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CONVERGENCE THEOREMS OF IMPLICIT TYPE ITERATIONS
IN GEODESIC SPACES WITH NEGATIVE CURVATURE

YASUNORI KIMURA, KAZUYA SASAKI, KAKERU TORII

ABSTRACT. In this article, we prove convergence theorems of the implicit iter-
ative methods in the sense of Browder type and Xu-Ori type with (—1)-convex
combination in CAT(—1) spaces.

1. INTRODUCTION

In recent years, fixed point theory has been investigated by many mathemati-
cians. In particular, approximating fixed points of a nonlinear mapping is one of
the main topics in this theory. Researchers have investigated some types of ap-
proximating iteration to find a fixed point of a mapping in several spaces, such as
Banach spaces and geodesic spaces.

This paper considers two types of iterative schemes: explicit type schemes and
implicit type schemes. This research field utilizes explicit iteration types, particu-
larly Halpern and Mann types. However, implicit type methods, like Browder [10]
and Xu-Ori [I1] types, also have their significance.

Explicit type schemes generate a sequence {z,} by explicitly expressing x,11 in
terms of x,,. Halpern and Mann types iteration are explicit type schemes to find a
fixed point of a mapping T: X — X. These define a sequence {z,,} as follows:

e Halpern type: z,41 := apu® (1 — ap)Txy;
e Mann type: zp41 := apz, @ (1 — ap)Tx,

for n € N. On the other hand, there are some implicit type schemes such as
Browder type and Xu-Ori type. These generate a sequence {z,} by finding the
unique element z,, satisfying the following equations:

e Browder type: , = anu ® (1 — o) Tay;
e Xu-Ori type: z, = aptp—1® (1 — )Ty,

for n € N. In this article, we consider implicit type schemes in geodesic spaces,
particularly complete CAT(—1) spaces.

Recently, Kimura [6] proved the following convergence theorem with multiple
anchor points {uy} in a complete CAT(0) space (which is also known as a Hadamard
space). It uses the Browder type iterative scheme for multiple anchor points.
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Theorem 1.1 (Kimura [6, Theorem 3.3]). Let X be a Hadamard space and let
T: X — X be a nonexpansive mapping such that F(T) # 0, where F(T) is a set
of all fized points of T. Suppose that {a,} C ]0,1[ such that a, — 0 as n — oo.
For k = 1,2,...,r, let {8k} € [0,1] such that Y ,_,B% =1 for alln € N and
BE — BF €[0,1] asn — oco. Let ui,ug,...,u, € X and define {x,} C X by

T, = argmin, c y (an Z BEd(y, ur)? + (1 — a)d(y, Tg;n)2)
k=1
forn € N. Then, {x,} converges to the unique minimizer of a function g: F(T) —
R defined by

gly) = Brd(y,ux)?
k=1

forye F(T).

Furthermore, Kimura also proved the following A-convergence theorem with an
implicit iterative scheme for a finite family of nonexpansive mappings by using the
Xu-Ori type iterative scheme.

Theorem 1.2 (Kimura [7, Theorem 3.2]). Let X be a Hadamard space. For k =
1,2,...,N, let T,: X — X be a nonexpansive mapping such that ﬂ,]cvzl F(Ty) # 0.
For k = 0,1,...,N, suppose {ak} C [a,b] C ]0,1] such that Ziv:o af = 1. For
given x1 € X, generate a sequence {x,} C X satisfying

N
Tpy1 = argming ey (a%d(mn, y)® + Z apd(Titngs, y)z)
k=1

forn € N. Then, {x,} is well-defined and A-convergent to some xy € ﬂff:l F(Ty).

In this article, we prove convergence theorems for implicit iterative methods in
the sense of Browder and Xu-Ori types with (—1)-convex combination in complete
CAT(—1) spaces.

2. PRELIMINARIES

Let (X,d) be a metric space. For z,y € X and [ > 0, a mapping c¢: [0,]] = X
is called a geodesic with endpoints z,y € X if it satisfies ¢(0) = z, ¢(I) = y, and
d(c(t),c(s)) = |t — s| for every t,s € [0,1]. Then I = d(c(0),c(l)) = d(x,y). We say
X is a geodesic space if a geodesic with endpoints  and y exists for all x,y € X.
In this paper, we assume X has the unique geodesic for every z,y € X. Then, we
denote the image of the geodesic with endpoints x,y € X by [z,y], which is well
defined. We call [z,y] a geodesic segment with endpoints  and y.

