1))dx.

(3.1)
From the fact that vn ⇀ 0 in X we infer that∫∫

R2N

(vn(x)− vn(y))(u1(x)− u1(y))
|x− y|N+2s

dx dy → 0∫
RN

fvndx→ 0 and
∫

RN
V (x)vnu1dx→ 0.

(3.2)

Moreover, taking into account that

−c|x|p|y| ≤ |x+ y|p+1 − (|x|p+1 + |y|p+1) ≤ c|x|p|y|

holds for any x, y ∈ R with c > 0 (independent of x and y), we obtain∣∣∣∣ 1
p+ 1

∫
RN

a(x)(|un|p+1 − (|u1|p+1 + |vn|p+1))dx
∣∣∣∣

≤ c

p+ 1

∫
RN

a(x)|vn||u1|p+1dx→ 0.
(3.3)
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Let us note that

ρ2 >

∫∫
R2N

|un(x)− un(y)|2

|x− y|N+2s
dx dy

=
∫∫

R2N

|vn(x)− vn(y)|2

|x− y|N+2s
dx dy +

∫∫
R2N

|u1(x)− u1(y)|2

|x− y|N+2s
dx dy

+ 2
∫∫

R2N

(vn(x)− vn(y))(u1(x)− u1(y))
|x− y|N+2s

dx dy .

(3.4)

Using (3.2) we can see that∫∫
R2N

|vn(x)− vn(y)|2

|x− y|n+2s
dx dy ≤ ρ2

for n large enough. Then, taking the limit in (3.1) and by using (3.2) and (3.3), we
obtain

m = I(u1) + lim
n→∞

{1
2

∫∫
R2N

|vn(x)− vn(y)|2

|x− y|N+2s
dx dy +

1
2

∫
RN

V (x)|vn|2dx

+
1

p+ 1

∫
RN

a(x)|vn|p+1dx
}

≥ I(u1) + lim
n→∞

{1
4

∫∫
R2N

|vn(x)− vn(y)|2

|x− y|N+2s
dx dy

+
α

2(p+ 1)

∫
RN

a(x)|vn|p+1dx
}
≥ m

(3.5)

where in the last inequality we have estimated as in Lemma 2.2. Then, (3.4) and
(3.5) yield vn → 0 in X, 0 > m = I(u1), u1 ∈ Bρ and I ′(u1) = 0. Thus u1 is a
weak solution to (1.1).

To prove that u1 is a nonnegative solution to (1.1), note that m ≤ I(|un|) ≤
I(un), thus I(|un|)→ m, and we can choose un ≥ 0. As before, up to a subsequence
un → u1 a.e. in RN , un → u1 in X and u1 is a nonnegative solution to (1.1).

Let {fn} ⊂ L2(RN ) be such that ‖fn‖L2(RN ) → 0 and let ufn be a solution to
(1.1). Now we aim to prove that ufn → 0 in X.

Since ufn is a solution to (1.1), we obtain

〈I ′(ufn), ufn〉 = 0,

that is,∫∫
R2N

|ufn(x)− ufn(y)|2

|x− y|N+2s
dx dy +

∫
RN

V (x)|ufn |2dx+
∫

RN
a(x)|ufn |p+1dx

=
∫

RN
fnufndx.

(3.6)

Recalling that I(ufn) < 0, by using (3.6) and Hölder inequality we deduce

0 > I(ufn)

=
1
2

(
−
∫

RN
a(x)|ufn |p+1dx+

∫
RN

fnufndx
)

+
1

p+ 1

∫
RN

a(x)|ufn |p+1dx

−
∫

RN
fnufndx
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=
1− p

2(p+ 1)

∫
RN

a(x)|ufn |p+1dx− 1
2

∫
RN

fnufndx

≥ 1− p
2(p+ 1)

∫
RN

a(x)|ufn |p+1dx− 1
2

∫
RN

fnufndx

≥ (1− p)α
2(p+ 1)

‖ufn‖
p+1
Lp+1(RN )

− 1
2
‖fn‖L2(RN )‖ufn‖L2(RN ).

