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ABSTRACT. We study analytic smooth solutions of a general, strongly para-
bolic semilinear Cauchy problem of 2m-th order in RY x (0,T) with analytic
coefficients (in space and time variables) and analytic initial data (in space
variables). They are expressed in terms of holomorphic continuation of global
(weak) solutions to the system valued in a suitable Besov interpolation space
of B%PP-type at every time moment ¢t € [0,7]. Given 0 < T/ < T < oo, it
is proved that any B®PP-type solution u : RN x (0,7) — CM with analytic
initial data possesses a bounded holomorphic continuation u(z + iy,o + ir)
into a complex domain in CN x C defined by (z,0) € RN x (T7,T), |y| < A’
and |7| < B’, where A’, B’ > 0 are constants depending upon 7”. The proof
uses the extension of a weak solution to a B%PP-type solution in a domain in
CN x C, such that this extension satisfies the Cauchy-Riemann equations. The
holomorphic extension is obtained with a help from holomorphic semigroups
and maximal regularity theory for parabolic problems in Besov interpolation
spaces of B%PP-type imbedded (densely and continuously) into an LP-type
Lebesgue space. Applications include risk models for European options in
Mathematical Finance.
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1. INTRODUCTION

In this article we investigate the analyticity (in space and time variables) of strict
LP-type solutions u = (u1,...,up) : RY x (0,7) — CM (or CM) of the classical
Cauchy problem for a strongly parabolic system of M (coupled) semilinear partial
differential equations of order 2m (m > 1 — an integer) with analytic coefficients and
with analytic initial data uy belonging to the real interpolation space B*P:P(RY),
such that the function u : [0, 7] — B*??(RY) is continuous. Here, B*PP(RY) =
[B#PP(RN)]M where B*PP(RY) denotes the Besov space

S;p, Ny . N m, N _ N m, N
B pp(R ) T (LP(R )a W2 p(R ))s/(Zm),p - (LP(R )7 W2 p(R ))1,(1/17),1,
N

with 1 <p <oo,p>2+ , and s = 2m(1 — %) € (0,2m). This space is defined
by real interpolation, e.g., in Adams and Fournier [I, Chapt. 7], §7.6-§7.23, pp.
208-221, Lunardi [65, Chapt. 1], §1.2.2, pp. 20-25, or in Triebel [84, Chapt. 1],
§1.2-§1.8, pp. 18-55. Since the Besov space B¥PP(RY) is not imbedded into the
Hilbert space L?(RY™) whenever 2 < p < oo, we find it convenient to consider
strict LP-type solutions u : RN x (0,7) — CM having the mazimal reqularity
property (cf. Ashyralyev and Sobolevskii [0, Chapt. 3, pp. 21-36] and Priiss [74])
rather than weak L2-type solutions treated in Taka¢ [82] for the corresponding
linear partial differential equation, but with arbitrary nonsmooth initial data ug €
L2(RY). Consequently, we will be able to apply the classical theory of linear and
semilinear evolutionary problems of parabolic type in a Besov space as presented,
e.g., in Amann [0, Chapt. III, §4, pp. 128-191], Clément and Li [20], Lunardi [65]
Chapt. 7, pp. 257-289], Kohne, Priiss, and Wilke [55], and Tanabe [81, Chapt. 56,
pp. 117-229]. Our Cauchy problem has the following general form for a semilinear
2mt-order parabolic problem,

M (ot LY (ot (%’j;)w) for (z,4) € RY x (0,7);

u(z,0) = ug(x) for z € RV,

Here, 0/0x = (9/0x1, . ..,0/0xy) stands for the spatial gradient and £ — P(x,t, &)
is a polynomial of order 2m in the variable £ = (&,...,&n) € RY (or CV); its
coefficients are M x M matrices (real or complex) which are assumed to be real
analytic (jointly) in both variables € RY and t € (0,7). Also the nonlinearity
(z,t; X) — f(x,t; X) (a reaction function valued in RM or CM) is assumed to

(1.1)
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be analytic in all variables z € RV, ¢t € (0,T), and X = (XB)\B|<m e RMN (or

CMN)| where we have substituted X = %‘i‘ﬁ“ € RM (or CM) for the (mixed)
partial derivative of u with a multi-index 8 = (B1,...,8n5) € (Z4)N of order
18] = B+ -+ 8w, |B] <m. Here, Z, = {0,1,2,...} and the Euclidean dimension

of the m-jet X equals to M N with

k=0 |3|=k k=0

As usual, RY and C¥, respectively, denote the N-dimensional real and complex
Euclidean spaces, i = v/—1, and M, N € N where N = {1,2,3,...}. We have

identified X5 = %‘i‘ﬁ“ =u(z,t) for 8 =(0,0,...,0) of order || = 0.

As already indicated, we impose certain standard strong ellipticity and analyt-
icity hypotheses on the coefficients of the partial differential operator P (l‘, t, %d%)
and on the reaction function f(z,¢; X) as well. Assuming that up € B¥PP(RY)
(p>2+ %) possesses a complex analytic extension to a strip X(0) of constant

width in CV = RY 4+ iR¥ and the first-order partial derivatives

gf(x,t;X) and

: <
5 f(z,t; X), for|B] <m,

0
0X g3
are locally uniformly bounded for (z,t; X) € RN x (0,7) x RMN in this work we
show that the (unique) strict (LP-type) solution u = u(z,t) of problem is real
analytic in (z,t) € RN x (0,T). Notice that the latter condition (local boundedness
of all first-order partial derivatives 0f/0X3) is equivalent with X — f(z,¢; X) being
locally uniformly Lipschitz continuous.

This analyticity claim is motivated by the standard formula for the solution of
the Cauchy problem for the heat equation in RY (with the Laplace operator A,
ie, P (sc,t, %%) = —-A, f(z,t; X) =0, and M = 1); see e.g. John [50], Chapt. 7,
Sect. 1, eq. (1.11), p. 209. The heat equation case has been significantly general-
ized in Tak4¢ et al. [83, Theorem 2.1, p. 429], where only the leading coefficients
of the operator P (x,t, %%) are assumed to be constant, but it is required that
uy € L2(RY) = [L>=(RY)]M. In our present work, the analyticity hypothesis on
the initial data uy resembles more to a nonlocal version of the classical Cauchy-
Kowalewski theorem (John [50], Chapt. 3, Sect. 3(d), pp. 73-77). We will show that,
under this analyticity hypothesis on u(-,0) = uy, if a solution u : RY x [0, T") — CM
exists, then it must be analytic in R x (0, 7). We are able to specify also the domain
of analyticity in terms of a complezr analytic extension. The restriction on the initial
data ug € B¥PP(RY), with the conditions p > 2+ & and s = 2m/(1 - 117) € (0,2m),
allows us to take advantage of (the continuity of) the Sobolev(-Besov) imbedding
BsPP(RY) — Om(RN) N W™ (RY); see, e.g., Adams and Fournier [I, Chapt. 7],
Theorem 7.34(c), p. 231. This more restrictive condition on the initial data ug

enables us to work with an m-jet X = (Xp) € CMY whose components

[B]<m
Xg = BB‘Z‘,;“ € CM are bounded continuous functions of (z,t) € RN x [0,7); thus,
each Xs(-,t) (|8 < m) belongs to L>(RY) at every time ¢ € [0,T). Consequently,
we can apply the Banach fixed point theorem to problem (1.1]) in a way similar to
[83, Theorem 2.1, p. 429]. For instance, in a typical second-order parabolic problem

(i.e., (1.1)) with m = 1) we can allow for a reaction function f (:E, t;u, %) depending
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on u and its gradient du/dx ( =i D,u), besides the independent variables z € R
and ¢ € (0,T).

