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LOWER BOUNDS ON THE FUNDAMENTAL SPECTRAL GAP

WITH ROBIN BOUNDARY CONDITIONS

MOHAMMED AHRAMI, ZAKARIA EL ALLALI

Abstract. This article investigates the gap between the first two eigenvalues

of Schrödinger operators on an interval subjected to the Robin and Neumann
boundary conditions for a class of linear convex potentials. Furthermore, when

the potential is constant the gap is minimized. Meanwhile, we establish a link

between the first eigenvalues and the real roots of the first derivative of the
Airy functions Ai′ and Bi′.

1. Introduction

We consider the low-lying eigenvalues λ of a self-adjoint Schrödinger problem on
an interval

Hu := −d
2u

dx2
+ q(x)u = λu, x ∈ [0, π]. (1.1)

The restriction to an interval of length π is merely a convenient normalization.
General bounds on the gap between the first two eigenvalues Γ := λ2 − λ1 of

Schrödinger operators have gained considerable attention during the last decades.
The quantity Γ has various physical and mathematical applications. For exam-
ple, in quantum mechanics, the fundamental gap represents the energy needed to
achieve the first excited state from the ground state of the particle described by the
considered Schrödinger operators, the so called excitation energy. The fundamen-
tal gap is also of importance in quantum field theory and statistical mechanics. To
give an example, Van den Berg in [8] applied gap results of the Laplace operator
to provide sufficient conditions for a free boson gas to fill the ground state alone
under the thermodynamic limit macroscopically.

In numerical mathematics, the fundamental gap is used to determine the conver-
gence rate of numerical computation methods, such as discretization of the finite
element method, which involves the approximation of differential operators by ma-
trices. In this setting, the difference between the first two eigenvalues represents
the ability to determine the first eigenvalue and eigenvector. Probabilistically, the
fundamental gap controls the asymptotic exponential rate of convergence to equi-
librium for the associated Markovian semigroup of the considered Schrödinger op-
erator, and its related to the log-Sobolev constant (see [7, 20]).
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or the problem (1.1) with Dirichlet boundary conditions, Ashbaugh and Ben-
guria [5], established that the optimal lower bound for Γ for symmetric single-well
potentials is reached if and only if q is constant on (0, π). Lavine [17] investigated
the class of convex potentials on [0, π] and demonstrated with either Dirichlet or
Neumann boundary conditions, that the constant potential function minimizes Γ.
Later Horváth [12] returned to the problem of single-well potentials using Lavine’s
methods, but without making any symmetry assumptions, and proved that the
constant potential was optimal with some restrictions on the transition point, and
in 2015 Yu and Yang [23] extended Horváth’s result by allowing other transition
points and both Dirichlet and Neumann boundary conditions. Recently Harrell
and El Allali [9] used direct optimization methods to prove sharp lower bounds for
Γ with general single-well potential q(x), without any restriction on the transition
point a ∈ [0, π] and found similar results in the case where the potential is convex.
Additionally, Harrell and El Allali analyzed the case where q = q0 + q1, where q0
is a fixed background potential energy, and q1 is assumed either single-well or con-
vex. In contrast to the previous studies of single-well potentials, which restrict the
transition point in some way, the minimizing potentials they found are in general
step functions and not necessarily constant unless additional criteria are imposed.
In the classic case where p = 1 they retrieved Lavine’s with different arguments
the result of Lavine that Γ is uniquely minimized among convex q by the constant
and in the case of single-well potentials, with no restrictions on the position of the
minimum, they proved the innovative lower bound Γ ≥ 2.04575 . . .

In higher dimensions, the first lower bound on the spectral gap was made by
Payne and Weinberger [19] who proved the spectral gap of the Neumann Laplacian

on a bounded domain Ω is bounded from below by π2

D2 , where D is the diameter of
Ω. Later, Andrews and Clutterbuck [3] showed that Dirichlet Schrödinger operators
on a convex domain with a convex potential have a fundamental spectral gap that

is always greater than 3π2

D2 . Smits [20] investigated the topic of the lower bounds
on the fundamental gap under Robin boundary conditions, which lies between the
Dirichlet and Neumann cases. There is an extensive literature on extending these
gap results for Neumann and Dirichlet boundary conditions to the case of Robin
boundary conditions, see for example Laugesen [16], Andrews, Clutterbuck, and
Hauer [2], Chapter 4 (by Bucur, Freitas, and Kennedy) of the book [10], Kielty
[15]. For more information about the history of the fundamental gap see [4, 14].

