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ABSTRACT. We study positive solutions to the boundary value problem
—Apu — Agqu = Af(u) in Q,
u=0 on 01,

where ¢ € (1,p) and Q is a bounded domain in RN, N > 1 with smooth bound-
ary, \ is a positive parameter, and f : [0,00) — (0,00) is C', nondecreasing,
and p-sublinear at infinity i.e. lim¢—s oo f(t)/tp’1 = 0. We discuss existence
and multiplicity results for classes of such f. Further, when N = 1, we discuss
an example which exhibits S-shaped bifurcation curves.

1. INTRODUCTION
In [12], the authors studied the the p-Laplacian boundary value problem
—Apu = Af(u) in Q
u=0 on N

)

(1.1)

where p > 1,  is a bounded domain in RY, N > 1 with smooth boundary, \ is a
positive parameter, Apu = div(|Vu[P=2Vu),p > 1 and f : [0,00) — (0, 00) satisfies

(H1) fis a C! non-decreasing, p-sublinear function at infinity, i.e.

f®)

=0.
t—o0 tP—1

In particular, they established the existence of a positive solution for each A, and
when there exists 0 < a < b such that
1/ (a)
b)) i= ——L > 1,

0= )
they obtained multiple positive solutions for certain range of A. When p = 2, these
results were discussed in [4]. Their study was motivated by the applications in
chemical reaction theory (see [2]) and in combustion theory (see [I1] [14]).
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In this article, we extend this study to the p-¢g-Laplacian boundary value problem
—Apu—Ayu=Af(u) in Q,

u=0 on 99, (1.2)

for ¢ € (1,p). Namely, we establish

Theorem 1.1. Assume (H1). Then the following results hold:

(1) Equation (1.2)) has a positive solution for each \ > 0.
(2) There exists positive constants Cy = Cy(Q), C1 = C1(p, 2, N), and Cy =
Co(R2) such that if b > Cy and
a/(f(a)P' _ Ci

RO

for some points a and b, a < b, then (1.2) has at least two positive solutions
pp—1 p—1
fOT AE (WCL 0}(7[1)02] .

As in [] and [12] we use the method of sub-super solutions to establish our
results. In [4], the availability of Green’s function played an important role in the
construction of a positive strict sub-solution that was used to establish a multiplicity
result. In [I2], the authors had to develop another idea to construct this special
sub-solution because of the lack of a Green’s function for the p-Laplacian operator
for p # 2. Here we adapt and extend the ideas used in [I2] to establish our results.
However, unlike in [I2], our multiplicity result is restricted to only two solutions.
In [I2], the authors used results in [Il [I5] to guarantee three solutions. If the
results in [Il [I5] can be extended to the p-¢ Laplacian case, our construction of
sub-super solutions will also yield at least three positive solutions for the range of
A in Theorem part (2)

A time-dependent version of an operator such as in often occurs in the
mathematical modeling of chemical reactions and plasma physics. In recent years,
a lot of attention has been given to study the boundary value problem involving
p-q Laplacian, see for instance [3, [5 [10, [13] and the references therein.

The rest of this article is organized as follows. In Section [2| we recall some
important results that are required for the development of this article. In Section
we prove of Theorem In Section [4] we provide an application of our results.
Finally in Section [5} we obtain exact bifurcation diagrams for the case when Q =
(0,1), p =4 and ¢ = 2, namely to the two-point boundary value problem

—[(@)?) = ul(u)]" = Af(u); (0,1)

u(0) = 0 = u(1) (1.3)

where f(s) = exp (,Y"fs), ~ > 0, and p is a non-negative parameter.

