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IMPACT OF VACCINATION AND STERILIZATION ON THE

TRANSMISSION DYNAMICS OF RABIES

VIJAI SHANKER VERMA, LAXMAN BAHADUR KUNWAR

Abstract. We have constructed a mathematical model by dividing the dog

and human populations into eight compartments as the rabies virus is likely
to spread in both populations. In the model, disease-controlling strategies

such as vaccination, sterilization and culling are taken into consideration, and

their impact is studied. The current study assumes that dogs can transmit
rabies among dogs as well as to human population. We have applied the next-

generation matrix technique to compute the basic reproduction number. Also,

each parameters involved are subjected to sensitivity analysis using the ap-
proach of normalized sensitivity index. The disease-free (or rabies-free) and

endemic-equilibrium points are discovered analytically. The endemic equi-
librium point is shown to be locally asymptotically stable. The numerical

simulations, which use approximations for parameter values, shows that effec-

tive method for controlling rabies transmission is a combination of vaccination,
sterilization and culling of infected dogs. The findings indicate that the annual

dog birth rate is also a critical factor in affecting the rabies virus spread.

Rabies is a viral zoonotic infectious disease in warm-blooded animals that has
huge public significance [26]. The etiological agent is a virus belonging to the genus
Lyssavirus. Canine rabies is the form carried by domestic dogs that is overwhelm-
ingly responsible for approximately 59,000 human deaths per year, mostly in Asia
and Africa [22]. Among the total death due to the rabies in the world more than
95% of which occur in Asia and Africa [20]. Among the total human death 45%
prevails in south Asian Association for Regional Cooperation (SAARC) countries
[24]. Despite being a preventable disease, impact of rabies is increasing day by day,
which is a worrisome issue in developing and developed countries [16]. The main
reservoir hosts for rabies are domestic dogs in low- and middle-income countries,
but wild animals including foxes, skunks and raccoon dogs also maintain rabies in
some parts of the world [28]. All species of mammals are susceptible to rabies virus
infection, but dogs remain the main carrier of rabies and are responsible for most
of the human rabies death world wise [6].

Rabies is an invariably fatal, highly pathogenic zoonotic, yet non notifiable viral
disease in Nepal [27, 33]. It is one of the major zoonotic threats in Nepal. Each
year, several outbreaks and deaths associated with rabies are reported in the animal
sector [25]. Likewise, animal bites, more importantly, dog bites are reported in
thousands of human individuals leading to the consumption of a large number of
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pre- and post-prophylactic measures. Rabies has been diagnosed in Nepal for a
long time, but the information on its epidemiology, impact, and control remains
scattered [32]. Official reports show that each year 100-300 livestock and 10 to 100
humans die of rabies in Nepal, but these numbers very likely underestimate the
actual rabies burden [14, 27].

Mathematical models offer a relatively inexpensive way to predict and under-
stand future dynamics of the disease and help to predict whether it becomes an
epidemic or not [2, 3]. Leung and Davis studied mathematically the rabies vac-
cination target for stray dog populations. They presented a method to estimate
vaccination target for stray dogs when the dog population is made up of stray,
free-roaming and confined dogs [22]. Islam et al. derived a high association be-
tween the basic reproduction number with environmental carrying capacity and
vice versa. They compared different types of control strategies implemented in
Dhaka, Bangladesh [18]. Shigui Ruan has constructed a SEIR type model for the
spread of rabies virus among dogs and from dogs to humans and use rabies data
in China from 1996 to 2010 for the estimations of parameter values [29]. Zhang et
al. proposed a deterministic model to study the transmission dynamics of rabies
in China and explored effective control and prevention measure [35]. Bornaa et al.
proposed mathematical model to study the dynamics of the transmission of rabies,
incorporating predation of dogs by humans [5]. Huang (2019) studied transmission
dynamics of rabies for dog, Chinese ferret badger and human interactions in Zhe-
jiang province and found that transmission between dogs and Chinese ferret badger,
the quantity of dogs, and the vaccination rate of dogs play important roles in the
transmission of rabies [17] . Abdulmajid and Hassan formulated and analyzed a
delay differential equations model for assessing the effects of controls and time de-
lay as incubation period on the transmission dynamics of rabies in human and dog
population [1]. Hailemichael et al. (2022) have developed a mathematical model
by dividing the dog population into two categories : stray dogs and domestic dogs
and studied the effect of vaccination and culling on the stray dogs to domestic dogs
[15]. Our model focuses the transmission of rabies within dogs where the interven-
tions such as vaccination and sterilizations of dogs are not fully on the action [15].
Kunwar and Verma (2022) proposed an SEIV deterministic mathematical model
to describe the rabies transmission dynamics within household and stray dogs in
the context of Nepal. Their simulation results concluded that the transmission of
rabies virus will be controlled effectively when both vaccination and sterilization of
dogs are implememted among household and stray dogs [21].

In this study, we construct and analyze a deterministic model to examine the
transmission dynamics of dog-to-human and dog-to-dog rabies infection in Nepal .

1. Model formulation

For the mathematical modelling, we divide the population of both animals and
humans into four subclasses; susceptible, exposed, infected and vaccinated. The
population of dogs in these subclasses at any time t are denoted by Sd(t), Ed(t), Id(t),
and Vd(t) respectively. Similarly, the population of human in these subclasses are
denoted by S(t), E(t), I(t), and V (t).

When a susceptible human individual is bitten by an infectious animal or con-
tacted with the saliva having rabies virus, this human individual becomes exposed
class. The available data indicates that the incubation period ranges from 5 days
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to 3 years, with a median of 41 days and a mean of 70 days. About 15-20% of those
bitten by infected progress to illness and becomes infectious since more and more
bitten people are seeking post-exposure prophylaxis (PEP), the recovered rate of
infected humans has been increasing in Nepal.