Throughout this article, we consider the following problem under Robin bound-
ary conditions.

−u′′ + q(x)u = λu x ∈ [0, π],

u′(0) = −ηu(0),

u′(π) = ζu(π).

(1.2)

The Robin boundary conditions have the physical interpretation of radiation
if η < 0 and ζ > 0, absorption when η > 0 and ζ < 0, and insulation when
η = 0 and ζ = 0. We briefly recall the recent literature concerning related works
of problem (1.2) subject to the Robin boundary conditions. Andrews, Clutterbuck
and Hauer [1] proved that the minimizer of Γ[q] is the constant potential with either
convex or single-well potentials. Ashbaugh and Kielty [6] also established that the
fundamental gap is an increasing function of the Robin parameters for the class
of convex symmetric potentials. Motivated by these results, we shall prove in this
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paper that the optimal lower bound of Γ[q] among convex potentials is the constant
potential for two different Robin parameters of the problem (1.2), which is regarded
as an open problem of the authors Ashbaugh and Kielty , (in [6], see open problem
3.1).

The proof of our main result will be based on the recent work by Andrews,
Clutterbuck and Hauer [1] and some techniques used in Master thesis of Höltschl
[11] which has not appeared in archival journals in the case of linear potential.

This work is arranged as follows: in section 2, we derive some simple proper-
ties of the fundamental gap Γ. In section 3, we shall study the optimal estimates
of the fundamental gap Γ for Schrödinger operators with Robin boundary condi-
tions. In section 4, we establish a relation between the first eigenvalues of Neumann
Schrödinger operators on an interval and the real roots of the first derivative of the
Airy functions Ai′ and Bi′, where Ai(x) and Bi(x) are the Airy functions on the
bounded solution of the ordinary differential equation

u”(x) = xu(x).

2. Preliminaries and basics

Definition 2.1. The fundamental gap which is denoted by Γ[q], is the difference
between the first two eigenvalues

Γ[q] = λ2(q)− λ1(q).

The fundamental gap for the Schrödinger problem with Robin boundary condi-
tions depends on the potential and the length of the underlying interval and the
parameters η, ζ.

By definition we remark that the fundamental gap of a Schrödinger problem with
Robin boundary conditions on an interval [0, π] unaffected by adding a constant
Γ[q] = Γ[q+c]. As a consequence of this remark, which will be very important later
on, if we have to deal with linear potentials, we only need to consider potentials of
the form q(x) = tx with t > 0.

Theorem 2.2 ([22]). The spectrum of Schrödinger problem with Robin boundary
conditions has a discrete spectrum of simple eigenvalues, satisfies

λ1 < λ2 < · · · < λn →∞.
Moreover, the eigenfunction un corresponding to the eigenvalue λn has exactly n−1
zeros in (0, π).

Now, we give the Hellmann-Feynmann result [13] for the variation of eigenvalues
with respect to a family of potentials of the problem (1.2) under Robin boundary
conditions.

Lemma 2.3. Suppose that q(., t) is a one-parameter family of real-valued, locally

L1 function with ∂q
∂t (x, t) ∈ L

1(0, π) and inf q(x, t) > −∞. Then

dλn(t)

dt
=

∫ π

0

∂q

∂t
(x, t)u2n(x, t) dx.

Proof. Denote u̇ = du
dt , the potential q depends integrably on x and differentiably

on t. We define Rt : H1(0, π) \ {0} → R, the Rayleigh quotient by

Rt(u) =

∫ π
0

(u′)2dx+
∫ π
0
qu2dx− (ηu2(0) + ζu2(π))∫ π

0
u2dx
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and we consider the problem (1.2) with Robin boundary conditions then

dλn(t)

dt
=

1∫ π
0
u2ndx

(∫ π

0

(2u′nu̇
′
n + q̇u2n + 2unu̇nq)dx

− (2ηun(0)u̇n(0) + 2ζun(π)u̇n(π))
)

− 1( ∫ π
0
u2ndx

)2(∫ π

0

(u′n)2dx+

∫ π

0

qu2ndx− (ηu2n(0) + ζu2n(π)
)

×
(∫ π

0

2unu̇ndx
)
.