Let E? be the 2-dimensional Euclidean space, and let H? be the 2-dimensional
hyperbolic space, which are both geodesic spaces. For x < 0, let M2 be a 2-
dimensional space with constant curvature x defined by

9 E2 if Kk =0;
M; = L 0
ﬁH Ik <U,
where —1_H? is a geodesic space defined from H? by multiplying the metric on H?

/-5
by 1/v/—k.
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Let (X, d) be a geodesic space. For x,y,z € X, a geodesic triangle A(x,y, z) is
defined as the union of three segments [z,¥], [y, 2], and [z,z]. Fix £ < 0 and let
M? be a model space with a metric p,. For each geodesic triangle A(x,y,2) on X,
its comparison triangle A(Z, 7, Z) is defined as the triangle in M2 whose length of
each corresponding edge is identical with that of the original triangle:

d(xay> = pu(Z,9), d(y,z) = px(Y, 2), d(zvx) :pn(zﬂf)‘
A point p € A(Z,7, %) is called a comparison point for p € A(x,y, 2) if d(u,p) =
px(t,p) and d(v,p) = pk(v,p), where u,v are adjacent endpoints of p. A ge-
odesic space X is called a CAT(k) space if for all triangles A(z,y,z), points
p,q € A(z,y,2), and their comparison points p, ¢ € A(Z, 7, Z), the inequality

d(p,q) < p(P, Q) (2.1)
holds. The inequality (2.1) is called the CAT(k) inequality.

It is clear that the n-dimensional Euclidean space (E”,dg) is an example of
the complete CAT(0) spaces, since it always satisfies dg(p,q) = po(p,q) in (2.1).
More generally, the class of complete CAT(0) spaces consists of the class of Hilbert
spaces. A complete CAT(0) space is often called a Hadamard space. We know that
a Banach space is not a CAT(0) space in general. Furthermore, the n-dimensional
hyperbolic space H" is a complete CAT(—1) space, but the n-dimensional Euclidean
space E™ is not a CAT(—1) space.

Let (X, d) be a geodesic space. Then, for z,y € X and ¢ € [0, 1], there exists the
unique point z € [z, y] such that d(x, z) = (1—t)d(x,y) and d(z,y) = td(x,y). Such
a point z is called a convex combination of z and y. We denote it by tz @ (1 — t)y.

Let (X,d) be a CAT(0) space and let (E2, p) be the 2-dimensional Euclidean
space. Let A(z,y, z) be a geodesic triangle on X and take its comparison triangle
A(Z,7,%) on E2. Then we know that the following equation, known as Stewart’s
theorem, holds for all ¢ € [0, 1]:

p(z,tx ® (1 - 1)y)* = tp(2,2)* + (1 - t)p(2,9)* — t(L — t)p(z,9)*.
This can be obtained by the following calculation in R?:
12—tz + 1 -)9))* = (z -tz + (1 - 1)7), 2 - (tz + (1 - 1)7))
=tz —z|*+ (1 -tz —gl* =t - t)l|lz - gl*.

Note that R? is one of the models of 2-dimensional Euclidean space. Moreover, since
X is a CAT(0) space, we have d(z,tx @ (1 — t)y) < p(z,tT @ (1 — t)y). Therefore,
since d(z,x) = px(Z,Z), d(z,y) = px(Z,79), and d(z,y) = px(ZT,§), we obtain an
inequality

d(z,tz @ (1 —t)y)* <td(z,2)* + (1 — t)d(z,y)* — t(1 — t)d(z,y)* (2.2)
for all ¢ € [0,1]. We introduce the following characterization of CAT(0) spaces.

Theorem 2.1 ([I, Theorem 1.3.3]). For a geodesic space (X,d), the following two
conditions are equivalent:

(a) (X,d) is a CAT(0) space;
(b) the inequality (2.2) holds for all x,y,z € X and t € [0, 1].
Similarly, the following inequality holds for every CAT(—1) space X:
coshd(z,tx @ (1 — t)y)sinhd(z,y)
< cosh d(z, x) sinh(td(z,y)) + cosh d(z, y) sinh((1 — t)d(x,y))
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for every x,y,2 € X and t € [0,1]. This is obtained by the following equation on
the 2-dimensional hyperbolic space (H?, p):

cosh p(Z,tz & (1 — t)y) sinh p(Z, )
= cosh p(Z, Z) sinh(¢tp(Z, §)) + cosh p(Z, §) sinh((1 — t)p(Z, 7))

for every 7,9,z € H? and t € [0, 1].
We know that any CAT(k) is a CAT(x’) for k < /. Therefore, every results for
CAT(0) spaces can apply to any CAT(k) spaces with x < 0. For more details, see

2.