In this model, it is assumed that dogs can transmit the rabies virus to themselves
and to each other, also the infected dogs can spread the rabies virus to human via
contact, and human do not spread the virus further. The flow diagram of proposed
model for dynamics of rabies is illustrated in Figure 1. The following set of eight
differential equations captures the dynamics of disease in the proposed model:
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Figure 1. Compartmental diagram of the rabies dynamics model
of dog-human population

For dog population, we have

dSd(t)

dt
Ad + σdVd − βdSdId − (md + κd)Sd,

dEd(t)

dt
= βdSdId − (md + γd)Ed,

dId(t)

dt
= γdEd − (md + µd)Id,

dVd(t)

dt
= κdSd − (md + σd)Vd

(1.1)
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For human population, we have

dS(t)

dt
= A+ σV − βdhSId −mS,

dE(t)

dt
= βdhSId − γE − (m+ κ)E,

dI(t)

dt
= γE − (m+ µ)I,

dV (t)

dt
= κE − (m+ σ)V

(1.2)

with initial conditions: Sd(0) > 0, S(0) > 0, Ed(0) ≥ 0, E ≥ 0, Id(0) ≥ 0, I ≥ 0,
Vd(0) ≥ 0, V ≥ 0.

Table 1. Description of the parameters used in the model for
dynamics of rabies

param. description
Ad, A Annual birth rate of dog and human respectively.
σd, σ Loss of vaccination immunity for dog and human respectively.
γd, γ Risk factor of clinical outcome of exposed dogs and human respectively
md,m Natural death rate of dog and human respectively.
κd, κ Vaccination rate to dog and human respectively.
βd Transmission rate of rabies by the interaction between infectious

dogs and susceptible dogs.
µd, µ Rate of death due to rabies for dog and human population
βdh transmission rate of rabies by the interaction between infectious dogs

and susceptible human.

2. Model analysis

We shall establish here the various properties of the model solution. First, we
show the positivity and boundedness of the solution. Next, we show the existence
and stability of equilibrium points of the model system (1.1) and (1.2).

2.1. Positivity and boundedness. We assume that the initial populations are
chosen such that all the population components remain positive for all time i.e.
t ≥ 0. To ensure the positivity of the solution, we have the following theorem.

Theorem 2.1. For {Sd(0), S(0) > 0, Ed(0), E(0) > 0, Id(0), I(0) > 0, Vd, V (0) >
0}, the solution set {Sd(t), Ed(t), Id(t), Vd(t), S(t), E(t), I(t), V (t)} ∈ R8

+ of the
model system is positive for all t ≥ 0 in R8

+.

Further, all the solutions of the proposed model with non-negative initial condi-
tions are bounded for all time.

2.2. Invariant region. Here, we demonstrate that the proposed model is correctly
laid out biologically and mathematically in the invariant set and establish that
the closed region is a positively invariant and the result is stated in the following
theorem.
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Theorem 2.2. The solution set of the system (1.1) and (1.2) is a feasible region
defined as Ω = Ωd × Ωh, where

Ωd = {(Sd, Ed, Id, Vd) ∈ R4
+, Nd ≤ Ad

md
}, Ωh = {(S,E, I, V ) ∈ R4

+, N ≤ A

m
}

and moreover, the solution set Ω is positively invariant.

2.3. Existence of equilibrium points. The model represented by system (1.1)
and (1.2) has the following two equilibrium points:

(i) a disease-free equilibrium (DFE) point, and
(ii) an endemic equilibrium (EE) point

2.3.1. Existence of disease-free equilibrium (DFE) point. Let us denote disease free-
equilibrium point by E0(S

0
d , E

0
d , I

0
d , V

0
d , S

0, E0, I0, V 0). In the absence of rabies, we
have Ed = Id = E = I = V = 0. For the dog population, Vd cannot be zero in
the case of disease-free equilibrium because susceptible dogs which are vaccinated
transfer to vaccinated class.

For the disease-free equiibrium point, we have

Sd

dt
= 0,

Ed

dt
= 0,

Id
dt

= 0,
Vd

dt
= 0,

S

dt
= 0,

E

dt
= 0,

I

dt
= 0

V

dt
= 0

Solving this equations, we obtain the DFE point E0(S
0
d , E

0
d , I

0
d , V

0
d , S

0, E0, I0, V 0),
where

S0
d =

Ad(md + σd)

md(md + κd + σd)
, E0

d = 0, I0d = 0, V 0
d =

κdAd

md(md + κd + σd)
,

S0 =
A

m
,E0 = 0, I0 = 0, V 0 = 0 .

2.3.2. Basic reproduction number. The basic reproduction number R0 measures the
average number of new rabies infections produced by one rabies infected dog in a
completely susceptible (dog and human) population. We have followed the method
of Diekmann et al. and Driessche and Watmough to derive the expression for basic
reproduction number R0 [10, 11, 13]. In this model, the compartments Ed, Id, E
and I are the infected compartments. We use the following notation for derivation
of the R0:

f1 =
dEd(t)

dt
= βdSdId − (md + γd)Ed,

f2 =
dId(t)

dt
= γdEd − (md + µd)Id

f3 =
dE(t)

dt
= βdhSId − (m+ κ+ γ)E,

f4 =
dI(t)

dt
= γE − (m+ µ)I

The Jacobian matrix for the system f1, f2, f3, f4 is

J =


∂f1
∂Ed

∂f1
∂Id

∂f1
∂E

∂f1
∂I

∂f2
∂Ed

∂f2
∂Id

∂f2
∂E

∂f2
∂I

∂f3
∂Ed

∂f3
∂Id

∂f3
∂E

∂f3
∂I

∂f4
∂Ed

∂f4
∂Id

∂f4
∂E

∂f4
∂I


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=


−(md + γd) βdSd 0 0

γd −(md + µd) 0 0
0 βdhS −(m+ κ+ γ) 0
0 0 γ −(m+ µ)


For the next-generation matrix method, the Jacobian matrix at the disease free
equilibrium point is put into two submatries F and W , where F is the new non-
negative infectious matrix and W matrix consists of death, increase state, and other
transmissions. Thus, we have

J(E0) =


−(md + γd) βdS

0
d 0 0

γd −(md + µd) 0 0
0 βdhS

0 −(m+ κ+ γ) 0
0 0 γ −(m+ µ)

 = F −W,

where

F =


0 βdS

0
d 0 0

0 0 0 0
0 βdhS

0 0 0
0 0 0 0

 , W =


(md + γd) 0 0 0

−γd (md + µd) 0 0
0 0 (m+ κ+ γ) 0
0 0 −γ (m+ µ)

 .