Observing that p ∈ (0, 1) and α > 0, we obtain

0 <
(1− p)α
2(p+ 1)

‖ufn‖
p+1
Lp+1(RN )

≤ 1
2
‖fn‖L2(RN )‖ufn‖L2(RN )

≤ c‖fn‖L2(RN ) → 0,

thus ufn → 0 in Lp+1(RN ).
Now, by using (3.6), Hölder inequality and Sobolev inequality, there exists r ∈

(0, 1) (defined in Lemma 2.2) such that∫∫
R2N

|ufn(x)− ufn(y)|2

|x− y|N+2s
dx dy

= −
∫

RN
V (x)|ufn |2dx−

∫
RN

a(x)|ufn |p+1dx+
∫

RN
fnufndx

≤ ‖V ‖L∞(RN )‖ufn‖2L2(RN ) + ‖a‖L∞(RN )‖ufn‖
p+1
Lp+1(RN )

+ ‖fn‖L2(RN )‖ufn‖L2(RN )

≤ ‖V ‖L∞(RN )

(
‖ufn‖rLp+1(RN )‖ufn‖

1−r
L2∗s (RN )

)
+ ‖a‖L∞(RN )‖ufn‖

p+1
Lp+1(RN )

+ ‖fn‖L2(RN )‖ufn‖L2(RN )

≤ C‖V ‖L∞(RN )‖ufn‖rLp+1(RN ) + ‖a‖L∞(RN )‖ufn‖
p+1
Lp+1(RN )

+ ‖fn‖L2(RN )‖ufn‖L2(RN ) → 0.

Combining this with ufn → 0 in Lp+1(RN ), we deduce the thesis. �

Now we recall the notion of supersolution and subsolution to (1.1):

Definition 3.2. We say that u ∈ X is a weak supersolution to (1.1) if∫∫
R2N

(u(x)− u(y))(ϕ(x)− ϕ(y))
|x− y|N+2s

dx dy +
∫

RN
V (x)uϕdx

+
∫

RN
a(x)|u|p sgn(u)ϕdx

≤
∫

RN
fϕ dx

(3.7)

for any ϕ ∈ X such that ϕ ≥ 0 a.e. in RN .
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Definition 3.3. We say that u ∈ X is a weak subsolution to (1.1) if∫∫
R2N

(u(x)− u(y))(ϕ(x)− ϕ(y))
|x− y|N+2s

dx dy +
∫

RN
V (x)uϕdx

+
∫

RN
a(x)|u|p sgn(u)ϕdx

≤
∫

RN
fϕ dx

(3.8)

for any ϕ ∈ X such that ϕ ≥ 0 a.e. in RN .

Theorem 3.4. Assume that (H1)–(H3) and (1.3) hold. Let u ∈ X be a subsolution
to (1.1) and u ∈ X be a supersolution to (1.1). Then u ≤ u a.e. in RN .

Proof. From (3.7) and (3.8) it follows that∫∫
R2N

((u− u)(x)− (u− u)(y))(ϕ(x)− ϕ(y))
|x− y|N+2s

dx dy +
∫

RN
V (x)(u− u)ϕdx

+
∫

RN
a(x)(|u|p sgn(u)− |u|p sgn(u))ϕdx ≤ 0.

(3.9)
Assume u 6≤ u and let ϕ := (u− u)+ in (3.9), then we have

0 ≤
∫∫

R2N

|((u− u)(x)− (u− u)(y))+|2

|x− y|N+2s
dx dy +

∫
RN

V (x)|(u− u)+|2dx

≤ −
∫

RN
a(x)(|u|p sgn(u)− |u|p sgn(u))(u− u)+ < 0,

and this gives a contradiction. Thus we have u ≤ u a.e. in RN . �

At this point we are ready to prove that the problem (1.1) admits a unique weak
solution.

Theorem 3.5. Under assumptions (H1)–(H3) and (1.3), problem (1.1) admits a
unique solution.