2. PRELIMINARIES

In this section, we recall some results concerning a sub-super solution method
for p-g-Laplacian boundary value problem. First, by a weak solution of (1.2]) we
mean a function u € W,"”(€2) which satisfies

/|Vu|p_2Vu-qu+/ |Vu|q_2Vu-V¢:)\/ fwe, Yo e C(Q).
Q Q Q
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However, in this article, we in fact study C*(Q) solution. Next, by a sub-solution
(super solution) of (1.2)) we mean a function v € WHP(Q)NC(Q) such that v < (>)0
on 02 and satisfies

/ VolP 2V - Vi + / Vot ?Vo - Vo < (2)A / f@)o,
Q Q Q

for all ¢ € C§°(2) and ¢ > 0 in Q. Then the following sub-super solution result
holds.

Lemma 2.1. Let ¢, z be sub and super solutions of (1.2)) respectively such that
Y <z in Q. Then (1.2) has a solution u € C*(Q) such that ¥ < u < z.

For a proof of the above lemma see [7, Corollary 1].

3. PROOF OoF THEOREM [I.1]

In this section we use sub-super solution method to prove Theorem At first
we prove the results when € = Bpg, a ball of radius R and centered at origin in RY.
We adopt and extend the ideas presented in [I2] to construct a crucial sub-solution
on BR.

Construction of two sub-solutions on Bpr. Clearly ¢; = 0 is a sub-solution to
the problem . Now we construct another sub-solution. For that we consider
the function
1, r<e
ol
L[ - (), e<r<R
where € € (0,R), @ > 1 and 3 > 1. Let us denote p1(r) = &= and pa(r) =
1 — (p1(r))?. Taking o(r) = bv(r) we note that |#'(r)| < baB/(R — €). Now let 1)
be a radially symmetric solution of
_pr - Aqw = )‘f(ﬁ(|x|)) in BR7
¥ =0 on 0Bg.

(3.1)

Then 7 satisfies
—(N TG (M) = (PN TG (1) = MV ()
¥(0) = $(R) =0,

where G4(t) = [t|*~2t, s = p, q. Integrating the above equation over 0 < r < R we
obtain

(3.2)

A " ONC1 e
= Gp('(r) = G¥'(r) = —x /0 sVLf(o(s)) ds. (3.3)
Notice that G(t) := Gp(t) + G4(t) is a continuous, monotone function. Hence, G~
exists and is also continuous. Therefore, (3.3)) yields

Y(r) =G (TNA_l /0 SN ((s)) ds ). (3.4)

Next, we claim that o(r) < ¢(r), for 0 < r < R. If this claim is true, then v is a
sub-solution as f is nondecreasing. Now, since ¢(R) = v(R) = 0, it is sufficient to
show that ¢/(R) < v'(R) for all 0 < r < R. Observe that ¢/(r) =0for 0 <r <R
and ¥'(r) =0 for 0 < r <e. Where as for r > ¢ we have

6N

| s> [Nty = 1o
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It follows from (3.4]) that

. eV
/(1) > &7 () 5 gw)
Recall that |0/(r)] < ) "(r) < o' (r) if GTY(f(D) N}\{efv\’,l) > gﬁﬁe ie. if
eV ~ . bap
1) =y = G ) (3.5)
Note that will be satisfied if
AeN baf
f(b)W > max{2,2Gp(R — e)}’
ie. if N1
ONR baf
> — . .
A > F0)eN max {1 ( e) } (3.6)

Let b > R. Then we can choose o =~ 1,  ~ 1 so that (;Lfi) > 1 and (3.6) will be
satisfied if

p 1
A > Cr(aB)P™ (3.7)
)
where C7 = inf, %. In fact, this infimum is achieved at ¢ = ¢y = #}il,
which will be our choice of €. Assume that
pp—1
A>—-C. 3.8
oM (3-8)

Then clearly we can fix a(> 1) = 1, (> 1) = 1 so that (3.7) holds. Hence, for
3.8

these choice of «, (3,¢, ¥ will be a sub-solution, when (3.8) is satisfied. Further,
since ¢ > 0, ||t)]|0o > .