Let X be a CAT(0) space. A subset C of X is said to be convex if ta®(1—t)y € C
for all z,y € C and t €0, 1].

Let X be a Hadamard space, and let C' be a nonempty closed convex subset of
X. Then there exists the unique point p, € C such that d(z,p,) = infycc d(z,y)
for each © € X. We define the metric projection Pc from X onto C' by Pox = p,
for all x € X.

Let X be a CAT(0) space. For a bounded sequence {x,} in X, let r(z,{x,}) =
limsup,,_, o d(z,zy) for z € X, and define the asymptotic radius r({z,}) of {z,}
by

r({zn}) = inf r(z, {z,}).

reX

The asymptotic center AC({z,,}) of {x,} is a set of all points p € X such that

r(p; {zn}) = r({zn}).

If a CAT(0) space X is complete, then an asymptotic center of a bounded sequence
{zn} on X is unique, see [3, Proposition 7].

Let X be a CAT(0) space. We say a sequence {z,} on X is A-convergent to
xo € X if ¢ is the unique element of the asymptotic center of any subsequence of
{zn}. Then zg is called a A-limit of {z,}.

Theorem 2.2 (Kirk and Panyanak [8, Proposition 3.5]). Let X be a Hadamard
space and let {x,} be a bounded sequence on X. Then there exists a A-convergent
subsequence of {x,}.

Let X be a CAT(0) space. A mapping T: X — X is said to be nonexpansive if
d(Tz,Ty) < d(z,y)

for every z,y € X. We know the set F(T) = {z € X : z = Tz} of all fixed points of
a nonexpansive mapping 7' is closed and convex. A mapping U: X — X is called
a contraction if there exists « € [0, 1] such that for all z,y € X

d(Uz,Uy) < ad(z,y).

If X is complete, then the Banach contraction principle guarantees the existence
and uniqueness of a fixed point of U. Let f be a real function on X and let C' be
a nonempty subset of X. Then argmin, . f(«) stands for the set of all minimizers
of f on C. Furthermore, if argmin, .. f(x) consists of exactly one point, then
argmin, .o f(x) directly denotes such a point.

In this article, we use the notion of (—1)-convex combination introduced by
Kimura and Sasaki defined as follows:



EJDE-2024/CONF/27 IMPLICIT TYPE ITERATIONS IN GEODESIC SPACES 17

Definition 2.3 (Kimura and Sasaki [9] Definition 3.6]). Let X be a geodesic space.
Then for all u,v € X, and « € [0,1], the set

argmingc - (o coshd(u, ) + (1 — ) cosh d(v, x))

is a singleton. Thus define a (—1)-convex combination of u and v by
~1
au @ (1 — a)v := argmin, ¢ x (acoshd(u,z) + (1 — «) cosh d(v, z)).
—1
We know that au & (1 — a)v € [u,v] for all u,v € X and a € [0, 1]. Namely,

-1
au & (1 — a)v = argmin,¢|

holds, see [9, Lemma 3.5].

(acoshd(u,x) + (1 — a) coshd(v, x))

u,v]

Lemma 2.4 ([9)). Let X be a geodesic space. For z,y € X with x # y and
a € [0,1], an equation

~1
ar @ (l—a)y=ocx® (1 —o0)y

holds, where
1 .
> tanh-? asinhd(z,y) '
d(z,y) 1 —a+ acoshd(z,y)

—1
It is obvious that az @ (1 —a)y=az® (1 —a)y if x = y.

Lemma 2.5 ([9, Corollary 3.9]). Let X be a CAT(—1) space and x,y,z € X. Then
for all o € [0, 1],

-1
coshd(ax @ (1 — )y, z) < acoshd(z,z) 4+ (1 — a) coshd(y, 2).
Lemma 2.6 ([9, Lemma 3.7]). For any d > 0 and « € [0,1],

1 tanh ! asinhd n 1 tanh ! (1 —a)sinhd
d 1—a+acoshd d a+(1—a)coshd
Lemma 2.7 ([9, Lemma 3.4]). For fized d > 0 and o € [0,1], let
1 1 asinh d
=—-tanh™ ——M8M.
7Ta™ 1 — o+ acoshd

Define a function g: [0,1] — R by

g(t) = acosh((1 — t)d) + (1 — ) cosh td
for t € [0,1]. Then g is strictly convex and infinitely differentiable. Moreover,
g’ (o) =0 holds and hence o is the unique minimizer of g.