The next generation matrix is

G = F W−1 =


βdγdS

0
d

(md+γd)(md+µd)
βdS

0
d

(md+µd)
0 0

0 0 0 0
βdhγdS

0

(md+γd)(md+µd)
βdhS

0

(md+µd)
0 0

0 0 0 0


The basic reproduction number (R0) is the spectral radius, denoted by ρ(FW−1),

defined as the largest eigenvalue of FW−1; which is also called the dominant eigen-
value of FW−1. Therefore, the spectral radius FW−1 of the next generation matrix
is R0 for the proposed model, and is given by

R0 =
βdγdS

0
d

(md + γd)(md + µd)
, where S0

d =
Ad(md + σd)

md(md + κd + σd)
.

Therefore,

R0 =
βdAdγd(md + σd)

md(md + γd)(md + µd)(md + κd + σd)
(2.1)

2.3.3. Existence of endemic equilibrium (EE) point. At the endemic equilibrium
point, infection is always present in the system. The endemic equilibrium point is
determined by solving the system of equations obtained by equating the right-hand
side of the equations in (1.1) and (1.2) to zero. If R0 is greater than unity, then the
system has an endemic infection because of the introduction of those with secondary
infection. Let E∗(S∗

d , E
∗
d , I

∗
d , V

∗
d , S

∗, E∗, I∗, V ∗) be the endemic equilibrium point
of system (1.1)-(1.2). Thus, for dog population, we find the following expressions:

From
dE∗

d

dt

∣∣
E∗ = 0, we obtain

βdS
∗
dI

∗
d = (md + γd)E

∗
d (2.2)

From
dI∗

d

dt

∣∣
E∗ = 0, we obtain

E∗
d =

(md + µd)

γd
I∗d (2.3)
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From
dV ∗

d

dt

∣∣
E∗ = 0, we obtain

V ∗
d =

κdS
∗
d

(md + σd)
. (2.4)

From (2.2), we obtain βdS
∗
dI

∗
d = (md + γd)E

∗
d which implies

S∗
d =

(md + γd)

βdI∗d
E∗

d =
(md + γd)

βdI∗d

[ (md + µd)

γd
I∗d
]
.

Therefore,

S∗
d =

(md + γd)(md + µd)

βdγd
(2.5)

From equation (2.4), we obtain

V ∗
d =

κdS
∗
d

(md + σd)
=

κd

(md + σd)

[ (md + γd)(md + µd)

βdγd

]
.

Therefore,

V ∗
d =

κd(md + γd)(md + µd)

βdγd(md + σd)
(2.6)

Again, using the equilibrium condition of endemic equilibrium point for the human
population, equating the left hand side of the equations of the system (1.2) to zero,
we find the following expressions: From dS

dt

∣∣
E∗ = 0, we obtain

A+ σV ∗ − βdhS
∗I∗d −mS∗ = 0 (2.7)

From dE
dt

∣∣
E∗ = 0, we obtain

βdhS
∗I∗d − (m+ κ+ γ)E∗ = 0 (2.8)

From dI
dt

∣∣
E∗ = 0, we obtain

γE∗ − (m+ µ)I∗ = 0 (2.9)

From dV
dt

∣∣
E∗ = 0, we obtain

κE∗ − (m+ σ)V ∗ = 0 (2.10)

Now, from equation (2.9), we obtain γE∗ − (m+ µ)I∗ = 0; therefore,

E∗ =
(m+ µ)

γ
I∗ (2.11)

Again, from equation (2.10), we obtain (m+ σ)V ∗ = κE∗, which implies

V ∗ =
κE∗

(m+ σ)
=

κ

(m+ σ)

[ (m+ µ)

γ
I∗
]
.

Therefore,

V ∗ =
κ(m+ µ)

γ(m+ σ)
I∗ (2.12)

Next, from equation (2.8), we obtain βdhS
∗I∗d−(m+κ+γ)E∗ = 0, which implies

S∗ =
(m+ κ+ γ)

βdhI∗d
E∗ =

(m+ κ+ γ)

βdhI∗d

[ (m+ µ)

γ
I∗
]
.

Therefore,

S∗ =
(m+ µ)(m+ κ+ γ)

βdhγI∗d
I∗ (2.13)
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Again, we derive an expression to calculate I∗d and I∗ using the values of param-
eters as follows:

From dSd

dt = 0, we obtain

βdS
∗
dI

∗
d = Ad + σdV

∗
d − (md + κd)S

∗
d =⇒ I∗d =

Ad + σdV
∗
d − (md + κd)S

∗
d

βdS∗
d

which implies

I∗d =
Ad + σd

κd(md+γd)(md+µd)
βdγd(md+σd)

− (md + κd)
(md+γd)(md+µd)

βdγd

βd
(md+γd)(md+µd)

βdγd

.

Therefore,

I∗d =
[
Adβdγd(md + σd) + σdκd(md + γd)(md + µd)

− (md + κd)(md + σd)(md + γd)(md + µd)
]

÷
[
βd(md + γd)(md + µd)(md + σd)

]
By (2.7), we obtain

A+ σ
[κ(m+ µ)

γ(m+ σ)
I∗
]
− (βdhI

∗
d +m)

[ (m+ µ)(m+ κ+ γ)

βdhγI∗d
I∗
]
= 0

which implies[ (βdhI
∗
d +m)(m+ µ)(m+ κ+ γ)(m+ σ)− σκ(m+ µ)βdhI

∗
d

βdhγI∗d (m+ σ)

]
I∗ = A.