The main contribution of our present article is that we are able to remove the
hypothesis that the leading coefficients must be constant, in analogy with Tak4¢ [82]
Theorem 3.3, p. 59] where the corresponding linear system is treated. In contrast
to [83, Proposition A.4, p. 446], this means that we cannot calculate the Green
function for the Cauchy problem with the leading coefficients only,

leel g

Ju 0
e _1\™ (a) o= N .
T +(-1) |a|E_2mP (z,t) ppe 0 for (z,t) e R x (0,T); L3)

u(z,0) =ug(x) for z € RV,

and then simply take advantage of the variation-of-constants formula [83] eq. (3.22),
p. 437] to obtain the solution of the original problem . Fortunately, the methods
from [82], based on a priori L2-type estimates combined with the Cauchy-Riemann
equations, are applicable also to our semilinear system provided that already
the initial data uy are analytic. Here, each P(®)(z,t) is an M x M matrix and

recall that 9l°lu/0z® = % denotes the (mixed) partial derivative of u :
.’1)1 .o IN
RY x (0,7) — CM with a multi-index o = (ay,...,ayn) € (Z4)Y of order |a| =

a1 + -+ + ay. This means that, for the semilinear parabolic Cauchy problem
(1.1)), we do not improve the regularity properties of (in general) nonsmooth initial
data to analytic regularity as time passes by (for ¢ € (0,7)). We show only that
the analytic regularity of the initial data ug (at t = 0) is preserved for all times
t € (0,7). In contrast, analytic regularity of the initial data is not assumed in
82, §3).

As in [82, 83], our method is based on the simple fact that a function u : RV x
(0,T) — R (or C) is real analytic if and only if it has a holomorphic (i.e., complex
analytic) extension @ : 2 — C to some complex domain 2 such that RY x (0,7) C
QcCVNxC,ie, u= U|r~ (0,1, the restriction of @ to RN x (0,T). If the
domain € is fixed then the holomorphic extension 4 of u to £ is always unique,
see e.g. John [50], Chapt. 3, Sect. 3(c), pp. 70-72. Thus, in order to show that
the weak solution u = u(x,t) of problem is real analytic in RY x (0,7,
it suffices to construct a holomorphic extension u of u to some complex domain
Q (RN x (0,T) € Q© C CVN x C). Because of the uniqueness (of a holomorphic
extension), we often drop the tilde “~ ” in the notation for the (unique) holomorphic
extension. Analogous ideas (holomorphic extension, uniqueness, and Bergman and
Szegd spaces of holomorphic functions) were used earlier in Hayashi [35] [36] 37, [38].

Instead of using the Green function method (cf. [83]), we establish the existence
of solutions to the Cauchy problem in a complex parabolic domain X(") x [0, T)
in CV x C with initial data ug from a space of holomorphic functions whose domain
XM = RN +iQ) is a tube in CN with base Q™) = (—r,7)N, for some 0 < r < o0,
see Takac [82, (21), p. 58]. The (complex) analyticity in space is then verified
by means of the Cauchy-Riemann equations, whereas the (complex) analyticity in
time is obtained from the properties of holomorphic semigroups in the Besov space
BsPP(RN) = [B*PP(RN)|M. Our use of the Cauchy-Riemann equations already
at the initial time ¢ = 0 requires that uy be (complex) analytic in X(").

To provide a quick, nontechnical hint to our approach, we now give an illustrative
weaker version of our main result, Theorem in Section [3] for a single equation
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in one space dimension (M = N = 1),

— = a(x,t)Tu + b(m,t)% + c(z, t)u + f(z, t;u, %) for (z,t) € R* x (0,T);

u(z,0) = ug(z) for x € R,
(1.4)
We begin with the complexifications of the spatial and temporal variables, z € R!
and t € (0,T), respectively: Given any real numbers 0 <r < oo and 0 <T' < T <
o0, we introduce the complex domains

¥ ={z=z+iyeC: |yl <r}=R+i(-rr),
Ag:={t=0e €cC:p>0and f e (~09,9)}, ©=arctan(r/T’), (1.5)
AT = Ayn{teC:0< Ret < T'}

={t=0e? €C: 10 <¥ and 0< o < T’/ cosb}, (1.6)
AT T = A A {teC:|Smt| < T' - tan 0} = Upecr 1 (6 + A
= Upcecr_r i€+t eC:t e Ay =0, 7 — 1)+ A7 (1.7)

with the angle ¢ € (0,7/2) given by tand = r/T’. Of course, if T = T’ then

Agl’T = A%Tl) is an open triangle. Clearly, we have
A;l;/,T = U0<T§T'gv(f20t 9T Uo<r<tr [(T -cot J, T) +i(—r, T)L
where
E&T?’T ={t=0c+ireC:T"<o<Tand|r|<r}=(T",T)+i(-r,r). (1.8)

We set ‘Ig} = (0,T) +i(—r,r) if T" = 0. The closures in C of X("), Ay, Agl),
Agl’T, and Tgf?’T are denoted by X("), Ay, A%Tl), Agl’T7 and fgf,),T, respectively.

— AEST,) — ;1;/ T
/ /
Smt / // /
/ / /
[ // l/
R
e !
| A v
- A
0 — s Ret
T T

FIGURE 1. Triangle Ay starting at the origin has been defined in
(1.5). Its shifts to the right create the region Aqu ) in (I1.6))
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The Banach space of all continuous (B#?P(R)-valued) functions u : [0,7] —
B#PP(R) is denoted by C ([0, T] — B%PP(R)); it is endowed with the natural supre-
mum norm

llell o< 0.y := sup (- 1))

Bsip:P(R) < 00.
te(0,T)

Theorem 1.1 (M = N =1). Letp > 2+ 1, s:2m(1—%), and 0 < T < oo.
Assume that there are constants A, B > 0 such that all coefficients a, b, and c
and the partial derivative da/Ox are bounded, continuously differentiable functions
in the Cartesian product X x fé?T), with Rea > const > 0, and all a, b, and c

are holomorphic in X(4) x Q(()],BT). Furthermore, let us assume that the first-order
time derivatives of all functions a, b, ¢, and da/0x are bounded in XA x ‘ié}?,
Finally, assume that f is holomorphic in X4 x ‘IS?T) x C2, f = f(x,t;u,n) where
n = Ou/Ox, with all functions f, f/0t, Of /Ou, and Of /On being locally bounded

in XA x E&BT) x C2, and it satisfies

/ |f(z+1y,%;0,0)[P dz < KP (K = const < 00)
—0oQ
forallye[-A Al and t € igﬁr),

(i) Given any ug € B%PP(R), the Cauchy problem possesses a unique weak
solution u € C ([0,Tp] — B*PP(R)) defined on a (possibly shorter) time interval
[0,Tp] C [0,T] of some positive length Ty € (0,T].

(ii) Furthermore, if ug : R — C possesses a (unique) holomorphic extension to
a complez strip X0) € C, 0 < o < A, denoted by ug : X°) — C again, such that

N (ug) := sup  [uo(- +1y) || perrr) < 00
y€[—ro,ro]

holds (cf. below), then also any (global) weak solution u € C ([0, T] — B*PP(R))
can be (uniquely) extended to a holomorphic function in x(A) x Agl’T, denoted
again by u(x+iy,t), where all numbers A" € (0, A], T" € (0,T], and ¢ € (0,7/2) are
sufficiently small, T'-tand < B, and u(-+iy,-) : t — u(-+iy,t) : Agl’T — B#PP(R)
is continuous for every fized y € [—rq, o] together with

sup N (u(- + iy, 1)) = sup u(- + iy, t)]|
teal" T (y,t)E[—ro,ro] x AT"T

Bsipp(RV) < 00.

’

In particular, the extension u is holomorphic in X(4") x ‘Ig,«l?% with B =T -tan9 <
B, where T" > 0 and ¥ > 0 are small enough.

We remark that T47 0. ¢ ATT c T/, by B' = T'-tan9 < B. 0 < Ty < T in
Part (i) of this theorem, then we have to replace T by T' = Ty in part (ii). Notice
that the condition that both (continuous) partial derivatives 9f/0u and 9f/0n are
locally bounded in ¥4 x zng) x C? is equivalent with (u,n) — f(x,t;u,n) being
locally Lipschitz continuous.

Remark 1.2. It follows easily from Theorem that every weak solution u €
C ([0,T] — B#P?(R)) to the Cauchy problem is classical in the sense that it
is of class C'*° over the open set Rx (0,T") and satisfies pointwise and the initial
condition u(-,0) = ug € B¥PP(R) in the B%PP(R)-limit, i.e., ||u(-, t)—uo]

BS;p,P(R) —



EJDE-2021/SI/01 SPACE-TIME ANALYTICITY OF WEAK SOLUTIONS 29

0 as t — 0+. For the special case of the reaction function f : (u,n) — f(x,t;u,n)
being linear, a weak solution u € C ([0, T] — L?(R)) to the (linear) Cauchy problem
is defined e.g. in Evans [26], Chapt. 7, §1.1, p. 352, or Lions [62], Chapt. IV,
§1, p. 44, or [63], Chapt. III, (1.11), p. 102. In that case the initial condition
u(-,0) = ug € L*(R) holds in the sense of the L?(R)-limit, [lu(-,t) —uo|| 2y — 0 as
t — 0+. The main reason why we prefer to work with the notion of a weak solution
as opposed to a classical solution of the Cauchy problem is the fact that
already a weak solution is unique. The uniqueness of a weak solution is an important
technical argument in our proofs of Theorem and Theorem (Section .