Integrating by parts twice∫ π

0

2u′nu̇
′
ndx = 2

∫ π

0

λnunu̇ndx− 2

∫ π

0

qynu̇ndx+ 2(ηun(0)u̇n(0) + ζun(π)u̇n(π)).

So

dλn(t)

dt
=

1∫ π
0
u2ndx

(
2

∫ π

0

λnunu̇ndx+

∫ π

0

q̇u2dx
)
− λn∫ π

0
u2ndx

∫ π

0

2unu̇ndx.

Then
dλn(t)

dt
=

1∫ π
0
u2ndx

∫ π

0

q̇u2ndx.

Noting that
∫ π
0
u2ndx = 1. So

dλn(t)

dt
=

∫ π

0

∂q

∂t
(x, t)u2n(x, t)dx.

�

3. Characterization of optimizers

In this section we prove that the minimizer of Γ[q] among convex potentials q
is the constant potential. The proof is based on refined arguments from Lavine’s
proof of the fundamental gap conjecture with Robin boundary condition.

Lemma 3.1. Consider problem (1.2) with Robin boundary conditions such that
q(x) = tx. Then for every y satisfying (1.2), we have

π((u′(π))2 + (λ− tπ)u2(π)) =

∫ π

0

(2λ− 3tx)u2(x)dx+ ηu2(0) + ζu2(π), (3.1)

π((u′(π))2 + (λ− tπ)u2(π))

=
1

π

∫ π

0

x(4λ− 5tx)u2(x)dx− 1

π

(
u2(π)− u2(0)

)
+ 2ζu2(π).

(3.2)

Proof. We have

π((u′(π))2 + (λ− tπ)u2(π)) =

∫ π

0

d

dx
x
(
(u′(x))2 + (λ− tx)u2(x)

)
dx

=

∫ π

0

(u′(π))2 + (λ− tx)u2(x))dx+

∫ π

0

x(2u′(x)u′′(x)

+ 2u(x)u′(x)(λ− tx)− tu2(x))dx

=

∫ π

0

((u′(π))2 + (λ− tx)u2(x))dx−
∫ π

0

txu2(x)dx.
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Since u satisfies problem (1.2), it follows that∫ π

0

(u′(x))2dx−
∫ π

0

(λ− tx)u2(x)dx =

∫ π

0

(u(x)u′(x))′dx = ηu2(0) + ζu2(π).

So

−
∫ π

0

(u′(x))2dx+

∫ π

0

(λ− tx)u2(x)dx+ ηu2(0) + ζu2(π) = 0.

Thus,

π((u′(π))2 + (λ− tπ)u2(π)) =

∫ π

0

(2λ− 3tx)u2(x)dx+ ηu2(0) + ζu2(π).

In the same way as formula (3.1), we can prove (3.2). �

Theorem 3.2. Consider problem (1.2) with Robin boundary conditions. Then for
every convex and non-affine potential q, there exists a linear potential qt = tx such
that

Γ[q] ≥ Γ[qt].

Proof. Let q be a convex non affine potential and Lq(x) = tx+b the linear potential
such that q(x±) = Lq(x±). We know by [6] that there exist 0 ≤ x− < x+ ≤ π and

u22(x) ≥ u21(x) on (0, x−) ∪ (x+, π),

u21(x) > u22(x) on (x−, x+).

By convexity of q,

q − Lq ≥ 0 on (0, x−) ∪ (x+, π),

q − Lq ≤ 0 on (x−, x+).

So ∫ π

0

(q − Lq)(u22 − u21)dx > 0.

Let

Lq(θ) = θq + (1− θ)Lq for θ ∈ (0, 1).

Therefore L̇q(θ) = q − Lq. Then

dΓ(Lq(θ))

dθ
=

∫ π

0

(q − Lq)(u22 − u21)dx > 0.

Integrating this inequality with respect to θ over (0, 1), we find that∫ 1

0

dΓ(Lq(θ))

dθ
= Γ[q]− Γ[Lq] ≥ 0.