Proof. Let u1 and u2 be two solutions to (1.1). Then by Theorem 3.4 follows that
u1 ≤ u2 and u2 ≤ u1, that is u1 = u2 a.e. in RN . �

4. Existence of a second solution

In this section we show the existence of a second solution to (1.1) under assump-
tion (1.4).

Lemma 4.1. Under assumption (1.4), there exists ϕ0 ∈ X\Bρ such that I(ϕ0) < 0.

Proof. Let ϕ ∈ C∞c (RN ) satisfying (1.4). Then, as t→ +∞

I(tϕ) =
t2

2

∫∫
R2N

|ϕ(x)− ϕ(y)|2

|x− y|N+2s
dx dy +

t2

2

∫
RN

V (x)|ϕ|2dx

+
tp+1

p+ 1

∫
RN

a(x)|ϕ|p+1dx−
∫

RN
fϕ dx→ −∞.

Thus, choosing t0 sufficiently large such that ‖t0ϕ‖ > ρ and I(t0ϕ) < 0, we can
take ϕ0 = t0ϕ to complete the proof. �
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Let us consider the problem

M = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) (4.1)

where
Γ = {γ ∈ C([0, 1],X) : γ(0) = 0, γ(1) = ϕ0}

with ϕ0 as in Lemma 4.1.

Lemma 4.2. Under assumption (H1)–(H3) and (1.4) it results M > 0.

Proof. Let γ ∈ Γ, then γ(0) = 0 ∈ Bρ and γ(1) = ϕ0 ∈ X \ Bρ. Then, there exists
τ ∈ (0, 1) such that ‖γ(τ)‖ = ρ, and applying Lemma 2.2 we have I(γ(τ)) ≥ κ > 0,
and thus M > 0. �

By applying Ekeland’s variational principle to (4.1) there exists {un} ⊂ X such
that I(un)→M and I ′(un)→ 0 in X′. In this case {un} is called a (PS) sequence
of the functional I at level M .

Theorem 4.3. Under assumptions (H1)–(H3) and (1.4), {un} is bounded in X.

Proof. Firstly note that it is possible to find a positive constant b such that, for n
large,

|〈I ′(un), un〉| ≤ ‖un‖ and |I(un)| < b.

By using Hölder inequality and Young inequality we can infer

b+
1
2
‖un‖

≥ I(un)− 1
2
〈I ′(un), un〉

≥ α
( 1
p+ 1

− 1
2

)∫
RN
|un|p+1dx− 1

2

(∫
RN
|f |

p+1
p dx

) p
p+1
(∫

RN
|un|p+1dx

) 1
p+1

≥ α

2

( 1
p+ 1

− 1
2

)∫
RN
|un|p+1dx− 1

2

∫
RN
|f |

p+1
p dx;

therefore
α

2

( 1
p+ 1

− 1
2

)∫
RN
|un|p+1dx− 1

2

(∫
RN
|un|p+1dx

) 1
p+1

≤ C +
1
2

∫∫
R2N

|un(x)− un(y)|2

|x− y|N+2s
dx dy.

Let β ∈ (1, p + 1) and assume by contradiction that {un} is not bounded in
Lp+1(RN ). Then, for n large it results(∫

RN
|un|p+1dx

) β
p+1

< C +
1
2

∫∫
R2N

|un(x)− un(y)|2

|x− y|N+2s
dx dy. (4.2)

By using (4.2), Hölder and Sobolev inequality, there exists r ∈ (0, 1) such that∫
RN
|un|2dx ≤

(∫
RN
|un|p+1dx

) 2(1−r)
p+1

(∫
RN
|un|2

∗
sdx
) 2r

2∗s

≤ Sr∗
(∫

RN
|un|p+1dx

) 2(1−r)
p+1

(∫∫
R2N

|un(x)− un(y)|2

|x− y|N+2s
dx dy

)r
≤ C1

(∫∫
R2N

|un(x)− un(y)|2

|x− y|N+2s
dx dy

) 2(1−r)
β +r
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+ C2

(∫∫
R2N

|un(x)− un(y)|2

|x− y|N+2s
dx dy

)r
.