In fact, we work sometimes also with the so called mild solutions to the Cauchy
problem that make sense in C ([0,T] — L*(R)); cf. Tak4c [82, Sect. 3 and
4], even though we use them in the Besov space B*P*(R) in place of L?(R). Mild
solutions do not require any additional regularity knowledge as they are defined
by the well known variation-of-constants formula (Pazy [72] §5.7, p. 168]). Thus,
they are even “weaker” than the weak solutions, but in our situation one can easily
verify that every mild solution is also a weak solution to problem and vice
versa; see e.g. Ball [I0] (or [72, Theorem on p. 259]).

The same remarks apply also to the more general Cauchy problem .

This article is organized as follows. We introduce some basic notation (mostly
complex domains) in Section |2l Our main analyticity result, Theorem supple-
mented by an additional explanation in Proposition[3.5] is stated in Section[3] Their
proofs are gradually built up in Sections [4] through [8} First, the Cauchy problem
in RY x (0,T) is treated as an abstract initial value problem in Section |4l There,
an important abstract a priori BSP-type estimate is established in Theorem [£.7}
Analyticity in time for this abstract problem is proved in Section [5| (Theorem [5.3]).
Then, in Section[6] we treat analyticity in space for the semilinear parabolic Cauchy
problem in RY x (0,7, see Proposition provided the initial data are already
analytic (in space). We show that the analyticity in space is preserved for all times
in [0,7]. We combine the time and space analyticity results from Sections [5 and []
into Theorem in Section |7} This theorem is still only “local” in time. Our main
analyticity result, Theorem[3.4] is proved in Section 8] together with Proposition [3.5
and, in particular, the “regularity” estimates (3.13) and . Section@treats an
application to a Risk Model in Mathematical Finance. Finally, Section [10| contains
some historical remarks and comments concerning the analyticity of solutions to
linear and semilinear elliptic and parabolic systems and its applications to relevant
classical problems.

2. NOTATION

We stick to the classical notation N = {1,2,3,...}, Z, = {0,1,2,3,...} =
NU{0}, and Z = {0,+1,+2,43,...} = Z; U(—=Z,), together with R = (—o0, 00),
R, = [0,00), and C = R + iR = R2. Typically, we denote by x = (z1,72,...,Zn)
and y = (y1,%2,...,yn) points in RY and by 2z = (z1, 29,...,2y) points in CV.
We often write ( = £ +in for ( € C and &, € R, ie., e = & and Sm{ = 7
are the real and imaginary parts of ( € C, respectively. Similarly, z = = + iy for
z € CN and z,y € RY, or equivalently z; = z; +iy; (i = 1,2,...,N) for z;, € C
and z;,v; € R, ie., Rez = x and Smz = y. Hence, we identify CV = RN @ iRV
(or simply CV = RY +iR¥) as vector spaces over the field R and thus consider
RN to be a (vector) subspace of CV. We use a bar (7) to denote the complex
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conjugate ¢ of a number ¢ € C. The complex conjugate of a vector z € CV
is denoted by z = (z1,22,...,2n). Similarly, the complex conjugate function of
a complex-valued function f(z) (for f : CN — C, for instance) is denoted by
f(2) = f(2). Furthermore, we denote by (z,w) = Zf\; z;w; the standard Euclidean
inner product of z,w € CV and by |z| = (Zf\il |zi]?) "2 the induced (Euclidean)
norm of z € CV. We will often use the sum (¢!-) and the maximum (¢°°-) norms
of z € CV, respectively:
N
=Dl e = el

Finally, we write z - w = Zf;l zyw; for the bilinear product of z,w € CV, which is
not to be confused with the inner product (z,w) = Zf\il ziw; if w ¢ RY (which is
sesquilinear). The Euclidean (£2-) norm of z € CV is abbreviated as |z| = |2]» =

N 1/2
V (sz) = (Zi:l |Zi|2) .

The vector space (over the field R) of all real-valued (square) M x M matrices
A = (a;;)};_, is denoted by RM>*M Similarly, the vector space (over the field C)
of all complex-valued M x M matrices A is denoted by CM*M,

Given 7 € (0,00), we denote by Q) = (—r,r)N = {y € RN : |y|so < r} the
N-dimensional open cube in RY (centered at the origin) with side lengths 2r, and
by Q") = [—r,7]" its closure.

To formulate our main hypotheses, given r, T € (0,00) and T’ € [0,T), we
introduce the following complex domains for the complexifications of the spatial
and temporal variables, z € RY and t € (0,T), respectively:

X0 = {z=a+iy e CV: |yl <} =RY +iQ"", o
2.1
Tgf,)’T ={t=0+4+ir€C:T <o <Tand || <7};

see .

The former, X", is a tube (often called a strip) in CV with base Q") and
the latter, ng,),T is an open rectangle in the complex plane C. Notice that ng,)’T
contains the interval (T”,T). The remaining temporal domains, Ay and Agpl), have
been introduced in and (L.6), respectively, with the angle ¥ € (0,7/2) given
by tand = r/T".

Our techniques will use holomorphic semigroups in an open sector Ay C C
defined in , with a given angle ¢ € (0, 7/2), but often locally in time in an open
triangle Ang) C C defined in , where 0 < T' < oco. Their respective closures
in C are denoted by Ay and A%T/); both contain the origin 0 € C. Finally, for
0 < T’ <T < oo we recall the definition of the temporal domain Agl’T introduced
in with the angle ¢ € (0,7/2) given by tand = r/T’. Tts closure in C is
denoted by Agl’T. Clearly, & + A%Tl) ={{+teC:t ¢ A%T,)}. Of course, if
T = T' then Ag’T = Ang/) is an open triangle.

Throughout this article we work with complex-valued functions; hence, all Ba-
nach and Hilbert spaces of functions we consider are complex (over the field C). We
work with the standard inner product in L*(RY) defined by (u,v)r2 := [pn uv da
for u,v € L*(RY). The induced norm is abbreviated by ||lul|r2 = ||lul|2@~). We
warn the reader that we identify the dual space 57’ = (LQ(RN))/ of the complex



EJDE-2021/SI/01 SPACE-TIME ANALYTICITY OF WEAK SOLUTIONS 31

Hilbert space 57 = L?(RY) with # itself by means of the (complex) Riesz rep-
resentation theorem which yields an anti-linear isomorphism of 5 onto " (cf.
Adams and Fournier [I Chapt. 2], Theorem 2.44, p. 47).

The following notation is taken from Krantz [57, Chapt. 0]. Given a domain
in R", we denote by C*(Q) (k € Zy) the vector space of all k-times continuously
differentiable functions f : Q — C and by C*(Q) the vector space of all f: Q — C

such that f|o € C*(€2) and each partial derivative %ZLf of f (€ (Z4)") of order
|a| < k can be extended to a continuous function on Q. Of course, f|q stands for
the restriction of f to Q2 and all partial derivatives are taken in the real variable
sense (r € R"). In case @ C C" = R" ®iR" = R?*" (r € N) is a complex domain,

% of f (o, 8 € (Z4)") of order |a] + |8] < k is
taken in the real variable sense, where z,y € R" in (z,y) 2 z = x + iy € C". The
vector spaces C*(Q2) and C*(Q) are defined analogously, with |a| + |3] < k. If Q
is bounded then C*(€) is a Banach space endowed with a maximum-type norm.
If Q is not bounded in general then we denote by C° ..(Q) the vector space of all
uniformly continuous functions f : Q@ — C, and by Cp4(Q) = C°(Q) N L>(2) the
vector space of all bounded continuous functions f : @ — C. Alternatively, if Q
is not bounded (in R" or C" endowed with the Euclidean metric d) then we may

the (mixed) partial derivative

consider a compactification Q of Q, i.e., a compact metric space Q (endowed with
a metric E) such that there is a homeomorphism j : Q) — Q of Q onto a dense
subset j(€) of €, such that for any pair of sequences {2, }%, {yn}>>, C Q we
have d(zn,y,) — 0 if and only if J(j(xn),](yn)) — 0 as n — oo. Clearly, by
identifying © with the subset j(£2) of Q we identify Q with a dense subset of €.
Hence, we can identify C°(€) with a vector subspace of C% () N C% (Q). As a
simple example, we may take Q to be the one-point compactification of a domain
Q C R" (or 2 C C7). In particular, we have R = R” U {00} and C" = C" U {0}
endowed with the metric d defined in the next section (Section (3-2).