The following results play important roles in the main results.

Theorem 2.8 (He, Fang, Lopez and Li [4, Proposition 2.3]). Let X be a Hadamard

space and {x,} a bounded sequence on X such that x, A g eX. Then, for all
u € X, the following holds:
d(u,z) < liminf d(u, z,).
n—oo
Lemma 2.9 (Kimura [5, Lemma 3.1]). Let {x,} be a A-convergent sequence in
a Hadamard space X with its A-limit x € X. If {d(zn,u)} converges for some
u € X, then {z,} converges to x.
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3. MAIN RESULTS

In this section, we prove a convergence theorem with Browder and Xu-Ori type
iteration in complete CAT(—1) spaces, respectively. To prove our main result, we
first show the following lemmas.

Lemma 3.1. Let a € [0, 1] and define a function f: [0,00] = R by
(1 — a)sinhz

= h!
f(w) = wtan a+ (1 —a)coshz

for x € R. Then, f is strictly increasing.
Proof. Fix a € [0,1] and define f;: R — ]—1,1[ by

(1 -a)sinhz
i) = a+ (1 —a)coshz

for x € R. Then
, (I -a)(1+a(coshz —1)
filz) =
(1+(1—a)(coshz —1))
for all z € R and hence f is strictly increasing. Thus a function fa: [0, 0o — [0, 00|
defined by fo(x) = tanh™'(fi(z)) for = € [0,00] is also strictly increasing. This
follows the strict increasingness of f. O

)
5>0

Lemma 3.2. Let d > 0. Define f:]0,00] = R, by
sinh td
ft) =

t
fort €]0,00[. Then, f is strictly increasing.
Proof. We have

td coshtd — sinh td
7'(t) = - -

Thus we obtain the desired result. O

tj/ xsinh z dx > 0.
0

Lemma 3.3. For fized d >0 and « €10,1/2[, let
1 1 asinh d
N A B
773" 1”4t acoshd
Then oo < o < 1/2.
Proof. Define g: [0,1] — R by
g(t) = acosh((1 —t)d) + (1 — «) cosh td

for t € [0,1]. Then o is the unique minimizer of g from Lemma 2.7. Moreover,
from the strict convexity of g, we have ¢'(z) < 0 for all z € ]0,0], and ¢'(z) > 0
for all z € ]o,1[. Since ¢’'(1/2) = d(1 — 2«a)sinh(d/2) > 0, we have 0 < 1/2. By
a <1/2<1—aand Lemma 3.2, we have

¢ (o) = —adsinh((1 — a)d) + (1 — a)dsinh ad
= da(1 — a)( _ sinh((1 — a)d) n Sinhad) .

11—« «
Therefore, a < ¢. This is the desired result. [l
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Lemma 3.4. For fized d > 0, assume that o, 0 € [0, 1] satisfy the equation
1 1 asinh d
=—-tanh™ ——M———.
774 ot 1—a+ acoshd
Then, o = 1/2 if and only if o =1/2.

Proof. The given equation is equivalent to

_ sinh od
~ sinhod + sinh((1 — o)d)’
From this we derives the conclusion using basic calculations. (I

Lemma 3.5. For fired di,ds > 0 and o € 10,1/2], let

1 _ asinh d; )

— tanh ™! dy # 0;
o1 =4 d; an 1 —a+ acoshd; if di 7 0;

(6% Zfd1:0

and hd

1 _ o sinh do .

— tanh™! dy #0;
o9 =< do At 1 — a + acoshds if d2 705

(0% ZfdQZO

Then, o1 > o9 if and only if dy > do. Moreover, o1 = o5 if and only if dy = ds.

Proof. We consider the following cases:
(1) d1:00rd2:0:
(a) dy =0 and dy = 0;
(b) dl 7é 0 and dg = 0;
(C) d1 =0 and d2 7& 0,
(11) dl 7& 0 and d2 7é 0:
(d) d1 = d2;
(e) dl 75 dg.
First, we consider case (i).
(a) If dy = do = 0, then it is obvious that 01 = o = 03.
(b) Suppose that dq # 0 and do = 0. Then d; > dy. Furthermore, from Lemma
3.3, we have g1 > a = 0.
(¢) Similar to (b), if d; = 0 and dy # 0, then d; < d2 and 01 = o < 09 from Lemma
3.3.
Next, consider the case (ii). We hereinafter suppose that d; # 0 and ds # 0.
Define a function g: [0,1] — R by

g(t) = acosh((1 —t)dy) + (1 — ) cosh td;

for ¢ € [0,1]. Then from Lemma 2.7, o is the unique minimizer of g. This follows
that ¢’(o2) > 0 if and only if o1 < o2, and ¢'(02) < 0 if and only if o7 > o9. We
also get @ < 01 < 1/2 and a < 03 < 1/2 by Lemma 3.3. By the definition of o5,

we obtain .
sinh o2ds

- sinh oads + sinh((1 — 02)ds)