Now,

b > I(un)

≥ 1
2

∫∫
R2N

|un(x)− un(y)|2

|x− y|N+2s
dx dy −

‖V ‖L∞(RN )

2

∫
RN
|un|2dx

+
α

p+ 1

∫
RN
|un|p+1dx−

(∫
RN
|f |2dx

)1/2(∫
RN
|un|2dx

)1/2

≥ 1
2

∫∫
R2N

|un(x)− un(y)|2

|x− y|N+2s
dx dy −

‖V ‖L∞(RN ) + 1
2

∫
RN
|un|2dx

+
α

p+ 1

∫
RN
|un|p+1dx− 1

2

∫
RN
|f |2dx

≥ 1
2

∫∫
R2N

|un(x)− un(y)|2

|x− y|N+2s
dx dy +

α

p+ 1

∫
RN
|un|p+1dx− 1

2

∫
RN
|f |2dx

− C3

(∫∫
R2N

|un(x)− un(y)|2

|x− y|N+2s
dx dy

) 2(1−r)
β +r

− C4

(∫∫
R2N

|un(x)− un(y)|2

|x− y|N+2s
dx dy

)r
≥ 1

2

∫∫
R2N

|un(x)− un(y)|2

|x− y|N+2s
dx dy +

α

p+ 1

∫
RN
|un|p+1dx− 1

2

∫
RN
|f |2dx

− C3

(∫∫
R2N

|un(x)− un(y)|2

|x− y|N+2s
dx dy

) 2(1−r)
β +r

− C4

(∫∫
R2N

|un(x)− un(y)|2

|x− y|N+2s
dx dy

)r
.

Note that since r ∈ (0, 1), β ∈ (1, p+ 1) and p ∈ (0, 1) we can infer that

0 <
2(1− r)

β
+ r < 2,

from which it follows that {un} is bounded in Hs(RN ), in contrast with (4.2). Thus,
{un} is bounded in Lp+1(RN ). From this we deduce that∫

RN
|un|2dx ≤

(∫
RN
|un|p+1dx

) 2(1−r)
p+1

(∫
RN
|un|2

∗
sdx
) 2r

2∗s

≤ Sr∗
(∫

RN
|un|p+1dx

) 2(1−r)
p+1

(∫∫
R2N

|un(x)− un(y)|2

|x− y|N+2s
dx dy

)r
≤ C

(∫∫
R2N

|un(x)− un(y)|2

|x− y|N+2s
dx dy

)r
.

(4.3)

Therefore, by (4.3) we obtain

b > I(un)

≥ 1
2

∫∫
R2N

|un(x)− un(y)|2

|x− y|N+2s
dx dy − C

∫
RN
|un|2dx+

α

p+ 1

∫
RN
|un|p+1dx
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− 1
2

∫
RN
|f |2dx

≥ 1
2

∫∫
R2N

|un(x)− un(y)|2

|x− y|N+2s
dx dy − C

(∫∫
R2N

|un(x)− un(y)|2

|x− y|N+2s
dx dy

)r
− 1

2

∫
RN
|f |2dx.

This implies that {un} is bounded in Hs(RN ). �

Theorem 4.4. Under assumptions (H1)–(H3) and (1.4), problem (1.1) admits a
second solution u2 ∈ X.

Proof. By Theorem 4.3 {un} ⊂ X is bounded, thus
un ⇀ u2 in X,

un → u2 in Lqloc(RN ), ∀q ∈ [1, 2∗s),

un → u2 a. e. in RN .
(4.4)

Let ϕ ∈ C∞c (RN ), then we can infer that

lim
n→∞

{∫∫
R2N

(un(x)− un(y))(ϕ(x)− ϕ(y))
|x− y|N+2s

dx dy +
∫

RN
V (x)unϕdx

}
=
∫∫

R2N

(u2(x)− u2(y))(ϕ(x)− ϕ(y))
|x− y|N+2s

dx dy +
∫

RN
V (x)u2ϕdx.