Finally, if Q@ C C" is a complex domain, we denote by A(€2) the Fréchet space
of all holomorphic functions f : Q — C endowed with the (complete metrizable)
topology of uniform convergence on compact subsets of {2. As usual, we abbreviate
the Cauchy-Riemann partial differential operators

0 1(8 0

8zi = 5 (91'1 ! 6y2

0 1( 0 0 ) (2.2)

9z, 2 i

) and ox; y;

Remark 2.1. We will often use the following classical fact; see e.g. John [50,
Theorem, p. 70] or Krantz [57, Definition II, p. 3]: Let @ C CV be a complex
domain (N > 1). A continuously differentiable function h : @ — C (in the real
variable sense, partially with respect to x;,y; € R; i = 1,2,..., N) is holomorphic
(i.e., complex analytic) if and only if it verifies the Cauchy-Riemann equations in
Q,ie,0h/0z; =0in Q; fori=1,2,...,N.

3. STATEMENT OF MAIN RESULTS

Let us abbreviate the differential operators (and derivatives)

~im = Gader % o

Dy i=-—= (-7
10z 10x;
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la la|
P R L M R &
x aq aN
Oz« 0z ... Oz
We assume that the operator
P

P(z,t,D,)= Y D2 (Paﬂ(x, ) Df)

lal,|B]<m

olel o8l
= ¥ i_la‘_wa?(Paﬁ(x’t)a?)’

lal,|B]<m

for a = ()N, € (Z,)N .

(3.1)

for (z,t) € RN x (0,T), is a linear partial differential operator of order 2m in
divergence form with the coefficients i~1¢I=18IP*# (2 t) indexed by a, 8 € (Z)N
with |a| < m and |f| < m, where each P*#(z,t) = (Pﬁf)%c:l is an M x M matrix
with real (or complex) entries Pjoff = P;—);f (z,t). The reader is referred to Friedman
[32, Part. 1, Sect. 12, pp. 32-37] or John [50, Chapt. 6, Sect. 2, pp. 190-195] for
general facts about such operators.

Let us abbreviate the product domain = X("0) x Agg’T C CN x C, with some
ro € (0,00), 0 < Ty < T < oo, and Yy € (0,7/2); the closure of Q in CV x C is
denoted by Q. We introduce also a compactification Q of Q,

Q= x(0) x Ag‘;’T = (@N + iQ(T)) X Agz’T ~ RN x Q) x Agg’T,

where RY = RN U {oo} denotes the one-point compactification of RY endowed with
the standard metric

lz—yl ¢ z,y € RV

~ ~ I+|z—yl
d(z,y) = d(y,z) = {1 if € RV, y = oo; (3.2)
0 ifx=y=o00.

Hence, X)) = RN 4 Q) = RN x Q") is a compactification of X("0) ¢ CV.
We assume that the operator P and the function f satisfy the following hypothe-
ses in the product domain Q = X(70) x Agg’T defined in (1.7) and (2.1)).

3.1. Hypothesis.

(H1) For each pair a, 8 € (Z4 )N with |a|] < m and |3| < m, the entries Pfkﬂ :
Q —iC (j,k =1,2,..., M) of the coefficient P*% = (ij’,‘f)%ﬂ:l belong to
CHQ)NL>®(Q)NA(£). Moreover, we assume that also all partial derivatives
g‘;,l Pﬁf(x,t) of order |o'| < |a| (&’ € (Z4)N) are in C*(Q). The entries

P;’,‘f of the leading coefficients (|Ey| = |B| = m) are assumed to belong also
to CY () besides being in C1(2) N L>(Q) N A(R).
This is the case if the entries Pﬁf of the leading coeflicients
(Ja| = || = m) belong also to C°(€) besides being in C*(€) N
L>=(Q2)NA(Q). This claim follows directly from C°(Q2) C C9 ..(2)
which means that any continuous function f : £ — C is uniformly
continuous on  with the restriction f|o to £ being uniformly
continuous and, thus, flg : @ — C possesses a (unique) contin-
uous extension f : 0 — C to € which turns out to be uniformly
continuous, as well.
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(H2) Operator P is strongly elliptic in Q, i.e., there exists a constant ¢ € (0, 00)
such that the inequality

M
Re( Y P ) = clgP nf (3.3)
ik=1 [al = [Bl=m

holds for all (z,¢) € Q and for all £ = (&,...,¢y) € RY and n =
(01, ..., nar) € CM | where ¢917 = Efﬁﬁl ...ff\‘,N+5N and o = (aq,...,aN)
is in (Z4)N, and 8 = (B1,...,B8y) isin (Z4 )N

(H3) The components f; : € x CMN 5 C (j = 1,2,..., M) of the reaction
function f = (f1,..., far) belong to

CH(Q x CMN) A A(Q x CMVY .

(Recall that the integer N is defined in (1.2).) Moreover, we assume that,
for every bounded subset ¥ C CMN their first-order time derivatives
% fi(z,t; X) together with their first-order partial derivatives

— fi(z,t; X), for |8 <mandjk=12,...,M,
ank

with respect to the components Xz 5, of the vector Xg = (Xg1,..., X5 M) =

36“;;“ € CM (or CM) are uniformly bounded on the set  x 3. Finally, we

assume that the function f : Q x CMN s CM gatisfies

/ f(z+iy,£;0)|Pde < KP forall y € Q) and t € Agg’T, (3.4)
RN

where K € (0,00) is a constant and 0 := 0)g1<m = (0,...,0) € CMN,

Remark 3. 1 The local boundedness condition in (H3) on the first-order partial
derivatives 2 5:.fi(z, 1 X) and afJ —(z,t; X) on the set Q x X will be used later (cf.
in Section @ in the followmg equivalent form:

For a bounded subset & ¢ CMN and indices 7 =1,2,..., M, there is a constant
C; = C;(%) € (0,00) such that the following inequalities,

of; 0
| L(x,t; X)| < C;(8) and |3X;7k

for all (z,t) € @ and for all X = (Xp) g, € X, hold for all 3 = (By,...,0n) €
(Z)N with |8| < m and for all k=1,2,..., M.

(z,t; X)| < C5(2) (3.5)

A simple, but more restrictive alternative to formulate (H1)—(H3) is to replace
Q = x00) AT"’ by a larger, but simpler product domain Qq = X("0) x < TO)
. T,,
(cieﬁ)ned in (1.8) and . with 79 = T - tan Jg; hence, Q C g, thanks to A g
Tor- ) ~
Let us recall our abbreviation X = (Xp) 5c,, € RMY (or CMY) with N =
>y N from (L.2) and make it more precise as follows: When dealing with com-

plex (partial) derivatives of the function f; with respect to the variable Xpg i, we pre-
fer to replace Xz 1 by the Complex variable Zg , = Xg, k—l—iYg’k € C(Xpk,Yaix € R);

Jk=1,2,..., M, and write BZJ (w,t; Z) in place of 5 (x,t;X).
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The strong ellipticity inequality (3.3]) can be improved as follows; cf. Takac [82]
Remark 3.1, p. 57]:

Remark 3.2. In a smaller domain ' = X(70) x Ag‘?’T C Q, with some number

95 € (0,7%] (small enough), inequality (3.3) holds irol the following qualitatively
stronger form, cf. Agmon [2], Theorem 7.12, ineq. (7.21) on p. 87:

M
Re(ef- 3 3 P ) > PP @)
Jk=1la|=|B|=m
for all § € [—9),0)], for all (z,t) € , and for all £ = (&,...,6n) € RY and
n=,...,nm) € CM, where ¢’ € (0,c] is a constant. Recall that 0 < 9} < 9

and ' C Q. Consequently, without loss of generality, we may remove the prime (*)
from both 9 and ¢’ in (3.3[) and assume that

M
Re(¢0- S S P ) >l pnf (3.6)

Jk=1|a|=|8|=m

for all € [—y,9] and for all (2,t) € Q, & = (&1,...,&v) € RN, and n =
(M1, ---,nar) € CM | where ¢ > 0 is a constant. We prefer to use inequality (3.6) in
place of (3.3)).