Therefore,
() = sinh oads cosh((1 — t)dy) + sinh((1 — o3)dz) cosh tdy
g - sinh 0'2d2 + Sinh((l — Ug)dz)
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for all ¢ € [0,1]. Tt follows that
J(t) = dq(— sinh oads :11;11}1157(2103;_?(jjrih—&(-(sllrihéil)cé)ag)dg) sinh tdy)
for all t € ]0,1[. Put C = d;/(sinh oads + sinh((1 — o3)dz)) > 0. Then
g'(02) = C - (—sinh oady sinh((1 — o2)dy) + sinh((1 — 02)dz) sinh oady ).

Put p = (d1 + d2)/2, ¢ = (d2 — d1)/2, and k = 1 — 209. Then p > 0, |q| < p,
0< k<1, and
9)

g(02) = C - (—sinh((p+ ) (5~ 3k) ) simh (0~ 0) (5 +

o0 (1+ 1)) {0 (2 1)

= %C - (—cosh(p — kq) + cosh(—kp + q) + cosh(p + kq) — cosh(kp + q))
= C - (— sinh kpsinh ¢ + sinh kg sinh p)
= Csinhpsinhq(—f(p) + f(9)),

where we define f: R — ]0, k] by

l\D\H

sinh kx
£ ]
f(x) =4 sinhz ifz#0;
k ifz=0

for x € R. Then f is a differentiable even function and it satisfies f'(z) > 0 for all
x <0, and f'(z) <0 for all z > 0.

(d): Suppose that d; = d2. Then we have ¢ = 0 and hence ¢'(o2) = 0. It implies
that o1 = os.

(e): Suppose that d; # dy. Then since |q| < p, we obtain —f(p) + f(q) > 0
Therefore, ¢'(o2) > 0 if and only if ¢ > 0, that is, do — d; > 0. In other words, if
dy < d2, then o1 < 02, if dqy > dQ, then o1 > o09.

From (i) and (ii), conditions o1 > o2 and di > do are equivalent, and so are
conditions o1 = 09 and di = d». O

Let X be a CAT(0) space. Then as noted in the preliminaries, the following
inequality holds for every z,y,z € X and t € ]0, 1[:
At @ (1— 1)y, 2)° < td(z, 2)° + (1 — d(y, 2)° — 11 — d(z,y)*.

Since every CAT(—1) space is a CAT(0) space, the above inequality also holds in
CAT(—1) spaces.

Theorem 3.6. Let X be a CAT(—1) space and let T: X — X be a nonexpansive
mapping. Let u € X and « € )0, %] DefineU: X — X by
-1
Ur=aud® (1—-a)Tx
for x € X. Then, U is a contraction.

Proof. Let z,y € X. If d(Uz,Uy) = 0, then obviously there exists 8 € [0, 1] such
that d(Ux,Uy) < Bd(z,y). Thus, we consider the case where d(Uz,Uy) # 0. Then
from Lemma 2.4, we have

d(Uz, Uy)?
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= d(au EDS (1-a)Tz,au EDS (1 —a)Ty)*
=d(o1u® (1 —01)Tz,00u ® (1 — 09)Ty)?
< o1d(u, o0u ® (1 — 02)Ty)* + (1 — 01)d(Tx, 00u @ (1 — 03)Ty)?
—o1(1 — o1)d(u, Tx)?
< o1(1—09)%d(u, Ty)? + (1 — 01)(02d(u, Tx)* + (1 — 02)d(Tx, Ty)?
— oo(1 — o9)d(u, Ty)?) — o1(1 — o1)d(u, Tx)?
= (o1 — 02)((1 = 02)d(u, Ty)? — (1 — o1)d(u, Tz)?) + (1 — 01)(1 — 02)d(Tz, Ty)?,

where
1 _ asinh d(u, Tz) .
———tanh™ ! ’ f Tx;
o1 =< d(u,Tx) M T T4t acosh d(u,Tx) ifuz T
« if u="Tux;
1 1 asinh d(u, Ty) .
———— tanh f Ty;
oo = d(u, Ty) M T e Facosh d(u, Ty) ifuz Ty
a ifu="Ty.