Therefore,

I∗ =
Aβdhγ(m+ σ)I∗d

(βdhI∗d +m)(m+ µ)(m+ σ)(m+ κ+ γ)− σκβdh(m+ µ)I∗d

Hence, the unique endemic equilibrium point is E∗(S∗
d , E

∗
d , I

∗
d , V

∗
d , S

∗, E∗, I∗, V ∗),
such that

S∗
d =

(md + γd)(md + µd)

βdγd
, E∗

d =
(md + µd)

γd
I∗d , V ∗

d =
κd(md + γd)(md + µd)

βdγd(md + σd)
,

S∗ =
(m+ µ)(m+ κ+ γ)

βdhγI∗d
I∗, E∗ =

(m+ µ)

γ
I∗, V ∗ =

κ(m+ µ)

γ(m+ σ)
I∗,

where

I∗d =
[
Adβdγd(md + σd) + σdκd(md + γd)(md + µd)

− (md + κd)(md + σd)(md + γd)(md + µd)
]

÷
[
βd(md + γd)(md + µd)(md + σd)

]
,

I∗ =
Aβdhγ(m+ σ)I∗d

(βdhI∗d +m)(m+ µ)(m+ σ)(m+ κ+ γ)− σκβdh(m+ µ)I∗d
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2.4. Stability analysis of disease-free equilibrium (DFE) point.

Theorem 2.3. The disease-free equilibrium point E0 of the model represented by
(1.1) and (1.2) is locally asymptotically stable if R0 < 1, otherwise unstable.

Proof. For analyzing local stability of the disease-free equilibrium point, the Jaco-
bian matrix of the model system (1.1)-(1.2) at E0 is evaluated first. Then, stability
is ensured based on the trace’s indication and the determinant of the Jacobian
matrix at the disease-free equilibrium point. For this, we first derive the Jaco-
bian matrix (J) of the system (1.1)-(1.2) by differentiating each of the equations of
the system in terms of the state variables Sd, Ed, Id, Vd, S, E, I, V . We denote the
right-hand sides of the equations of the system as DS , DE , DI , DV , HS , HE , HI , HV

respectively.
We use the following notation for convenience:

DS :
dSd(t)

dt
= Ad + σdVd − βdSdId − (md + κd)Sd,

DE :
dEd(t)

dt
= βdSdId − (md + γd)Ed,

DI :
dId(t)

dt
= γdEd − (md + µd)Id,

DV :
dVd(t)

dt
= κdSd − (md + σd)Vd

HS :
dS(t)

dt
= A+ σV − βdhSId −mS,

HE :
dE(t)

dt
= βdhSId − γE − (m+ κ)E,

HI :
dI(t)

dt
= γE − (m+ µ)I,

HV :
dV (t)

dt
= κE − (m+ σ)V

Again, using the notation: a1 = (md + κd) > 0, a2 = (md + γd) > 0, a3 =
(md + µd) > 0, a4 = (md + σd) > 0, a5 = (m+ κ+ γ) > 0, a6 = (m+ µ) > 0, and
a7 = (m+ σ) > 0, the system of equations (1.1)-(1.2) reduces to the form

DS :
dSd(t)

dt
= Ad + σdVd − βdSdId − a1Sd,

DE :
dEd(t)

dt
= βdSdId − a2Ed,

DI :
dId(t)

dt
= γdEd − a3Id,

DV :
dVd(t)

dt
= κdSd − a4Vd

HS :
dS(t)

dt
= A+ σV − βdhSId −mS,

HE :
dE(t)

dt
= βdhSId − (a5 + γ)E,

HI :
dI(t)

dt
= γE − a6I,
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HV :
dV (t)

dt
= κE − a7V

To point out the stability condition at DEF point, we first find the Jacobian
matrix of the system as follows:

J =



−βdId − a1 0 −βdSd σd 0 0 0 0
βdId −a2 βdSd 0 0 0 0 0
0 γd −a3 0 0 0 0 0
κd 0 0 −a4 0 0 0 0
0 0 −βdhS 0 −βdhId −m 0 0 σ
0 0 βdhS 0 βdhId −a5 0 0
0 0 0 0 0 γ −a6 0
0 0 0 0 0 κ 0 −a7


Now, the Jacobian matrix at disease-free equilibrium point E0 is

J(E0) =



−a1 0 −βdS
0
d σd 0 0 0 0

0 −a2 βdS
0
d 0 0 0 0 0

0 γd −a3 0 0 0 0 0
κd 0 0 −a4 0 0 0 0
0 0 −βdhS

0 0 −m 0 0 σ
0 0 βdhS

0 0 0 −a5 0 0
0 0 0 0 0 γ −a6 0
0 0 0 0 0 κ 0 −a7


(2.14)

Here, the trace of the matrix J(E0) is

trace[JE0
] = −a1 − a2 − a3 − a4 − a5 − a6 − a7 −m

= −(md + κd)− (md + γd)− (md + µd)− (md + σd)

− (m+ κ+ γ)− (m+ µ)− (m+ σ)−m

= −(4md + κd + γd + µd + σd + 4m+ κ+ γ + µ+ σ) < 0

Now, the determinant of the Jacobian matrix J(E0) after expanding and simplifying
yields

det[J(E0)] = mmda5a6a7(md + σd + κd)(md + γd)(md + µd)(1−R0) (2.15)

From (2.15), we note that det[J(E0)] > 0 when R0 < 1. Consequently, when R0 <
1, then trace[J(E0)] < 0 and det[J(E0)] > 0, so that the disease-free equilibrium
point is locally asymptotically stable if R0 < 1, otherwise it is unstable. □

2.5. Stability analysis of endemic equilibrium (EE) point.

Theorem 2.4. The endemic equilibrium point E∗ of the epidemic model, if exists,
it is locally asymptotically stable.