The Gdrding inequality (in the whole space RY) below is an important conse-
quence of inequality (3.6)); see e.g. Agmon [2, Theorem 7.6, p. 78]:

Corollary 3.3 (Garding’s inequality). Under Hypotheses (H1), (H2), there exist
constants ¢; and co, ¢1 > 0 and 0 < ¢y < 00, such that

Fe [ei‘g . Z / Dow - PP (z +iy,t) DPwdx
RN

la|=|B]=m (37)
>c DS W% ey — callwl;
g z WIIL2(RN) 2 L2(RN)
lal=m

holds for all w € W™2(RN) and for all 6 € [, 0], y € Q0), and t € Agg’T.

Proof. The reader is referred to Agmon [2, Theorem 7.6, pp. 78-86] for a proof.
We remark that the proof of Garding’s inequality ([2, Lemma 7.9, p. 81]) requires
the uniform equicontinuity of the leading coefficients P*?(x + iy,t) as functions
of € RN parametrized by y € Q™) and t € Ag‘;’T, where P (z + iy,t) =
(Pjojf)%c:l for |a| = |8] = m. This is guaranteed by our Hypothesis (H1) that all
Pﬁf (Ja| = |B] = m) belong to C? ..(Q) as functions of (z,t) = (z +iy,t) € Q. O

unif

To give a natural lower estimate on the domain of holomorphy (i.e., the domain
of complex analyticity) of a weak solution u to the Cauchy problem (L.1)), we
introduce a few more subsets of CV x C (cf. [82] p. 58] or [83] p. 428]).

We use the subdomain F(TTI)(r’, 9) =X x Ag,/’T of the (larger) domain
Q=T (rg, ) == X0 x AT < CN x C (3.8)

defined above (H1)-(H3). The three constants T" € (0,Tp], 7’ € (0,70], and ¥ €
(0,9] used below will be specified later (in Theorem [3.4).
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We recall the tube X(70) = RY 4 1Q(70) (called often a strip) in CV with base
Q) ¢ RN defined in and recall from also the definition of the set A1(9T/)
in C. In formula we employ the time translation of A%T,) by r units, i.e., the
set r+A1(9TI), to define the union AgI’T of such translations for 0 < r < T—-T' < oc.
It is easy to see that, for 0 < s <T < o0 and 0 < ¥y < /2, we have

v
= A1(980) U([s,T) +i(—s - tanvg, s - tandg)) (3.9)
={t=0+ir€C:0<0<T and |7| <r-tanvy where r = min{o, s}}.

Recall that the closure of Af;OT (and Aq(;o), respectively) in C is denoted by AZ’OT
(and Aff)). Given any r € [0,T), we observe that the (real) time r section of A%"
0 0
is given by
{te AE’OT :Ret =7} =r+i(—r" - tandy, ' - tandg) C C

where ' = min{r, s}. These sets in the complex plane C have already been sketched
in Figure [I| above and will be sketched more precisely in Figure [2| below.

The Cartesian product F(TS )(ro,ﬁo) = x(ro) % Afg’oT defined in is our most
important complex analyticity domain in CV¥ x C. Recall that BPP(RN) =
(LP(RY), w2mr(RN)) < LP(RY) with p > 2+ & Our main result reads
as follows.

1-(1/p),p

Theorem 3.4. Let m,M,N >1,p>2+ %, 0 < T < oo, and assume that (H1)—
(H3) are satisfied in the product domain Q@ = F(TTO)(TO, Jg) = x(r0) XAg‘;’T Cc CNxC
with some constants 0 < rg < 00, 0 < Ty < T, and 0 < 99 < w/2; cf. and
21).

(i) Forty € [0,T) and any initial value ug € B¥PP(RN) at time t = to, there is a
number Ty € (tg,T], depending on ty and ug, such that the Cauchy problem
on the (local) time interval [to,T1] C [0,T] with the initial condition u(-,ty) = ug
in BSPP(RN) possesses a unique weak solution u € C ([to, T1] — B¥PP(RY)).

(ii) Furthermore, for any initial data ug € BSPP(RN) at time t = 0, any (global)
weak solution u € C ([0, T] — B*PP(RN)) of the Cauchy problem (1.1)), if it exists,
is always unique and it possesses a unique (temporal) extension to the space-time
domain RY x Ag,/’T, denoted again by u, such that the B*PP(RN)-valued function
u : Ag,"T — BSPP(RYN) is continuous in Ag’T and its restriction to Ag,/’T is
holomorphic, provided the numbers T’ € (0,Ty] and ¥ € (0,9] are small enough.
This temporal extension is a unique weak solution to the Cauchy problem m
RN x ALT.

w

(iii) If, in addition to ug € B¥PP(RN), ugy possesses a (unique) holomorphic ez-
tension tg : X50) — CM from RN to the complex domain X(0) c CN, for some
ko € (0,79], such that the function

(- +1iy) : x — gz +iy) : RY - CM
belongs to B*PP(RN) for each y € Q") and

N (dg) := sup |80 +1y)|| pewr@y) < 00, (3.10)
yeQ(h‘ro)
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then also any (global) weak solution u € C ([0,T] — B*PP(RYN)) of the Cauchy
problem (1.1)), if it exists, possesses a unique extension to the space-time domain

x0) Ag, ’T, denoted by u, with the following properties, provided the numbers
T € (0,Tp], ' € (0, ko], and ¥ € (0,9] are small enough:
(iii.1) a(- + iy, t) € BSPP(RN) holds for all (y,t) € Q") x Ag,’T, together with

sup NV @, )= sup sup |a( +iy, )| gerryy < 00, (3.11)
teAT) T teAT) T yeQro)

(iii.2) the function
i (y,t) = (- +iy, £) : QU x ATT 5 Bowr(RN)

is continuous in the space-time variable (y,t) € Q(’"/) X Agll’T,
(iii.3) @ 4s holomorphic in the complex domain

LY 0" = 20 5 ADT € 200 5 ATT € @ =TT (rg, 0p) = X0 5 AT

Finally, the extension u wverifies the partial differential equation in the Cauchy
problem (1.1) pointwise in F(TT )(r/,ﬁ’), i.e., in the classical sense, and obeys the
initial data as follows,

[8(: + iy, £) — (- + iy)|| prwr@n) =0 ast—0, te AL (3.12)

for every y € Q(’J).

In Part (iii), properties (iii.1) and (iii.2) combined with the Sobolev(-Besov)
imbedding B*PP(RY) — C™(RY) N W™ (RY) guarantee the continuity and
boundedness of the function @ : X" x Ag’T — CM,

Our condition p > 2 + % is natural (and sharp) to guarantee the continuity of
the Sobolev imbedding

BsPP(RY) = [Bs#P(RV)|M
— C™(RY) N W™ (RYN) = [C™(RYN) 0 W™ (RV)|M
which follows from the Sobolev inequalities and the Sobolev imbedding
BT R (RY) b O (RY) = C(RY) 0 L2 (RY)

for N/p < s—m < o0 see, e.g., Adams and Fournier [T, Chapt. 7], Theorem 7.34(c),
p. 231. In our proposition below we abbreviate ¢;(s) = min{s, 1} for s € Ry.