Then Γ[q] ≥ Γ[Lq] = Γ[qt]. �

Theorem 3.3. Consider problem (1.2) with Robin boundary conditions. Then for
every convex and non-affine potential q we have

Γ[q] ≥ Γ[0]

if and only if η > 0 and ζ < 0.
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Proof. We consider a family of potentials qθ = θtx. From Lemma 2.3 we have

d(λ2(qθ)− λ1(qθ))

dθ
= t

∫ π

0

x(u22(x)− u21(x))dx.

Suppose that the critical point of the gap is achieved at some t 6= 0, then∫ π

0

x(u22(x)− u21(x))dx = 0.

By Lemma 3.1 we find that∫ π

0

(2λ− 3tx)u2(x)dx+ ηu2(0) + ζu2(π)

=
1

π

∫ π

0

x(4λ− 5tx)u2(x)dx− 1

π
(u2(π)− u2(0)) + 2ζu2(π).

Then

2λn + ζu2n(π) + ηu2n(0)− 2ζu2n(π) +
1

π
(u2n(π)− u2n(0))

=
−5t

π

∫ π

0

x2u2n(x)dx+
(

3t+
4λn
π

)∫ π

0

xu2n(x)dx.

Since ∫ π

0

x(u22(x)− u21(x))dx = 0,

it follows that

2(λ2 − λ1)− ζ(u22(π)− u21(π)) + η(u22(0)− u21(0))

+
1

π
(u22(π)− u21(π)− u22(0) + u21(0))

=
−5t

π

∫ π

0

x2(u22(x)− u21(x))dx

=
−5t

π

∫ π

0

(x2 −Ax−B)(u22(x)− u21(x))dx < 0 if t > 0,

choosing A and B. Which yields a contradiction with η > 0 and ζ < 0 and
(u22(π)−u21(π))−(u22(0)−u21(0)) > 0. Then the fundamental gap for linear potentials
qt(x) = tx achieves its minimum at t = 0. �

Example and numerical simulation. By Theorem 3.3, we have Γ[q] ≥ Γ[0].
The eigenfunctions of problem (1.2) for t = 0 are given by

u(x) = c1 sin(
√
λx) + c2 cos(

√
λx).

The Robin boundary conditions

u′(0) = −ηu(0),

u′(π) = ζu(π),
(3.3)

give

tan(kπ)
(ηζ
k
− k
)

= η + ζ

with k =
√
λ. Using Mathematica, we can calculate the approximates of non-

negative real roots of the transcendental equation tan(kπ)(ηζk − k) = η + ζ. For
simplicity we fix ζ = −1, obtaining the results in Table 1. Then for η → 0, we have
Γ[q] ≥ 1.335526 . . . .
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Table 1.

η λ1 λ2 Γ
0.01 0.142009 1.479635 1.337626
0.1 0.092975 1.428501 1.335526
10 0.654731 2.964465 2.309734
100 0.623687 2.810751 2.187064
1000 0.620702 2.795907 2.175205

4. Estimates on the fundamental gap for linear potentials

In this section, we establish a relation between the first two eigenvalues of the
Neumann Schrödinger operators and the real roots of the first derivative of the Airy
functions Ai and Bi. We take the Robin boundary conditions and sending η → 0,
ζ → 0 so, we recover the Neumann boundary conditions.

We denote by Λ =
⋃
n∈N α

′
n the set of zeros of Ai′ and by ∨ =

⋃
n∈N β

′
n the set

of zeros of Bi′. For x ∈ R \ Λ, we introduce the function

f(x) =
Bi′(x)

Ai′(x)
.

The zeros β′n of Bi′ coincide with the zeros of f , while the zeros α′n of Ai′ give the
singularities of f . We call f/(β′

n+1,β
′
n)

the n+ 1-th branch of f and f/(β′
1,0)

the first

branch of f .

Lemma 4.1. The function f is strictly increasing on every branch.

Proof. Differentiate f we obtain

f ′(x) =
Bi′′(x)Ai′(x)− Bi′(x)Ai′′(x)

Ai′(x)2
,

f ′(x) =
−xW (Ai(x),Bi(x))

Ai′(x)2
.