Proof. The stability of the endemic equilibrium point of the model is established by
finding the sign of the eigenvalues of the Jacobian matrix of the model (1.1)-(1.2)
at E∗. The Jacobian matrix J(E∗) of the model is evaluated at E∗ and is given as
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follows:

J(E∗) =



−βdI
∗
d − a1 0 −βdS

∗
d σd 0 0 0 0

βdI
∗
d −a2 βdS

∗
d 0 0 0 0 0

0 γd −a3 0 0 0 0 0
κd 0 0 −a4 0 0 0 0
0 0 −βdhS

∗ 0 −βdhI
∗
d −m 0 0 σ

0 0 βdhS
∗ 0 βdhI

∗
d −a5 0 0

0 0 0 0 0 γ −a6 0
0 0 0 0 0 κ 0 −a7



=



−x1 − a1 0 −x2 σd 0 0 0 0
x1 −a2 x2 0 0 0 0 0
0 γd −a3 0 0 0 0 0
κd 0 0 −a4 0 0 0 0
0 0 −x3 0 −x4 −m 0 0 σ
0 0 x3 0 x4 −a5 0 0
0 0 0 0 0 γ −a6 0
0 0 0 0 0 κ 0 −a7


where x1 = βdI

∗
d , x2 = βdS

∗
d , x3 = βdhS

∗, x4 = βdhI
∗
d

The characteristic equation of the Jacobian matrix J(E∗) is |J(E∗) − λI| = 0.
One root of this characteristic equation is λ = −a6 = −(m + µ). The next three
roots of the characteristic equation are given by λ3 + {(a5 + a7) + x5}λ2 + {(a5 +
a7)x5 + a5a7}λ+ (m2 +mσ +mκ+mγ + σγ)x4 + a5a7m = 0 or

λ3 + C1λ
2 + C2λ+ C3 = 0 (2.16)

where C1 = a5 + a7 + x5 > 0, C2 = (a5 + a7)x5 + a5a7 > 0, and C3 = (m2 +mσ +
mκ+mγ + σγ)x4 + a5a7m > 0.

The remaining four characteristic roots are given by:

λ4 +D1λ
3 +D2λ

2 +D3λ+D4 = 0 (2.17)

where

D1 = {a2 + a3 + a4 + x6} > 0

D2 = {(a2a3 + γdx2)(a2 + a3)(a4 + a7) + a4x1 +md(md + σd + κd)} > 0

D3 =
{
(a4 + x6)(a2a3 + γdx2) + (a2 + a3){a4x1 +md(md + σd + κd)}

+ x1x2γd
}
> 0

D4 =
{
{a4x1 +md(md + σd + κd)}(a2a3 + γdx2) + x1x2a4γd

}
> 0

Thus, one root of the characteristic equation of the Jacobian matrix J(E∗) is λ =
−a6 and other seven characteristic roots are given by the equation

{λ3 + C1λ
2 + C2λ+ C3}{λ4 +D1λ

3 +D2λ
2 +D3λ+D4} = 0,

or
ϕ7λ

7 + ϕ6λ
6 + ϕ5λ

5 + ϕ4λ
4 + ϕ3λ

3 + ϕ2λ
2 + ϕ1λ+ ϕ0 = 0 (2.18)

which may also be put in the form
∑i=7

i=0 ϕiλ
i = 0, where ϕ7 = 1, ϕ6 = C1 + D1,

ϕ5 = C2+C1D1+D2, ϕ4 = C3+C1D2+C2D1+D3, ϕ3 = C1D3+C2D2+C3D1+D4,
ϕ2 = C1D4 + C2D3 + C3D2 +D2, ϕ1 = C2D4 + C3D3, ϕ0 = C3D4. Since ϕi > 0
for i = 0, 1, 2, . . . , 7, by utilizing the Descartes’ rule of sign of roots of polynomial
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equation, all the roots of the equation (2.16) have negative real parts. Hence, the
endemic equilibrium point E∗ is locally asymptotically stable. □

3. Numerical simulation, results and discussion
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Figure 2. Comparison between the reported human rabies ex-
posed cases in Nepal from 2008 to 2015 and the simulation from
the model. The value of parameters are given in the table 2

.

There is currently no fixed database of rabies in Nepal. Therefore, the data in
this paper are obtained from previously published literature and reports. We set
the beginning of year 2008 as the initial time of our model dynamics. In Nepal,
there are approximately 2 million dogs [9]. As we do not have dog vaccination
data available for the year of 2008, we assume that about 20% (4× 105) of the dog
population were vaccinated in 2008. In addition for our base case, we assume that
about 0.5% dogs were exposed to rabies and 0.01% dogs were infected by rabies.

Number of vials of anti-rabies vaccine consumed in 2008 by human in Nepal
is recorded 145,978. Considering the 7 dose per person including wastage and
damages, the exposed number of human population is 145978/7 = 20, 854. So,
it is reasonable to take the number of exposed human population as 20,000 [31].
The human population of Nepal in 2008 is about 26,882,000 (Country Economy,
2018) [8]. Based on the data, we assume that about 20,000 human population were
exposed, 1000 human were infected and about 15,000 vaccinated.

3.1. Model fitting and validation of the model. Based on the parameter val-
ues listed in the Table 2, we have used model (1.1)-(1.2) to simulate the data and
we predicted the trend of exposed to rabies human population in Nepal. For model
fitting, we have used exposed rabies cases data of Nepal from 2008 to 2015 for
the simulation. However, the availability of observed data of exposed to rabies of
human cases is inadequate, the predicted data obtained from the simulation of our
model seems to match to the observed data with reasonable parameter values from
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Figure 3. Simulation of the model illustrating the endemic equi-
librium for baseline parameter values in table 2 for which R0 > 1.

2008 to 2015. Figure 2 indicates that our model provides a good match to the
recorded data with reasonable parameter values in Nepal from 2008 to 2015.

Figure 3 demonstrates the trend of epidemic (exposed and infected dog and
human cases) with the current control and prevention measures for next 30 years.
The nature of graph indicates that the human rabies infection will level off in the
next couple of years and then with increase to next 8 years under the current
measures. Using the simulated parameter values in Table 2, we compute the value
of basic reproduction number as R0 = 1.324 in Nepal. Thus, with the current
control and prevention measures, dog and human rabies will persist endemically,
which is also justified in Figure 3.

3.2. Sensitivity analysis for R0. We study the impact of model parameter values
on the output estimation of the basic reproduction number using the sensitivity
analysis. Here, the normalized forward sensitivity index of a variable to a parameter
is applied [30]. The normalized forward sensitivity index of a variable to a parameter
is defined as the ratio of relative change in the variable to relative change in the
parameter.