The above proposition follows directly from our proof of Part (iii) of Theorem 3.4
The temporal integration path in the double space-time integrals and ((3.14])
is sketched in Figure 2]

Proposition 3.5. In the situation of Theorem above, there exist constants
co > 0 and Cy > 0 depending solely on kg, U9, K, T, v/, 9" and the supremum
norm

|||u|||L°°(0,T) = ||u||C([O,T]—>BS?PvP(]RN)) = sup |[u(, t)| Bsipp(RN) (< 00)
0<t<T
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KO S : [

0 } . f . o = Ret

—T0

FIGURE 2. Here is a more detailed version of Figure [1| used in Proposition

of the (global) weak solution u € C ([0,T] — B¥PP(RN)), such that the following
estimate holds for all pairs (y,t) € Q") x Ag,/’T with t = o + it (0,7 € R):

/ / |00 (x4 iy, s +ici1(s/T")7) [P dads
(3.13)
T Z / / |Da(z + iy, s +isi(s/T")7))" deds < Cp .
|| <2m RN
Similarly, there are constants cj > 0 and C}, > 0 depending solely on the constants
co and Cy, such that the following estimate holds for all pairs (y,t) € QU x Ag/ T
witht = o +1ir (0,7 € R):

[a(- +iy, o + i< (o/T) ) | Bew @)

+ ¢} Z / / A (z +iy, s +is (s/T)7)|° deds < C}.
|| <2m RY
Remark 3.6. (See Figure [2). Notice that, in and (3.14), the temporal
argument in the function D¢u (z + iy, s + i1 (s/T")7) reads s + i1 (s/T")T = (1 +
i(r/T"))s whenever 0 < s < T" < 0o, whereas s+is1(s/7")7 = s+ir holds whenever
0<T' <5 (Lo <T < ).

(3.14)

4. ABSTRACT CAUCHY PROBLEM IN AN INTERPOLATION SPACE

We assume that E = (Ey, E1) is a Banach couple, that is, Ey, Fy are Banach
spaces such that F; is densely and continuously imbedded into Ey, i.e., E1 — Ej.
We consider only complex Banach spaces over the field C. Given a number 1 < p <
o0, we denote by

El—%,p = (EO’El)l—%,p

the real interpolation space between E; and Fy obtained by the trace method as
follows, with the paremeter § = 1 — % € (0,1). We define such an interpolation
space for any 6 € (0,1) below, cf. Lunardi [65, Chapt. 1], §1.2.2, pp. 20-25. The
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reader is referred to Adams and Fournier [1, Chapt. 7], §7.6-§7.23, pp. 208-221, or
Triebel [84, Chapt. 1], §1.8, pp. 41-55, for further details. The trace spaces were
originally introduced in Lions [59, [60, [61].

Let X} denote the Banach space of all Bochner-measurable functions u : Ry —
FEy endowed with the weighted Lebesgue norm

e 1/p > dt 1/p
g s= ([ 1=t uon, ) = ([ ol =) <o )

Notice that X7 , = LP(Ry — Ep). Analogously, we define the Banach space Yy’ of

all functions u € X} with the following properties: u can be identified (by equality
a.e. in R ) with a Bochner-measurable function u : Ry — Ej satisfying

[mf:(éwﬁ9<>mt) (Aﬂwnmﬂpf”<w,mm

and there is a function v € X}, denoted by v = u’ in the sequel, such that the
equality

ta
u(te) —u(ty) = / v(s)ds holds in Ey for all 0 < ¢1 <ty < 0. (4.3)
t1

Applying Holder’s inequality to this equation, it is easy to show that every u € Y}
is 6-Holder continuous on any compact interval [0,7] as a function valued in Ey,
see, e.g., Lunardi [65, Chapt. 1], §1.2.2, p. 20. The Banach space Y, is endowed
with the norm

lullys := [ulys + ]l xz < oo (4.4)

For the special case § =1 — %7 a useful equivalent norm on Ylp_l is defined by
P

ol o= ([ oz, @+ [ ol a)” (45)

_1
Thus,

YP = LP(Ry = E1) NW'P(Ry — Eg)

is an abstract Sobolev space Amann [6, Chapt. III, §1.1], pp. 88-89).
Finally, the interpolation trace space is the vector space

Eop = (Eo,E1)op :={u(0) € By :uec Yy}
of the initial values z = u(0) € Ey of all functions u € Y endowed with the trace

norm
Izl &, == inf{Htuep :xz =u(0) for some u € ng} (4.6)

which makes the (linear) trace mapping 7 : u + u(0) : Y} — Epy, bounded
(i.e., continuous), with the operator norm < 1. Equivalently to , we have
I#llEy, < llullyy for every u € Yy with u(0) = z and there exists a sequence
{un}nZy C Yy such that u,(0) = z and |lunllyy — ||2[&,, as n — co. It can be
shown that there is a constant ¢ = ¢(8,p) > 0, depending only on E = (Ey, E1),
0 € (0,1), and p € (1,00), such that

Izl e,, < cllzllg?lzl%, —holds for all z € B ; (4.7)

see, e.g., Triebel [84, Chapt. 1], Theorem 1.3.3(g), p. 25, combined with Theorem
1.8.2, pp. 44-45. As an easy consequence of the definition of Ey , for 6 =1— =, i.e.,
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(1 —0)p = 1, one can show that the abstract Sobolev space Y? , is continuously

P
imbedded into the Fréchet space C'(Ry — Ey_1 p) of all continuous functions w :
o

R+ — El—l,p
on every compact time interval [t1,t2] C Ry,
VP, =LP(Ry = E)NWHP(Ry — Eg) = C(Ry — Ey_1 ).

1-1
p

endowed with the (locally convex) topology of uniform convergence

We complete our definition by setting g, := Ep if 6 € {0, 1}.
In what follows we deal with applications of the interpolation trace space Ejy
(with 6 =1— %) to abstract linear and nonlinear evolutionary problems of type
du
— — A(t,u(t)u(t) = f(t,u(t)) + g(t) forae. te (0,7);
g~ A u(®)ut) = f(t u(t) +9(t) (0,T) (48)
U(O) =ug € El—%,p .

Here, u : (0,T) — Ey is the unknown function valued in the Banach space Ey and
0 < T < o0. A rigorous definition of a strict solution u of the initial value problem
will be given below, in Definition Essentially, we follow Clément and Li
[20], Section 1, pp. 17-18. A closely related approach is carried out also in Kéhne,
Priiss, and Wilke [55].

We denote by L(E; — FEj) the Banach space of all bounded (i.e., continu-
ous) linear operators B : F; — Ey endowed with the standard operator norm
| Bllz(5,—Eo)- Let us denote by I : Ey < Ej the continuous imbedding of E; into
Eo; hence, I € L(E; — Ep). We identify I with the identity mapping in the whole
of Ey and abbreviate L(FEy) = L(Eg — Ejp).

If, for some complex number A € C, the operator A\l — B € L(E; — Ejy) is
invertible with an inverse denoted by (A — B)~! : Ey — E; — Ej such that
this inverse is bounded from FEj into itself, i.e., (\] — B)~! € L(Ey — Ep), then
we alternatively (equivalently) view B as a densely defined, closed linear operator
B : Ey — Ey with the domain D(B) = Ej, by the closed graph theorem, cf.
Amann [0, Chapt. I, Lemma 1.1.2], p. 10. Indeed, if the graph G(B) of B is closed
in Ey x Ey, it is closed also in F; x Ey. In this case, the norm || - ||g, on Ej is
equivalent with the graph norm

lzlps) = 1Bz, + 2llE, » 2 €D(B),

on D(B) = E;. An important class of such operators, denoted by Gen(E) =
Gen(E; — Ey), is formed by all closed linear operators B : Ey — Ejy with the
domain D(B) = E; that generate a strongly continuous semigroup {e*? : ¢ > 0}
on Fy. We will consider only generators B with domain D(B) = E;. Finally,
we denote by Hol(E) = Hol(E; — Ep) the subset of all (infinitesimal) generators
B € Gen(E) that generate a holomorphic (i.e., analytic) semigroup on Ey. We
refer to Amann [6 Chapt. I, §1], pp. 9-24, Pazy [72, Chapt. 1-2], pp. 1-75, or
Tanabe [8T), Chapt. 3, §3.1-§3.4], pp. 51-72, for details about strongly continuous
(and holomorphic) semigroups.