From un → u2 in Lp+1(suppϕ), it follows that there exist a subsequence still
denoted by {un} and a function w ∈ Lp+1(suppϕ) such that |un| ≤ |w| and

|a||un|p|ϕ| ≤ ‖a‖L∞(RN )|w|p|ϕ| ∈ L1(RN ),

a|un|p sgn(un)ϕ→ a|u2|p sgn(u2)ϕ a.e. in RN .

By using the Dominated convergence theorem we obtain

lim
n→∞

∫
RN

a(x)|un|p sgn(un)ϕdx =
∫

RN
a(x)|u2|p sgn(u2)ϕdx.

Therefore, for every ϕ ∈ C∞c (RN )

〈I ′(un), ϕ〉 → 〈I ′(u2), ϕ〉. (4.5)

Since {un} is a (PS) sequence for I on X, we have 〈I ′(un), ϕ〉 → 0, that combined
with (4.5) gives 〈I ′(u2), ϕ〉=0, hence u2 is a weak solution to (1.1).

Now we prove that u2 6= u1, where u1 is the first solution to (1.1). Since un ⇀ u2

in X, then up to a subsequence ‖u2‖ ≤ limn→∞ ‖un‖. We distinguish two cases:
Case 1: compactness. We show that un → u2 in X.
By Theorem (4.3) {un} is bounded in X, so up to a subsequence we can say that

lim
n→∞

[ ∫∫
R2N

|un(x)− un(y)|2

|x− y|N+2s
dx dy +

∫
RN
|un|p+1dx

]
=
∫∫

R2N

|u2(x)− u2(y)|2

|x− y|N+2s
dx dy +

∫
RN
|u2|p+1dx

(4.6)

from which it follows that

lim sup
n→∞

∫
RN
|un|p+1dx =

∫∫
R2N

|u2(x)− u2(y)|2

|x− y|N+2s
dx dy +

∫
RN
|u2|p+1dx
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− lim sup
n→∞

∫∫
R2N

|un(x)− un(y)|2

|x− y|N+2s
dx dy

≤
∫∫

R2N

|u2(x)− u2(y)|2

|x− y|N+2s
dx dy +

∫
RN
|u2|p+1dx

− lim inf
n→∞

∫∫
R2N

|un(x)− un(y)|2

|x− y|N+2s
dx dy.

We also know that∫∫
R2N

|u2(x)− u2(y)|2

|x− y|N+2s
dx dy ≤ lim inf

n→∞

∫∫
R2N

|un(x)− un(y)|2

|x− y|N+2s
dx dy,∫

RN
|u2|p+1dx ≤ lim inf

n→∞

∫
RN
|un|p+1dx;

therefore∫
RN
|u2|p+1dx ≤ lim inf

n→∞

∫
RN
|un|p+1dx ≤ lim sup

n→∞

∫
RN
|un|p+1dx ≤

∫
RN
|u2|p+1dx

so we deduce that
un → u2 in Lp+1(RN ). (4.7)

Putting together (4.6) and (4.7) we obtain

lim
n→∞

∫∫
R2N

|un(x)− un(y)|2

|x− y|N+2s
dx dy =

∫∫
R2N

|u2(x)− u2(y)|2

|x− y|N+2s
dx dy.

Now, ∫∫
R2N

|(un − u2)(x)− (un − u2)(y)|2

|x− y|N+2s
dx dy

=
∫∫

R2N

|[un(x)− un(y)]− [u2(x)− u2(y)]|2

|x− y|N+2s
dx dy

=
∫∫

R2N

|un(x)− un(y)|2

|x− y|N+2s
dx dy +

∫∫
R2N

|u2(x)− u2(y)|2

|x− y|N+2s
dx dy

− 2
∫∫

R2N

[un(x)− un(y)][u2(x)− u2(y)]
|x− y|N+2s

dx dy

(4.8)

and by using (4.4) we obtain

lim
n→∞

∫∫
R2N

[un(x)− un(y)][u2(x)− u2(y)]
|x− y|N+2s

dx dy

=
∫∫

R2N

|u2(x)− u2(y)|2

|x− y|N+2s
dx dy.