The normalized forward sensitivity index of a variable U , with respect to param-
eter p is defined as follows [7]:

CU
p =

p

U
× ∂U

∂p
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Table 2. Parameters used in the simulation of model for dynamics
of rabies

parameter value source
Ad = 400, 000 [19]
A = 3, 82, 934 Estimated
σd = 1 [29]
σ = 0.08 Estimated
κd = 0.03 [25]
κ = 1.25 Estimated
md = 0.2 [22]
m = 0.01423 [33]
µd = 36.5 [22]
µ = 36.5 [7]
γd = 2 [32]
γ = 2 [33]
βd = 0.0000274 [25]
βdh = 0.00000171 [25]
initial dog population initial human population
Nd(0) = 20, 00, 000 Nh(0) = 2, 68, 82, 000
Sd = 15, 89, 800 S = 2, 52, 65, 000
Ed = 0.1%ofNd(0) = 20, 000 E = 35, 000
Id = 0.01%ofNd(0) = 200 I = 100
Vd = 20%of20, 00, 000 = 400, 000 V = 34, 900

From the model, the sensitivity index of R0 concerning βd, γd, µd, σd, md, κd, and
Ad are

CR0

βd
= +1, CR0

γd
= − md

(md + γd)
, CR0

µd
= − µd

(md + µd)
,

CR0
σd

=
σdκd

(md + σd)(md + κd + σd)
, CR0

κd
= − κd

(md + κd + σd)
, CR0

Ad
= +1,

CR0
md

=
md

(md + σd)

− 4m3
d + 3(κd + σd + γd)m

2
d + 2(κd + σd + µdσd)md + γdµdσd

(md + γd)(md + µd)(md + κd + σd)
.

The normalized sensitivity indices of R0 related to the parameters for the rabies
model, evaluated at the baseline parameter values are tabulated in Table 3. The
parameters are ordered from most sensitive to least. The most sensitive parameters
are the transmission rate βd and dog recruitment rate Ad of the susceptible in Nepal.
These are followed by the natural death rate µd. The least sensitive parameter is
the anti-rabies vaccine inefficiency σd. In general, from the Table 3, it can be
seen, parameters that have positive sensitivity indices, namely βd, Ad, σd has a
positive impact on R0 in the condition that other parameters remain constant.
That is, increase in the values of βd and Ad can increase in the R0 value in the
same direction or cause an outbreak. In contrast, the increase of parameters whose
sensitivity indices is negative γd,md, µd, κd have negative impact on R0, minimizing
the effect of spread of disease. Therefore, control strategies must focus on a decrease
in the parameters βd and Ad.
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Figure 4. Bar diagram of sensitivity indices taking parameter
values in table 2 for R0 > 1.

Table 3. Sensitivity indices of R0

Parameter βd γd µd κd σd md Ad

Sensitivity index 1 −0.091 −0.948 −0.024 0.031 −0.795 1

3.3. Impact of control measures on disease dynamics.

Dog sterilization. Sterilization refers to the surgical removal of a dog’s reproduc-
tive organs (spaying for females and neutering for males), does not have a direct
impact on rabies transmission in the human population but decreases the recruit-
ment rate effectively to reduces transmission of rabies indirectly. The primary
method for preventing rabies in humans is through vaccination, not sterilization.
By reducing the population of stray and unowned dogs by sterilization, it can re-
duce the overall risk of rabies transmission because stray dogs are more likely to
be unvaccinated and have limited access to medical care. Figure 7 demonstrates
the population dynamics of exposed and infected dog and human population for
the different levels of sterilization of dog population. The graph indicates that
steriization is effective measure to some extent.

Dog vaccination. The model is simulated taking the different vaccination rates
for dogs as variable (Figure 8). Trends of the graph shows that increased dog
vaccination rate have an important effect in regard to the rate of rabies exposed
and infected dogs and human population. Furthermore, increasing the vaccination
rate (κd) of dogs within the model decreased the number of exposed and infected
dogs and human.
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Figure 5. Influence of parameters on R0 (a) versus βd; (b) versus
dog recruitment rate Ad; (c) versus βd and σd; (d) versus βd and
Ad.

3.4. Culling. Culling involves the systemic and deliberate killing of dogs to reduce
the spread of rabies virus. In our model, the per capita rate of dog culling, cd can
be introduced taking md → md + cd and µd → µd + cd. In Figure ??, we present
the impact of change in md and µd as md+cd and µd+cd in the basic reproduction
number R0. The plot of figure indicates that there is a great impact of culling.
Hence, coverage of dog culling significantly decreases the rabies dog population as
well as human rabies cases.

While culling has been practiced as a method of control rabies in Nepal, it is often
met with opposition from animal welfare and conservation groups. Additionally,
controversy arises due to ethical concerns and the potential ecological impacts of
culling. Reducing the population subsequent number of dog population (either
stray or pet) can disrupt ecosystems and may not be a humane method of rabies
control. So, we perfer to focus on other measure as well simultaneously such as
public education and other non-lethal methods to prevent the spread of rabies
virus.
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Figure 6. Influence of parameters on R0 (a) versus md; (b) versus
µd; (c) versus md and µd; (d) versus Ad and µd.

4. Conclusion

We employed a mathematical compartmental deterministic approach to investi-
gate the dynamics of rabies transmission from dogs to humans and from dogs to
dogs. The model was created to illustrate how rabies spreads from dogs to human
beings. In this investigation, only susceptible animals and exposed human popula-
tions were considered to have undergone immunizations. Because of the challenges
involved in identifying affected dogs, it is not currently feasible to immunize them.

We examine the fundamental properties of the epidemic model in terms of bound-
edness and positivity of the solution of the model, and we conclude that the solution
of the state variables is positive at all times for any positive values of the initial
condition. Analytically, we determine expressions for both the disease-free and
endemic-equilibrium points, and we analyze their stability. The numerical simu-
lation using acceptable parameter values confirmed the results. We demonstrate
that the endemic-equilibrium and disease-free equilibrium points are both locally
asymptotically stable.