The Wronskian of Ai and Bi is known to be π−1. Thus we obtain

f ′(x) =
−xπ−1

Ai′(x)2
> 0 for each x < 0.

Let D : (−∞, α′1) → (0,∞) be the function describing the distance of two consec-
utive branches of f , defined by D(α′i) = α′i−1 − α′i such that D is continuous on
(−∞, α′1). �

Theorem 4.2. Consider the Neumann Schrödinger problem with linear potential
q(x) = tx with t > 0. Let α′n denote the n-th zero of Ai′. Then

Γ[q] ≥ (α′1 − α′2)t2/3.

Proof. Consider the Schrödinger equation

−u′′(x) + q(x)u(x) = λu(x).

Using the change of variable ε = λ/t2/3 and x = z/t1/3, we obtain the new equation

u′′(z) = (z − ε)u(z).



8 MOHAMMED AHRAMI, ZAKARIA EL ALLALI EJDE-2022/CONF/26

The eigenfunctions of Schrödinger equation with linear potentials have the form

u(z) = c1Ai(z − ε) + c2Bi(z − ε)
with c1, c2 ∈ R.

u(x) = c1Ai(t1/3x− λt−2/3) + c2Bi(t1/3x− λt−2/3).

Applying Neumann boundary conditions at the endpoints u′(0) = u′(π) = 0, we
find that

Bi′(t1/3π − λt−2/3)Ai′(−λt−2/3)− Bi′(−λt−2/3)Ai′(t1/3π − λt−2/3) = 0.

It follows that

Ai′(−λt−2/3)Bi′
(
t1/3

(
π − λ

t

))
− Bi′(−λt−2/3)Ai′

(
t1/3

(
π − λ

t

))
= 0. (4.1)

According to the asymptotic behavior of Airy functions, the equation (4.1) takes
the following form as t goes to +∞,

sin θ(−λt−2/3) exp
(2

3

[
t1/3(π − λ

t
)
]3/2)

+
1

2
cos θ(−λt−2/3) exp

(
− 2

3

[
t1/3(π − λ

t
)
]3/2)

= 0.

Then we obtain

tan θ(−λt−2/3) = −1

2
exp

(
− 4

3

[
t1/3(π − λ

t
)
]3/2)

.

As exp
(
− 4

3 [t1/3(π − λ
t )]3/2

)
has a limit 0 when t→∞. Then

lim
t→∞

tan θ(−λt−2/3) = lim
t→∞

Ai′(−λt−2/3) = 0,

which implies that limt→∞−λnt−2/3 = α′n. Equivalently

λn = −α′nt2/3 + o(t2/3), as t→∞.
Overall, we obtain a lower bound on the fundamental gap

Γ[q] = λ2 − λ1 = −α′2t2/3 + o(t2/3) + α′1t
2/3 + o(t2/3) ≥ (α′1 − α′2)t2/3. �

Remark 4.3. By Theorem 4.2, we conclude that the fundamental gap is un-
bounded when t goes to infinity.

Lemma 4.4. The eigenvalues of Neumann Schrödinger operator with q(x) = tx
on [0, 1] are given by

λ1 = −τ1t2/3 with τ1 ∈ (β′2, β
′
1).

Proof. Let

τ1 = max{τ ∈ (−∞, β′1)/D(τ) = t1/3}.
Assume that λn = −τ1t2/3 with n ≥ 2, so there exists a solutions τ̃ of f(τ+πt1/3) =
f(τ) with τ̃ > τ such that λ1 = −τ̃ t2/3. Note that by definition of τ1, D(τ̃) 6= t1/3

implies that is τ̃ and τ̃ + πt1/3 do not lie in the domains of consecutive branches of
f , i.e. if τ̃ ∈ (β′n+1, β

′
n) then τ̃ + πt1/3 > β′n−1.

By the definition of D, τ̃ and τ̃+D(τ̃) lie in the domains of consecutive branches
of f that is τ̃ ∈ (β′n+1, β

′
n) implies τ̃ +D(τ̃) ∈ (β′n, β

′
n−1). Then D(τ̃) < t1/3.

Noting that D is continuous, then there exists ν > τ̃ such that D(ν) = t1/3 so
ν < τ1. This contradicts τ̃ > τ1. �
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We can generalize the previous lemma by the following result.