(4.9)

Combining (4.8) and (4.9) we have

lim
n→∞

∫∫
R2N

|(un − u2)(x)− (un − u2)(y)|2

|x− y|N+2s
dx dy = 0. (4.10)

By (4.7) and (4.10) follows that un → u2 in X.
Case 2: dichotomy. Assume that ‖u2‖ < limn→∞ ‖un‖. Let vn(x) = un(x) −
u2(x) be such that vn ⇀ 0 in X.
Step 1: We show that there exists a sequence {yn} ⊂ RN such that

vn(·+ yn) ⇀ v1 6= 0 in X. (4.11)
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Assume by contradiction that for any R > 0,

lim
n→∞

sup
y∈RN

∫
BR(y)

|vn|p+1dx = 0.

By using a variant of the Lions compactness principle (see [15, 23]) we can infer

vn → 0 in Lq(RN ) for all q ∈ [p+ 1, 2∗s). (4.12)

Taking into account that un(x) = vn(x) + u2(x), we obtain

〈I ′(un), un〉

=
∫∫

R2N

|vn(x)− vn(y)|2

|x− y|N+2s
dx dy +

∫∫
R2N

|u2(x)− u2(y)|2

|x− y|N+2s
dx dy

+ 2
∫∫

R2N

(vn(x)− vn(y))(u2(x)− u2(y))
|x− y|N+2s

dx dy +
∫

RN
V (x)|vn|2dx

+
∫

RN
V (x)|u2|2dx+ 2

∫
RN

V (x)vnu2dx+
∫

RN
a(x)(|un|p+1 − |u2|p+1) dx

+
∫

RN
a(x)|u2|p+1dx−

∫
RN

fvndx−
∫

RN
f2dx

= 〈I ′(u2), u2〉+
∫∫

R2N

|vn(x)− vn(y)|2

|x− y|N+2s
dx dy +

∫
RN

V (x)|vn|2dx

+
∫

RN
a(x)

(
|un|p+1 − (|u2|p+1 + |vn|p+1)

)
dx+

∫
RN

a(x)|vn|p+1dx

−
∫

RN
fvndx+ 2

∫∫
R2N

(vn(x)− vn(y))(u2(x)− u2(y))
|x− y|N+2s

dx dy

+ 2
∫

RN
V (x)vnu2dx.

Putting together this and (4.12) we infer

0 = lim
n→∞

〈I ′(un), un〉

= 〈I ′(u2), u2〉+ lim
n→∞

∫∫
R2N

|vn(x)− vn(y)|2

|x− y|N+2s
dx dy +

∫
RN

a(x)|vn|p+1dx.

Hence vn → 0 in X, and this gives a contradiction.
Step 2: Now we prove that {yn} is not a bounded sequence. Assume by contradic-
tion that {yn} is bounded. Then, up to a subsequence yn → y. Let ϕ ∈ C∞c (RN ).
From the facts that yn → y and vn ⇀ 0 in X it follows that

lim
n→∞

∫
RN

ϕ(x− yn)vn(x) dx = 0. (4.13)

By using (4.11) we can infer

lim
n→∞

∫
RN

ϕ(x− yn)vn(x) dx = lim
n→∞

∫
RN

ϕ(x)vn(x+ yn) dx

=
∫

RN
ϕ(x)v1(x) dx.

(4.14)

Putting together (4.13) and (4.14) we deduce that∫
RN

ϕ(x)v1(x) dx = 0 ∀ϕ ∈ C∞c (RN ),
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that implies that v1(x) = 0 a.e. in RN , and this is a contradiction because of (4.11).
Thus {yn} is not bounded.