Next, given an operator B € Hol(E), let us consider the following special (linear)
case of problem , namely,

T Bu(t) = g(t) forae. te (0,7); (4.9)

u(0) =up € Ey_1 ,,.
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Here, ug € Ey_1 , is a given initial value, g € LP((0,T) — Ep) is a given function,
1 <p<oo,and 0 < T < oo. In analogy with our definition of the Banach spaces
X7 and Yy of functions u : Ry — Ej on the entire half line R, endowed with the
norms given by egs. (4.1) and , respectively, we introduce the corresponding
Banach spaces X} (0,T) and Y{(0,T) of functions u : [0,7) — Ey on a bounded
interval [0,7), 0 < T < oo. Of course, in (LI]), the integral fooo... % has to

be replaced by fOT . % . It is not difficult to show that if one replaces the pair
of spaces X} and Y} by X7 (0,T) and Y, (0,T), respectively, in the definition of
the trace space Ey, and its norm in ([4.6), the same interpolation trace space is
obtained. These facts can be inferred easily from the treatment of trace spaces in
the monographs [T}, [6] [65] [84] or from the original works by Lions [59] [60, [6T]. In

particular, we have the continuous imbedding

Y? , (0,T) = LP((0,T) = Ey) N\W'P((0,T) = Eo) = C ([O,T] = El,%,p) :

_1
(4.10)

see, e.g., [I, Chapt. 7], §7.67, p. 255. Thus, the (linear) trace mapping
7w u(0) Y

_1
P

(OaT) — El—%,p

is continuous.
We say that a function w : [0,T) — Ep is a strict solution of the initial value

problem (4.9) if

u€ Ylpiyl(O,T), Tu = u(0) = ug,
and the differential equation in (4.9) is satisfied with all terms in X7 ,(0,7) =
P
L?((0,T) — Ejp).

Definition 4.1. An infinitesimal generator B € Hol(E) of a holomorphic semi-
group on Ey with domain D(B) = Ej is said to possess the mazimal LP-regularity
property, symbolically B € MR, (E) = MR,(E; — Ey), if for any given initial

condition ug € F;_ 1, and any given function g € LP((0,7) — Ejp), problem
L

[2.9) possesses a unique strict solution u € Y” , (0,T) that satisfies the following
estimate: '
There exists a constant M = M (p, E, B,T) > 0, independent of wug

and g, such that

T du, du T
LI s [ ipaton, a

o+ o ).

We have adopted this definition of class MR, (F) from Clément and Li [20} p. 18]
and from the monograph by Ashyralyev and Sobolevskii [0, Chapt. 1], §3.5, p. 28.
It may be viewed as some kind of ellipticity hypothesis for the linear operator
B € L(Ey — Ey) or a stability hypothesis for the linear parabolic problem .
Equivalently, the abstract (linear evolutionary) partial differential operator

(4.11)

1—

< M (Jluoly

1
5

(9 = B, 7): Y7 1(0,T) = LP((0,T) = Eo) x Ey_1

_1
P
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defined for every u € Y ,(0,T) = LP((0,T) — E1) nWHP((0,T) — Ep) by

1
p

(0t — B, 7):uw (((11—1: — Bu(t), u(O)) , (4.12)

possesses a bounded inverse furnished by the strict solution

U= (at - B7 T)_l (Q,UQ) € Ylp_L(OaT)
of problem (4.9); cf. Angenent [7, Lemma 2.2, p. 95] for the parallel interpolation
case p = oo introduced in Da Prato and Grisvard [33].

Remark 4.2. (a) It is not difficult to show that the maximal LP-regularity class
MR, (FE) is independent from a particular choice of T' € (0, c0); see Dore [24], Sect. 5,
p. 310], Corollary 5.4, or Priiss [(4, p. 4], remarks after Corollary 1.3. More impor-
tantly, this class is independent from p € (1,00) as well, i.e., MR,(E) = MR, (E)
holds for all p,py € (1,00), by a classical result due to Sobolevskii [78] [79]; see,
e.g., [78l §3.1, pp. 343-345]. Further details on the independence of MR, (E) from
p € (1,00) can be found in Ashyralyev and Sobolevskii [9, Chapt. 1], §3.5, Theorem
3.6 on p. 35, Dore |24 Sect. 7, p. 313], Theorem 7.1, or Hieber [42, Corollary 4.4,
p. 371], where in one may take M = M(p) = p*(p — 1)~ M(py) < oo if the
constant M (po) € (0,00) is known, by [9].

(b) We are allowed to specify the constant M = M(p, E, B,T) > 0 in
to be the smallest nonnegative number M € R, for which is valid; cf.
Clément and Li [20, Proposition 2.2, p. 19]. Then, clearly, T — M(p, E, B, T) is
a nondecreasing (nonnegative) function of time T € (0,00). Indeed, if 77 € (0,T)
and g € LP((0,7") — Ey) is arbitrary, it suffices to apply with the function

in place of g in order to derive for T" in place of T' with the same constant M.
Hence, M(p, E,B,T) < M(p, E, B,T) holds for 0 < T" < T. Tt is easy to see that
M(p,E,B,T) > 0. (The case M = 0 would easily lead to a contradiction.) In what
follows we always use this optimal value of M, i.e., M = M(p, E, B,T) > 0.

(c) Simple perturbation theory for linear operators shows that the set Hol(E) =
Hol(E; — Ejy) is open in the Banach space L(F; — Egy). Even a more precise,
relative perturbation result is valid; see Kato [52, Chapt. IX], §2.2, Theorem 2.4
on p. 499. A similar result can be derived for the class MR,(E) = MR,(E; —
Ey) applying the perturbation technique from either Amann [6, Chapt. III, §1.6],
Proposition 1.6.3 on p. 97, or from Clément and Li [20, Proof of Theorem 2.1], pp.
19-23: The set MR, (E) is open in L(E; — Ejy); see Lemma below. Indeed,
this follows from the fact that the set of all bounded linear operators from

c(Yf_%(o,T) — LP((0,T) — Ey) x EI,%J,)
that possess a bounded inverse is open in this Banach space, and the inverse
(8; — B, 7)" " is a locally Lipschitz-continuous function of B € L(E; — Ey), by
Lemma below and formula thereafter, with B € MR, (E) being fixed and
A€ L(E, — Ep) having a sufficiently small operator norm [|A|| z(g, - g,) depending
on B.
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Now we are ready to define a strict solution w to our abstract nonlinear evolution-
ary problem (4.8]). We assume that 1 < p < 00, 0 <T < 00, g € LP((0,T) — Ey),
ug € U where U is an open set in Ey_1 ,,, and the mappings

=

A (t,v) = A(t,v) : [0,T] x U C [0,T] x Ei_1,— L(E1 — Ey),
f:(tv) = f(tv):0,T] x U C[0,T] x El,%yp — Ey

satisfy the following “natural” hypotheses (cf. Clément and Li [20, p. 19], (H1)-
(H3)):
4.1. Hypothesis.
(H4) A:[0,T] x U — L(E1 — Ep) is a Lipschitz continuous mapping such that
A(t,v) € MR,(E) for all (t,v) € [0,T] x U.
(H5) f:[0,T] x U — Ey is a Lipschitz continuous mapping.

Of course, the metric on [0, T]x U is induced by the canonical norm on Rx E; _ L

It is a matter of a straight forward calculation to verify that both substitution
mappings,

(v,u) = [t = A(t,v(t)u(t)] : C([0,T) = U) x LP((0,T) — Ey) — LP((0,T) — Ey),
v [t f(E ()] C ([0, T] = U) = LP((0,T) — Eyp),

are locally Lipschitz continuous with values in LP((0,T) — Ey); see, e.g., Clément
and Li [20, Proof of Theorem 2.1], pp. 19-23.

Remark 4.3. In (H4) we did not have to assume that A(¢,v) € MR, (E) holds for
all (t,v) € [0, T)xU. We could assume only A0, ug) € MR, (E); cf. results to follow
below (e.g., Theoremsandand Remark. However, the set MR, (E) being
open in L(E1 — Ep), A(0,up) € MR,(E) would imply that there are a number
€ (0,7) and an open neighborhood Uy of ug in El*%’p’ ug € Uy C U, such
that A(t,v) € MR, (E) holds for all (¢,v) € [0, To] x Uy, by the Lipschitz continuity
of A. But this statement is qualitatively the same as A(t,v) € MR, (FE) for all
(t,v) € [0,T] x U in our (H4).
Definition 4.4 (Clément and Li [20, p. 18]). Recall that U is an open set in El—%,p
and ug € U. We say that a function u : [0,T) — Ejy is a strict solution of the initial
value problem if ue Y ,(0,T), u(t) € U for every t € [0,T], u(0) = uo,
and the differential equation irf is satisfied with all terms (summands) in
LP((0,T) — Ey).
We recall that the Banach space Y , (0, T) has been introduced in (4.10)).