Construction of super solutions on Bgr. Let o(r) = (1 — (5)? ")/p' on Bg,
where % + ﬁ = 1. Notice that 0 < o < 1. Also that for 0 <r < R,

'—1

/(T') rP
g = ——,
' : (3.9)
N=1gq (o - N—1| 1/ N5=2 1 ;L PN=1.(p" =1)(s=1) />0
—(r S(d'(r) = =N Yo' (r)[* 20! (r) = (W) -

In particular, —(rN=1G, (o' (r))) = NTRA;_l. Now let & = NT7ac, where a as in

the assumption of Theorem [I.I] Then, since f is nondecreasing,

N-1 / / N-1 / p o Vet N-1
—(rTT G (&) = (T Ge(&(1)) 2 = AT f(&a(r))
it A< f(a) . Thus, &, := &, (|z|) satisfies
~ ) aP—1
- Apga - qga = (fa) if A < W (3'10)
Hence, §~a is a super solution when A < %. Next for a given A > 0, let
§~>\ = NTv M(\)o(|z , where M (A) >> 1 so that Y i > ARP. Then, again
FOI(N)
using f is nondecreasing we have
~ ~ M (NP1 ~
“a6-a6 = M ), (3.11)

Rp
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hence §~,\ is a super solution on Bg.

Comparison of Sub-Sup solutions on Bg. For any A > 0, 1 = 0 is a strict sub-
solution (as f(0) > 0) and zp = & = NTlPM(A)O'(|$D with M (A) >> 1 is a super
solution. Hence, by Lemma has a positive solution for each A > 0. Next
let A € (f(b) C, 2 f(a) CQ} where Cy = and 0 < a < b such that b > R = Cy(Q)
and Q(a,b) > gl. For such A, ¢ = 0 is a strict sub-solution, 1y = ¢ (¢ as in
(3.1)) is a sub- solutlon =8 = NT% ao(|z|) is a super solution (see @) and

2 =& = NT% PM( Jo(|z|) is a super solution. Hence, by LemmaE has
two solutions wuy,ug for such A > 0, where u; € [¢1,21] and us € [)a, 23]. Note
that, u; and us are distinct since ||z1 |0 < @, ||t2|lcc > b and a < b.

Now we proceed to prove our result for any open, bounded subset Q of RY.

Proof of Theorem[I.1]. Note that Y1 = 0 still remains a sub-solution on € to (1.2)
on ). Now let Bg be the largest inscribed ball inside €2 and we define

~ _J¥Y(z), ifrxeBgr
va(@) = {0, itz €0\ Bg

Rp

where 1 is as in (3.1)). Clearly, ¢y € Wy?(Q) and when A > C167~'/f(b) we have

—Bpta(x) = =Apta(x) < Af(Y2(2)) = Af(¢2(x)) on Bg.
Also —A,a(z) = 0 < Af(0) = Af(1h2(x)) in Q\ Bgr. Hence, by is a strict sub-
solution when X\ > C167~1/f(b). Also ||¢a]lec > b. Next, we consider a ball By
containing €. By taking z; = &, = Nﬁaa(m) and zp = &, = NﬁM()\)a(|x|) as
earlier (but now in ball Bﬁ) and taking their restrictions on (2, it is easy to see that
21 is a strict super solution on Qif A < Rpf( 5> while 25 = &\ with M(X) >> 1
is a super solution to on Q for any A > 0. Noticing again ||z1]|cc < a@ and
using Lemma the proof of Theorem follows in the general region Q. O

Remark 3.1. Under assumption (H1), if f(s)/s?7! is strictly decreasing for s > 0,
then ([1.2)) has a unique positive solution [8] Theorem 2.2].
4. APPLICATION IN COMBUSTION THEORY

For 1 < g < p, we consider

Yu
—Apu — Aju = dex (
p q p N tu

u=0 on 90f.