Step 3: v1 is a solution to (4.21). Since {yn} is not bounded,

un(x+ yn) ⇀ v1 in X. (4.15)

Now, let ϕ ∈ C∞c (RN ). Since {un} is a (PS) sequence for I, we have 〈I ′(un), ϕ(· −
yn)〉 → 0. On the other hand we have

〈I ′(un), ϕ(· − yn)〉

=
∫∫

R2N

(un(x)− un(y))(ϕ(x− yn)− ϕ(y − yn))
|x− y|N+2s

dx dy

+
∫

RN
V (x)un(x)ϕ(x− yn) dx+

∫
RN

a(x)|un(x)|p sgn(un(x))ϕ(x− yn) dx

−
∫

RN
f(x)ϕ(x− yn) dx

=
∫∫

R2N

(un(x+ yn)− un(y + yn))(ϕ(x)− ϕ(y))
|x− y|N+2s

dx dy

+
∫

RN
V (x+ yn)un(x+ yn)ϕ(x) dx

+
∫

RN
a(x+ yn)|un(x+ yn)|p sgn(un(x+ yn))ϕ(x) dx

−
∫

RN
f(x)ϕ(x− yn) dx.

(4.16)
Since |yn| → +∞, f ∈ L2(RN ) and ϕ ∈ C∞c (RN ), we have∫

RN
f(x)ϕ(x− yn) dx→ 0. (4.17)

Moreover, by (4.15) we have

lim
n→∞

∫∫
R2N

(un(x+ yn)− un(y + yn))(ϕ(x)− ϕ(y))
|x− y|N+2s

dx dy

=
∫∫

R2N

(v1(x)− v1(y))(ϕ(x)− ϕ(y))
|x− y|N+2s

dx dy.

(4.18)

Since un(· + yn) → v1 in L2(suppϕ), there exists a subsequence denoted again by
un(· + yn) and a function h ∈ L2(suppϕ) such that |un(· + yn)| ≤ |h|. Then, by
(H2) it follows that

V (x+ yn)un(x+ yn)ϕ→ v∞v1ϕ a.e. in RN

|V (x+ yn)un(x+ yn)ϕ| ≤ ‖V ‖L∞(RN )|h||ϕ| ∈ L1(RN ).

Thus, by the Dominated Convergence Theorem we obtain∫
RN

V (x+ yn)un(x+ yn)ϕ(x) dx→ v∞

∫
RN

v1ϕdx. (4.19)

Similarly, since un(· + yn) → v1 in Lp+1(suppϕ), there exist a subsequence
denoted again by un(·+yn) and a function h̃ ∈ Lp+1(suppϕ) such that |un(·+yn)| ≤
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|h̃|. Then, by (H3) we infer that

a(x+ yn)|un(x+ yn)|p sgn(un(x+ yn))ϕ→ a∞|v1|p sgn(v1)ϕ a.e. in RN ,

|a(x+ yn)|un(x+ yn)|pϕ| ≤ ‖a‖L∞(RN )|h̃|p|ϕ| ∈ L1(RN).

Thus, by the Dominated Convergence Theorem we obtain

lim
n→∞

∫
RN

a(x+ yn)|un(x+ yn)|p sgn(un(x+ yn))ϕ(x) dx

= a∞

∫
RN
|v1|p sgn(v1)ϕdx.

(4.20)

Putting together (4.16), (4.17), (4.18), (4.19) and (4.20) we obtain∫∫
R2N

(v1(x)− v1(y))(ϕ(x)− ϕ(y))
|x− y|N+2s

dx dy + v∞

∫
RN

v1ϕdx

+ a∞

∫
RN
|v1|p(v1)ϕdx = 0,

that is v1 is a weak solution to

(−∆)su+ v∞u+ a∞|u|p sgn(u) = 0 in RN

u ∈ Hs(RN ) ∩ Lp+1(RN )
(4.21)

But this problem only possesses the trivial solution, thus v1 = 0 and this is an
absurd in view of (4.11).

From Steps 1, 2 and 3 we conclude that the dichotomy does not occur. Then
I(un)→M = I(u2) > 0(> I(u1)) and u2 6= u1. �
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