We consider the following two cases: (i) o1 > 09, and (ii) o9 > 0.
First, we consider the case (i). From Lemma 2.6, we have

(1 — a)sinhd(u,Tz)

% h_l f Tx:
1—o01 =< d(u,Tx) AT (1 — ) coshd(u, Tx) 7 Io;
1—a if u="Tu;
B 1 — «a)sinhd(u, Ty) )
— ~  _tanh 1 ( ’ f Tuy:
l-oy={ dw,Ty) " a+(1—a)coshd(u,Ty) = P
Therefore,
_ 1 — «)sinhd(u, Tx)
1 _ d T 2 frd d T t h 1 ( :
(1= on)d(u, Tw)”™ = d(u, Tr) tanh ™ = o Ta)
and

(1 — a)sinhd(u,Ty)

1 —02)d(u, Ty)? = d(u, Ty) tanh ™" .
(1= 02)d(u, Ty) (u, Ty) tan a+ (1 — a)cosh d(u, Ty)

Using Lemmas 3.5 and 3.1, we obtain

(1 —o9)d(u, Ty)? < (1 — o1)d(u, Tx)>.
Similarly, we consider the case (ii) and then we obtain

(1 —o1)d(u, Tx)* < (1 — g9)d(u, Ty)?.
Therefore, in both cases (i) and (ii), we have

dUz,Uy)? < (1 —01)(1 — 02)d(Tx, Ty)>.
By Lemmas 3.3 and 3.4, we have 01 > « and o3 > «. Thus
1-o)(1—02) < (1-a)?
and it follows that
AUz, Uy)?* < (1 —a)?d(Tz, Ty)? < (1 — a)?d(z,y)*
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Therefore,
dUz,Uy) < (1 —a)d(z,y),
and hence U is a contraction. O

Henceforth, we consider implicit-type iterative schemes. Now we prove a con-
vergence theorem using Browder type iteration in complete CAT(—1) spaces.

Theorem 3.7. Let X be a complete CAT(—1) space, and let T: X — X be a
nonexpansive mapping with F(T) # 0. Let u € X and {oy,} C 10, 3] such that
an — 0 as n — oo. Define {x,} C X by

-1
Tn = apu ® (1 — a,)Tx,.
Then, {x,} is well-defined and convergent to Pp(ryu.
Proof. We know that Theorem 3.6 implies the well-definedness of x, for every
n € N. Let p = Pp(ryu. Then

— inf .
d(p,u) yelg(T)d(%u)

By Lemma 2.5, we have

coshd(x,,p) = coshd(a,u ES (1 —ap)Txn,p)
< ay coshd(u,p) + (1 — ) coshd(Tz,, p)
< ay, coshd(u, p) + (1 — ap,) coshd(zy,, p).
for all n € N. Thus,
cosh d(z,p) < coshd(u,p)
for all n € N and hence we obtain
d(Tzn,p) < d(xn,p) < d(u, p)
for all n € N. Tt implies that {z,} and {Tz,} are bounded. Since
d(n, Ten) < d(@n,p) + d(p, Tn),

we have {d(z,,Tz,)} is also bounded.
Fix n € N and put D = d(z,,,p). From the definition of x,,, we have

(o coshd(xp,u) + (1 — ay,) cosh d(zy,, Txy,)) sinh D
< (ay coshd(tx, ® (1 — t)p,u) + (1 — ) coshd(tz,, ® (1 —t)p, Tzy,)) sinh D
< ap(cosh d(xy,, w) sinh tD + cosh d(p, w) sinh(1 — t)D)
+ (1 — ap)(coshd(zy,, Txy,) sinh tD + cosh d(p, Tx,,) sinh(1 — t) D)
= (a, coshd(zp,u) + (1 — ap) coshd(zy, Txy,)) sinh tD
+ (e, coshd(p,u) + (1 — a,) cosh d(p, Tx,,)) sinh(1 — t) D
for all ¢t €]0,1[. Thus

sinh D — sinh¢tD
sinh(1 —¢)D

(a, coshd(zp, u) + (1 — ay,) cosh d(z,,, Txy,))

< ay, coshd(p,u) + (1 — ) coshd(p, Txy,).
Letting t — 1, we obtain
(o, cosh d(zp, u) + (1 — ap) cosh d(zy,, Ty )) cosh d(z,, p)
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< ay, coshd(p,u) + (1 — ay) cosh d(Tx,, p)
< ay coshd(p,u) + (1 — ay) coshd(zy, p).