Lemma 4.5. The eigenvalues of Neumann Schrödinger operator with q(x) = tx
on [0, 1] are given by

λn = −τnt2/3 with τn ∈ (β′n+1, β
′
n).

Proposition 4.6. Consider the Neumann Schrödinger problem with linear poten-
tial q(x) = tx with t > 0 on [0, 1]. Let α′n and β′n denote the n-th zero of Ai′ and
Bi′ respectively. If t ≥ (α′1 − α′2)3 then

Γ[q] ≥ (α′2 − β′2)t2/3.

Proof. We have D(α′2) = α′1 − α′2, the fact that D is increasing we obtain

λ1 < −α′2t2/3.

Observing that λ2 > −β′2t2/3. This yields that

Γ[q] = λ2(q)− λ1(q) ≥ α′2t2/3 − β′2t2/3.

Then we conclude that Γ[q] ≥ (α′2 − β′2)t2/3. �

Proposition 4.7. Consider the Neumann Schrödinger problem with linear poten-
tial q(x) = tx with t > 0 on [0, π]. Let α′n and β′n denote the n-th zero of Ai′ and

Bi′ respectively. If t ≥ (α′
1−α

′
2)

3

π3 then

Γ[q, π] ≥ (α′2 − β′2)t2/3.

Proof. It is easy to show that

Γ[q, π] =
1

π2
Γ[π2q(πx)].

From Proposition 4.6, for π3t ≥ (α′1 − α′2)3 we deduce that

Γ[π2q(πx)] ≥ (α′2 − β′2)π2t2/3.

Consequently, for t ≥ (α′
1−α

′
2)

3

π3 we obtain Γ[q, π] ≥ (α′2 − β′2)t2/3. �

Example and numerical simulation. Using Mathematica, for

β′1 = −2.2944, β′2 = −4.0731, α′2 = −3.2481, t > 0.1814,

we obtain

q(x) = 1
2x x 0, 1814x

Γ ≥ 0.5197 0.825 0.2643

Thus Γ[q0] ≥ 0.2643 for q0(x) = 0.1814x.

Remark 4.8. Our main results include improvements of the lower bound on the
fundamental gap of Robin Schrödinger operators with a convex potential. Mean-
while, when we establish the link between the first eigenvalues and the real roots of
the first derivative of the Airy functions Ai′ and Bi′, how small can the fundamental
eigenvalue gap be?
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5. Appendix: Airy functions [18, 21]

The Airy functions can be defined as the linearly independent solutions to the
differential equation

du2

dx2
(x) = xu(x).

The first Airy function Ai and the second Airy function Bi have representations as
improper Riemann integrals

Ai(x) =
1

π

∫ ∞
0

cos
( t3

3
+ xt

)
dt,

Bi(x) =
1

π

∫ ∞
0

exp
(
− t3

3
+ xt

)
sin
( t3

3
+ xt

)
dt.

The Airy functions Ai and Bi have infinitely many zeros on the negative real axis.
We denote those zeros by αn and βn, n ∈ N, respectively, in decreasing order, so
that

0 > β1 > α1 > β2 > α2 > β3 . . . .

and let α′n and β′n denote the n-th zero of the first derivative of the Airy functions
Ai′ and Bi′ respectively, so that

0 > α′1 > β′1 > α′2 > β′2 > α′3 . . . .

The asymptotic behavior of the Airy functions Ai and Bi as t→∞ is given by

Ai(t) ∼
exp(− 2

3 t
3/2)

2
√
πt1/4

, Bi(t) ∼
exp( 2

3 t
3/2)

√
πt1/4

.

And the asymptotic behavior of the Airy functions Ai′ and Bi′ for t→∞ is given
by

Ai′(t) ∼ −
exp(− 2

3 t
3/2)

2
√
πt−1/4

, Bi′(t) ∼
exp( 2

3 t
3/2)

√
πt−1/4

.

For a negative t,

Ai′(t) = N(t) sin θ(t), Bi′(t) = N(t) cos θ(t)

where

N(t) =
√

(Ai′(t))2 + (Bi′(t))2, θ(t) = arctan

(
Ai′(t)

Bi′(t)

)
.
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