) in Q, (4.1)

The reaction term f(s) = exp (,;fs ), ~ > 0 occurs in the theory of combustion and it
has been discussed in [4] (Laplacian case), and in [I2] (p-Laplacian case). In [4], the
authors obtained that v > 4 is a necessary condition for multiple positive solutions
for the Laplacian case; while in [I2] the authors obtained the same for v > 4(p—1) in
the p-Laplacian case. Here we present analogous result for p-¢ Laplacian. Towards
this we first notice that f(u) := j(@l is decreasing if v < 4(¢ — 1). Thus, Remark
ensures that v > 4(¢ — 1) is a necessary condition for to have multiple

solutions. Further, taking a = 1 and b = vy, we have

p_l/f() 1—p 0 vy
At =gy =0 G )
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Thus, for any Cy,C; and Cs, we can choose « large enough such that b > Cj
Q(1,v) > % and hence, by Theorem (4.1) admits at least two solutions at
least for certain range of .

5. BIFURCATION DIAGRAM FOR POSITIVE SOLUTIONS TO ([5.1])

Here we study the two-point boundary value problem

—[(@)?) = pl(u)) = Af(u); (0,1)
u(0) =0 =wu(1)
where f(s) = exp (7155 );v > 0, and p is a non-negative parameter. We will provide
the exact bifurcation diagram via a quadrature method and Mathematica com-
putations. We will also study how this bifurcation curve evolves when ~ and p
vary.

Here we use the quadrature method described in [6] which was obtained by
extending the method initially introduced in [9]. First we note that since is
autonomous, any positive solution u must be symmetric about x = 1/2, increasing
on (0,1/2), and decreasing on (1/2,1). Assume u is a positive solution of and
let w(1/2) = p.

(5.1)

[

FIGURE 1. Shape of a positive solution to (5.1))

Multiplying (5.1]) by «' and integrating we obtain

ol
|
=

ST - BT = MF) e (0,),
where F(s) = fos f(2)dz. Further integrating we obtain
3l (@)1 + 2ulul () = ANF(p) — Flu(e))] in [0, 5],
and hence
o R RAE) - @) g
u'(z) = 7 in [0, 5} (5.2)
Integrating 7 we obtain
u(®) ds x
=— in|0,2), (5.3)
J V2 + 120(F(p) - F(s)) V3
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and setting z — (3) , we obtain

ds S (5.4)

conp = [
' / Vi +120(F(p) - F(s)))t —p 2V3

Inversely, if A, p are such that is satisfied, u(z) is defined via for
z € 1[0,3),u(1/2) = p, and u(z) = u(l — z) for z € (1/2,1], it follows that u will
be a positive solution of (5.1). Hence determines the bifurcation diagram
of positive solutions for (5.1). Now, for f(s) = exp(-%;), we use Mathematica
computations to obtain the bifurcation diagram using .

Observations. For a given p > 0, there exists vo(u) such that for v < vo(u), we
obtain a unique solution of for all A > 0, and for v > ~o(u) the bifurcation
curve is S—shaped with multiplicity in the region (A1, A2). Further, vo(u) decreases
in p and A; decreases in vy (see Figure. Furthermore, strength of the multiplicity
range (i.e. the length (A2 — A1)) increases in v (See Figure [3)).

u =100
u=0
P 4
4 a0
30 30
20 -y =10 -y =10
_— ;: 1n? —_—v= %
—_—y=12 —y=
o — s, =7zl
—_—y =14 - y=14
-y =30 -y =30
1 A o A
0 100 200 300 400 500 600 0 100 200 300 400 500 600
pnw=20 © =100
FIGURE 2. Bifurcation diagrams of (5.1)) for different values of
for given p.
Strength of multiplicity range
30 140 145 200 410 1800
14| 100 104 140 300 1600
13 40 42 100 240
1400
12 0 0 30 110
1| o 0 0 50 1200
G 10 0 0 0 0 1000
[}
=
3 9 0 0 0 0 98 800
8 0 0 0 0 650
7 0 0 0 0 320 600
6 0 0 0 0 70 400
5 0 0 0 0 0 200
4 0 0 0 0 0
0
0 1 40 100 500
value of i

FiGURE 3. Heat map showing the strength of multiplicity range
w.r.t v and p.
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