Therefore,

hd
ay, coshd(z,,u) + (1 — ay) coshd(z,, Tz,) < anw

Thus, since a,, — 0 and {z,,} is bounded, we obtain limsup,,_, . cosh d(z,,Tz,) <
1 from (3.1), and hence we have

lim d(x,,Tz,) = 0.

n—oo

F(1—an). (31)

From (3.1), we obtain
ay, cosh d(zy,, u) < oy, coshd(zy,, u) + (1 — o) (coshd(zy, Tzy) — 1)
N cosh d(p, u)
= "coshd(zy,,p)
< a, coshd(p,u).

Thus, we obtain cosh d(z,,u) < coshd(p,u) and it follows that
d(xn,u) < d(p,u) (3.2)

for all n € N.

To show that {x,} converges to p, we prove that {z,} is A-convergent to p.
Thus, we take a subsequence {x,,} C {x,} arbitrarily, and let v be an element of
the asymptotic center of {x,,}. Then, taking subsequence repeatedly, we can find
{2’} C {n,} such that

lim d(z}, p) = limsup d(zy,, p) (3.3)
J—0o0 i—00
and there exists ¢ € X such that 2 A ¢ from Theorem 2.2. Then q € AC({z}}).
We show ¢ = p. Since T is nonexpansive, we have
limsup d(«’;, Tq) < limsup(d(z}, Tx’;) + d(Tx’;, Tq))
j—o0 j—o0
< lim sup d(x;, T:E;) + lim sup d(T:v;»7 Tq)
j—o0 Jj—oo
< limsup d(z7, q).
Jj—oo
From the uniqueness of the element of AC({x’}), we obtain ¢ € F(T). By Theo-
rem 2.8 and (3.2), we have

d(q,u) < liminf d(z},u) < d(p, u).
j—00 -

Since p is the unique nearest point of u on F(T'), the above inequality implies that
qg=pand p € AC({z/}). From (3.3), we have
limsup d(x,,,p) = lim d(z},p) < limsup d(z},v) < limsup d(zn,,v).
i—00 J—o0 j—o0 i—00
Hence p € AC({z,,}) and it implies that v = p. Since v is an asymptotic center
of {xn,} C {zn}, which is arbitrarily chosen, and it coincides with p, {z,} is A-
convergent to p.
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We finally show the convergence of {z,} to p. Since {x,} is A-convergent to p
and from (3.2), we have

d(p,u) <liminfd(z,,uv) < limsupd(z,,u) < d(p,u),
n—oo

n— oo
and hence we obtain
lim d(z,,u) = d(p,u).

n—oo

Therefore, z,, — p by Lemma 2.9, which is the desired result. ([l

We obtain the convergence theorem in the sense of Browder type with (—1)-
convex combination in a complete CAT(—1) space. Next, we consider the conver-
gence theorem in the sense of Xu-Ori type iteration in the same space.

Theorem 3.8. Let X be a complete CAT(—1) space and let T: X — X be a
nonezpansive mapping with F(T) # (). Suppose that {a,} C R and a € R satisfies
0<a<a, < % for alln € N. Let 1 € X and generate {x,} as follows: For
n € N and given x,, € X, let T,41 be the unique point in X satisfying that

—1
Tl = QpZp D (1 — ap)Txpyr.
Then, {x,} is well-defined and A-convergent to some xo € F(T).

Proof. Fix n € N and define a mapping V,,: X — X by
Vo = argmin, ¢ x (o, coshd(y, z,) + (1 — ay,) cosh d(y, T'x))

for x € X. In the same way as Theorem 3.6, we obtain V,, is a contraction and
thus it has the unique fixed point x,+; € X. That is, it satisfies that

Tpy1 = VaZngr = argmin, ¢ y (o, coshd(y, v,) + (1 — ay,) coshd(y, Trpy1)),

and hence {x,} is well-defined.
Next, we show {x,} is A-convergent to some element in F(T). Let p € F(T)
and ¢ € ]0,1[. Fix n € N and put D = d(zp41,p). Then,

(ap coshd(xp, pt1) + (1 — o) coshd(Txy 41, Tpg1)) sinh D
= (ay coshd(zn, Vizni1) + (1 — ) coshd(Tp 41, VaXng1)) sinh D
< ay, cosh d(xy, txn11 @ (1 — ¢)p) sinh D

+ (1 — ap) coshd(Txp i1, txni1 @ (1 —t)p) sinh D
< ap(coshd(zy,, Tpa1) sinh D + cosh d(xy,, p) sinh(1 — ¢) D)

+ (1 — ap)(coshd(Txp11, Tpt1) sinh tD

+ coshd(Txp41,p)sinh(1 — ) D)

= (ap coshd(xp, Tpi1) + (1 — ap) coshd(Txpq1, Tpi1)) sinhtD

+ (e, coshd(zy,, p) + (1 — ay,) coshd(Txp 41, p)) sinh(1 — ) D.