Our research demonstrates that vaccination, along with the culling of infected
dogs, sterilization of dogs to reduce the number of puppies born each year, are the
most effective methods for reducing the spread of rabies among dogs and humans.
Additionally, the dogs may receive vaccination together when they are captured



92 V. S. VERMA, L. B. KUNWAR EJDE-2024/CONF/27

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10
x 10

4

Time (year)

E
xp

o
se

d
 d

o
g

 p
o

p
u

la
ti

o
n

 

 

Ad = 4.0 × 105

Ad = 3.0 × 10
5

Ad = 2.0 × 105

Ad = 1.0 × 105

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Time (year)

In
fe

ct
ed

 d
o

g
 p

o
p

u
la

ti
o

n

 

 

Ad = 4.0 × 105

Ad = 3.0 × 10
5

Ad = 2.0 × 105

Ad = 1.0 × 105

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7
x 10

4

Time (year)

E
xp

o
se

d
 h

u
m

an
 p

o
p

u
la

ti
o

n

 

 

Ad = 4.0 × 105

Ad = 3.0 × 10
5

Ad = 2.0 × 105

Ad = 1.0 × 105

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

3500

4000

Time (year)

In
fe

ct
ed

 h
u

m
an

 p
o

p
u

la
ti

o
n

 

 

Ad = 4.0 × 105

Ad = 3.0 × 10
5

Ad = 2.0 × 105

Ad = 1.0 × 105

Figure 7. Simulation of the effect of dog sterilization on the ex-
posed and infected dog and human population

for sterilization, delivering a dual-pronged approach for rabies management. Based
on the results of our research study, we expect that the government may create
a program to eradicate rabies. We strongly advise estimating the accurate dog
population in order to determine the annual dog birth rate and sterilization levels.
The development of a sustainable vaccination, culling, and sterilization plan for the
dog population is dependent upon accurate data.

Future modelling exercise may consider the potential role of habitat heterogene-
ity and its effect on the territorial size and configuration, group size and compo-
sition, and the potential indirect effect on transmission dynamics. Our model is
limited to the modelling of rabies dynamics regarding vaccination of dog population
alone, and not both dog and cattle population. The interventions that proved to
reduce rabies prevalence in dog population is not necessarily reduce transmission
from dogs to cattle.

References

[1] S. Abdulmajid, A. S. Hassan; Analysis of time delayed Rabies model in human and dog

populations with controls,Afrika Matematika, (2021), 1-19.

[2] Bacon, P. J.; Population dynamics of rabies in wildlife, London: Academic Press, 1985.
[3] R. M. Anderson R.M., H. C. Jackson, R. May, A.M. Smith; Population dynamics of fox rabies

in Europe. Nature, 289 (1981) 765–771.
[4] A. Anirudh; Mathematical modeling and the transmission dynamics in predicting the COVID-

19—what next in combating the pandemic, Infect Dis Model, 5 (2020), 366–374.



EJDE-2024/CONF/27 IMPACT OF VACCINATION AND STERILIZATION 93

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10
x 10

4

Time (year)

E
xp

o
se

d
 d

o
g

 p
o

p
u

la
ti

o
n

 

 
κd = 0.03

κd = 0.33

κd = 0.63

κd = 0.93

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Time (year)

In
fe

ct
ed

 d
o

g
 p

o
p

u
la

ti
o

n

 

 
κd = 0.03

κd = 0.33

κd = 0.63

κd = 0.93

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7
x 10

4

Time (year)

E
xp

o
se

d
 h

u
m

an
 p

o
p

u
la

ti
o

n

 

 
κd = 0.03

κd = 0.33

κd = 0.63

κd = 0.93

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

3500

4000

Time (year)

In
fe

ct
ed

 h
u

m
an

 p
o

p
u

la
ti

o
n

 

 
κd = 0.03

κd = 0.33

κd = 0.63

κd = 0.93

Figure 8. Simulation of effect of vaccination on the exposed and
infected dog and human population.

[5] C. S. Bornaa, B. Seidu, M. I. Daabo; Mathematical analysis of rabies infection, Journal of

Applied Mathematics, (2020).
[6] Centre for Disease Control and Prevention (CDC), Rabies, (2011).

http://www.cdc.gov/rabies/. Accessed June 1, 2019.

[7] N. Chitnis, J. M. Hyman, J. M. Cushing; Determining Important Parameter in the Spread of
Malaria. Through the Sensitivity Analysis of Mathematical Model, Bulletin of Mathematical

biology, 70 (2008), 1272-1296.

[8] Country economy, Nepal population, Accessed on 01/2024,
https://countryeconomy.com/demography/population/nepal?year=2008

[9] B. Devleesschauwer, A. Aryal, B.K. Sharma, A. Ale, A. Declercq, S. Depraz, T. N. Gaire,
G. Gongal, S. Karki, B. D. Pandey, S. B. Pun, L. Duchateau, P. Dorny, N. Speybroeck;

Epidemiology, impact and control of rabies in Nepal: a systematic review, PLoS Negl. Trop.
Dis., 10 (2016), no. 2. DOI: doi.org/10.1371/journal.pntd.0004461.

[10] O. Diekmann, J. A. P. Heesterbeek, M. G. Roberts; On the definition and the computation of
the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations,

J. Math Biol., 28 (1990), 365–382.
[11] O. Diekmann, J. A. P. Heesterbeek, M. G. Roberts; The construction of next-generation

matrices for compartmental epidemic models, J. R. Soc. Interface, 7 (2010), 873–885.
[12] V. P. Driessche, J. Watmough; Reproduction numbers and sub-threshold endemic equilibria

for compartmental models of disease transmission, Mathematical Biosciences, 180 (2002),
no.1-2 , 29-48.

[13] P. Driessche, J. Watmough; Further notes on the basic reproduction number. In: Brauer, F.,
van der Driessche, P.,Wu, J. (eds.): Mathematical Epidemiology, Lecture Notes in Mathe-
matical Biosciences Subseries, 1945 (2008) 159–178. Springer, New York.

[14] EDCD; National Guidelines for Rabies Prophylaxis and Management in Nepal. Kathmandu
(2019).



94 V. S. VERMA, L. B. KUNWAR EJDE-2024/CONF/27

http://www.edcd.gov.np/resource-detail/national-guidelines-for-rabies-prophylaxis-and-

management-in-nepal-new (October 31, 2019).