Thus

sinh D — sinhtD

(ay coshd(@p, Tpy1) + (1 — ay) coshd(Txy g1, Tni1)) sinh(1 — 6)D

< ay, coshd(xy, p) + (1 — ay) coshd(Tzp41,p).
Letting ¢t — 1, we obtain

(an cosh d(p, Tpy1) + (1 — ) cosh d(T @41, Tny1)) coshd(@p11,Dp)
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< ay coshd(xn,p) + (1 — ap) coshd(Txp41,p)
< ay coshd(xy, p) + (1 — o) coshd(zp41, D).
Hence we have
coshd(zp41,p) < oy coshd(zy,p) + (1 — ay) coshd(x,y1,p).
Therefore, since {a,,} C 0, 3], we obtain
coshd(xpt1,p) < coshd(x,,p).

This implies that the real sequence {d(x,,p)} is nonincreasing and bounded below.
Thus there exists a limit
nhﬁn;o d(z,,p) =c, €R
and hence
1 < aycoshd(xp, xpi1) + (1 — ap) coshd(Txpy1, Tri)
1
coshd(zp+1,p)

IN

(au, coshd(zy,p) + (1 — ap) cosh d(zp41,D))

< ap(coshd(xy,, p) — coshd(xn1,p)) 1
coshd(xy11,p)

—1
as n — co. This implies

lim (o, coshd(2p, Tpy1) + (1 — ay) coshd(TZp11, Tny1)) = 1.

n—oo

Then

lim coshd(zp,xni1) = li_>m coshd(Txp i1, 2nt1) = 1.
n— o0 n o

Indeed, we assume {coshd(x,,zn4+1)} does not converge to 1. Then there ex-
ist € > 0 and a subsequence {coshd(zy,,xn,+1)} of {coshd(z,,xn41)} such that
coshd(2p,, Tn,41) > 1+ ¢ for i € N. Furthermore, since {oy,,} C [a, 3], we may
assume that o, — ag € [a, 3] without loss of generality. Then we have
1= lim (o, coshd(n,, Tn,+1) + (1 — an,) coshd(Txy,, Tn,+1))
11— 00

> o liminf cosh d(zp,, Zn,+1) + (1 — ap) iminf cosh d(Txp, 41, Tn,+1)
1—> 00 71— 00
Zao(1+€)+(1—040) =1+ age > 1.
This is a contradiction. Thus we have lim,,_, o cosh d(2,, z,+1) = 1, and similarly
we obtain lim,,_, o, cosh d(Tx,11,Tn+1) = 1. Hence we obtain

nhﬁn;Q d(Tp, Tpt1) = nhﬁn;Q d(TZp11,Tny1) = 0.

Let 29 € X be the unique asymptotic center of a sequence {z,} and let u € X be
an asymptotic center of any subsequence {x,,} of {z,,}. We will show that u = z.
From the definition of the asymptotic center, we have

r({xn, }) = limsup d(z,,, u)
1—00
< limsupd(z,,, Tu)
17— 00
<limsup(d(zn,, TTn,) + d(Txn,, Tu))
17— 00
= limsup d(Tzy,, Tu)

i—»00
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<limsupd(z,,,u) =r({zn,}).
i—00
This implies Tu € AC({z,,}). From the uniqueness of an asymptotic center, we
obtain w € F(T). It follows that {d(x,,u)} is convergent to ¢, € R. Therefore,

r({zn}) = limsup d(x,, zo)
n—oo

<limsupd(xy,u) = ¢, = lim d(zy,, u)
n—oo 71— 00

1—00

(
S lim sup d(xn7 ) l'())
(

< limsup d(2y,, o) = r({zn}).

n— oo

Thus v € AC({z,}). From the uniqueness of an asymptotic center, we obtain
u = xo. Hence, {z,} is A-convergent to zy € F(T'). This is the desired result. O
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