[15] D. D. Hailemichael, G. K. Edessa, P. R. Koya; Effect of vaccination and culling on the dynam-
ics of rabies transmission from stray dogs to domestic dogs, Journal of Applied Mathematics,

2022 (2022) Article ID 2769494, 1-14.

[16] E. Hasanov, S. Zeynalova, M. Geleishvili, E. Maes, E. Tongren, E. Marshall, A. Banyard, L.
M. McElhinney, A. M. Whatmore, A. R. Fooks, D. L. Horton; Assessing the impact of public

education on a preventable zoonotic disease: rabies, Epidemiol. Infect., 146 (2018), 227–235.

https://doi.org/10.1017/S0950268817002850.
[17] J. Huang, S. Ruan, Y. Shu, X. Wu; Modeling the transmission dynamics of rabies for dog,

Chinese ferret badger and human Interactions in Zhejiang province, China, Bulletin of math-

ematical biology, 81 (2019), 939-962.
[18] M. H. Islam, M. I. Adnan, C. Oh; Dog rabies in Dhaka, Bangladesh, and implications for

control. Processes, 8 (2020), no. 11, 1513.
[19] K. Kakati; Street dog population survey, Kathmandu 2012, Final report to WSPA, WSPA,

2012.

[20] D. L. Knobel, S. Cleaveland, P. G. Coleman, E. M. Fevre, M. I. Meltzer, M. E. G. Miranda, F.
X. Meslin; Re-evaluating the burden of rabies in Africa and Asia, Bull World Health Organ.,

83 (2005), no. 5, 360-368.

[21] L. B. Kunwar, V. S. Verma; Mathematical Analysis of Rabies Transmission Dynamics in
Nepal, Ganita, 72 (2022) no. 1, 163-176.

[22] T. Leung, S. A. Davis; Rabies vaccination targets for stray dog populations, Frontiers in

veterinary science, 4 (2017), 52.
[23] G. R. Pant, R. Lavenir, F. Y. K. Wong, A. Certoma, F. Larrous, et al.; Recent Emergence

and Spread of an Arctic-Related Phylogenetic Lineage of Rabies Virus in Nepal, PLoS Negl

Trop Dis, 7 (2013), no. 11, e2560. DOI: 10.1371/journal.pntd.0002560
[24] G. R. Pant; Rabies control strategy in SAARC member countries, In Proceedings of the

Inception Meeting of the OIE/JTF Project for Controlling Zoonoses in Asia under One
Health Concept. Japan, 2012.

[25] B. Pantha, S. Giri, H. R. Joshi, N. K. Vaidya; Modeling transmission dynamics of rabies in

Nepal, Infectious Disease Modelling, 6 (2021), 284-30.
[26] E. G. Pieracci, C. M. Pearson, R. M. Wallace, J. D. Blanton, E. R. Whitehouse, X. Ma,

K. Stauffer, R. B. Chipman, V. Olson; Vital signs: Trends in human rabies deaths and

exposures — United States, 1938–2018, Morb. Mortal. Wkly Rep., 68 (2019), 524–528.
https://doi.org/10.15585/mmwr.mm6823e1

[27] Quarterly Animal Health E-Bulletin (Rabies specific) (2018), Veterinary

Epidemiology Centre, Tripureshwor, Kathmandu, Nepal, Jan-April (2018).
http://epivet.gov.np/uploads/files/0936410132.PDF.

[28] C. E. Rupprecht, D. Briggs, C.M. Brown, R. Franka, S. L. Katz, H. D. Kerretal; Use of A

Reduced (4-Dose) Vaccine Schedule for Postexposure Prophylaxis to Prevent Human Rabies:
Recommendations of the Advisory Committee on Immunization Practices, Department of

Health and Human Services, Centers for Disease Control and Prevention, Atlanta, GA, USA,
(2010).

[29] S. Ruan; Modeling the transmission dynamics and control of rabies in China, Mathematical

biosciences, 286 (2017), 65-93.
[30] H. S. Rodrigues, M. T. T. Monteiro, D. F. Torres; Sensitivity analysis in a dengue epi-

demiological model, In Conference Papers in Mathematics, Vol. 2013 (2017), 1-7, Hindawi
Limited.

[31] S. Panthaa, D. Subedi, U. Poudel, S. Subedi, K. Kaphle, S. Dhakal; Review of rabies in

Nepal, One Health, 10 (2020), 100155. DOI: doi.org/10.1016/j.onehlt.2020.100155

[32] VCA Animal Hospital; Rabies in Dogs, Accessed on 09/2021.
https://vcahospitals.com/know-your-pet/rabies-in-dogs

[33] World Health Organization; WHO Expert Consultation on Rabies. Second Report, Geneva:
World Health Organization (2013).

[34] X. Wang, J. Lou; Two dynamic models about rabies between dogs and human, Journal of

Biological Systems, 16 (2008), no. 4, 519–529.

[35] J. Zhang, Z. Jin, G.Q. Sun, T. Zhou, S. Ruan; Analysis of rabies in China: transmission
dynamics and control, PLoS ONE, (2011), 6:e2089.



EJDE-2024/CONF/27 IMPACT OF VACCINATION AND STERILIZATION 95

Vijai Shanker Verma

Department of Mathematics & Statistics, Deen Dayal Upadhyaya Gorakhpur University,

India
Email address: vsverma.mathstat@ddugu.ac.in, drvsverma01@gmail.com

Laxman Bahadur Kunwar
Department of Mathematics, Thakur Ram Multiple Campus, Tribhuvan University, Bir-

gunj, Nepal

Email address: laxman.kunwar@trmc.tu.edu.np


	1. Model formulation
	2. Model analysis
	2.1. Positivity and boundedness
	2.2. Invariant region
	2.3. Existence of equilibrium points
	2.4. Stability analysis of disease-free equilibrium (DFE) point
	2.5. Stability analysis of endemic equilibrium (EE) point

	3. Numerical simulation, results and discussion
	3.1. Model fitting and validation of the model
	3.2. Sensitivity analysis for R0
	3.3. Impact of control measures on disease dynamics
	Dog sterilization
	Dog vaccination
	3.4. Culling

	4. Conclusion
	References