The main result in [20, Theorem 2.1, p. 19] is local in time and reads as follows,
with (H4) being somewhat weakened in the sense of our Remark [4.3] above.

Theorem 4.5. Let 1 < p < o0 and 0 < T < co. Let U be a nonempty open set

in By_1, and ug € U. Assume that both mappings A :[0,T] x U — L(E; — Ep)

and f :[0,T] x U — Ey are Lipschitz continuous. If A(0,uo) € MR, (E) then there
exists some time Ty = Ti(ug) € (0,T], depending on ug, such that the abstract
initial value problem (4.8]) possesses a unique strict solution

u e lep_l(O,Tl)

(4.13)
( = I7((0,T1) — Ey) NWEP((0,T1) — Eo) — C([0,T1] — Ek%,p))
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on the time interval [0,Ty]. Consequently, one has u(t) € U for every t € [0,T1].

This theorem is proved in [20], Section 2, pp. 20-23, using the Banach contraction
principle in the closed ball

E;lf?%l ={ve YO v(0)=uy and |v—w|yn < p1}

of radius p; € (0,00) centered at the point w € Y1 in the Banach space

Yo = YI{%(O,Tl) = LP((0,T1) — E1)NnWYP((0,Ty) — Ep) .
Here, the “center” function w € Y71 is defined to be the restriction to [0, 73] of the
unique strict solution @ € Y7 = Ylpil(O,T) to the abstract initial value problem

(4.9) in the time interval [0,7] with the linear operator B = A(0,up) € MR, (E)
and the right-hand side g(t) replaced by the sum f(¢, uo) + g(¢),
dw
— — A0 0(t) = f(t t) f et 0,7);
&~ AOWED = ) +oft) Trac te@T):
’LZ}(O) =Ug € El—%,p .

Although the proof in [20] has been carried out only for A(t,u) = A(u) independent
from time ¢ € [0,T], it is a matter of straight forward calculations to adapt this
proof to the case of A(t,u) depending on time ¢, cf. [20, p. 23], Remark at the end
of Section 2. A detailed treatment of the latter case is presented in Priiss [T4] pp.
9-13], Chapt. 3, under slightly different assumptions (see also Kohne, Priiss, and
Wilke [55]).

Remark 4.6. Furthermore, one can easily conclude from the proof of Theorem 2.1
in [20, pp. 20-23] that if Bg,(wyp) is any closed ball in the Banach space El_%m
1 such that Bgr,(wo) C U
and Rg > 0 is small enough, then the constants p; € (0,00) and 77 € (0,7]
can be chosen small enough to depend solely on Ry, but not on wy, provided
ug € Bpr,(wo) C U. The estimates in [20, pp. 20-23], based on the Lipschitz
constants for A and f in [0,7] x U and the estimate in (4.11)), remain valid for any
ug € Bpr,(wp). Thus, we have T} = T1(Ry) € (0,T] and p; = p1(Ro) € (0,00).
Finally, using similar estimates, cf. [20, p. 22], (2.14)—(2.17), one can show that the
(strict) solution mapping

of radius Ry € (0,00) centered at a point wy € E;_

Ug — U : BRo(wO) cUCcC Elfl » YY" = Ylp, (O,Tl)

v »

is Lipschitz continuous with a Lipschitz constant L = L(Ry) € (0, 00) independent
from wy € El_%,p, such that Br,(wp) C U and Ry > 0 is small enough. This
means that if uq,us : [0,T1] — El*%ﬁp are two strict solutions to problem
on the time interval [0, T3], with (possibly different) initial values u;(0) = ug,1 and
u2(0) = ug 2 in Br,(wo) C U, then one has u;(t), us(t) € U for all ¢t € [0,T1] and

[ur — uglyr < Llluoy —woz2lls, o - (4.15)
1,

Combining this with the continuous imbedding Y7t < C([O,Tl] — El_;,p) in
(4.10]), we obtain

[ur(t) — w2 (@), , < Lilluos — uoz
1,

B, forallte [0,T4], (4.16)

with another Lipschitz constant L1 = L1(Rg) € (0, 00).
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A number of sufficient conditions that guarantee the existence of a global weak
solution u : RY x (0,7) — RM (CM) for all times t € (0,T) to the parabolic
Cauchy problem can be found in Amann [4, [5] for systems similar to ours.
As we do not wish to impose those kinds of restrictive growth conditions on the
reaction function f on the right-hand side of , we prefer to assume the existence
of a fixed global strict solution (cf. (4.13))

weY! (0,T)
) (4.17)
( = I7((0,T) = Ey) NWP((0,T) = Ey) = C([0,T) — El_%,p))

to problem (4.8) on the whole time interval [0,T], for some T € (0,00), with a
prescribed initial value w(0) = wo € U C E;_1 , and such that w(t) € U and
A(t,w(t)) € MR,(FE) for all ¢ € [0,T]. Then the local Theorem [4.5|and Remark
from above may be applied on any time interval [to, to + T1] C [0, 7] of sufficiently
short length 77 > 0 in order to obtain unique strict solutions u “along” the known

solution w to the following abstract initial value problem:

du A(t,u(t))u(t) = f(t,u(t)) + g(t) for ae. t € (to, to +T1);

at (4.18)

u(to) = up € El—%,p'

Here, ug € Bg,(w(ty)) is arbitrary, where the radius Ry > 0 is small enough, as

described in Remark such that Bg,(w(tg)) C U. By Theorem the strict

solution w : [tg, to +T1] — E;_1 , satisfies u(t) € U for every t € [to, to + T1]. The

image w([0,T]) = {w(t) : t € [0, T} of the solution w being compact in the open

set U C Ey_1,, we may choose Ry > 0 even smaller, such that Br,(w(t)) C U
T

holds for all ¢ € [0, T7.

In addition to these claims that follow immediately from the proof of [20, The-
orem 2.1, pp. 20-23], one can deduce from inequalities analogous to those in [20,
p. 22|, (2.14)—(2.17), cf. Remark above, , that there exists a Lipschitz
constant Ly € [1,00), such that if uy,us : [to, to + T1] — E;_1, are two strict
solutions to problem (4.18)) with initial values ui(to) = uo1 and ua(tg) = ug2 in
Bpr,(w(tg)) C U, then one has uy(t),u2(t) € U and
Jur (t) = u2(t)||B,_, , < Lallua(to) —ua(to)lls, , (4.19)
for all ¢ € [to,to + T1]. Consequently, fixing the smallest integer m € N such that
m >T/T; (> 1), we obtain, by “induction” on k =1,2,3,...,m, first

[u(t) =w(®)e, , < Liluo—wolm, , < Li-Ro/Li=Rg (4.20)

for all t € [0, min{kT},T}], whenever ||ug —wpl|| g < Ry/L¥; also uy (t),us(t) €
Bpr,(w(t)) C U and

lur () = w2(®)lle, , < Lilluoq —uoelle, . (4.21)
P p

P

1
1—1
p'P

for all ¢ € [0, min{kT},T}], whenever
luo; —wolle, , , < Re:=Ro/LY (>0); j=12,

for k=1,2,3,...,m.
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We have thus obtained the following result, global in time on an arbitrary time
interval (to,T), 0 < tg < T, with the constants Ry € (0,00), T} = T1(Ro) € (0,T],

and L; € [1,00) specified above in (4.19)—(4.21):

Theorem 4.7. Let 1 < p < 00, 0 < T < o0, and g € LP((0,T) — Ep). Assume
that U is a nonempty open subset of El_%w and A and f satisfy (H4) and (H5),

respectively. Finally, assume that w : [0,T] — U C El*%’p is a fized global
strict solution to problem satisfying , with a prescribed initial value
w(0) = wo € U and such that w(t) € U and A(t,w(t)) € MR,(E) for all t € [0,T].
Then there exist some constant Ry € (0,00), sufficiently small, with the following
two properties, where Ry, = Ro/LT* € (0, Ry] is the constant defined in ([4.21)):

(i) Ifto € [0,T) and uy € Bg,, (w(tg)) C U, then the abstract initial value problem
on the time-interval (to,T) with u(ty) = up possesses a unique strict solution

weY?  (to, T) (cf. )

1
P

u e Ylp 1 (to,T)
( = LP((to, T) = Ey) NWYP((to, T) = Ey) < C([to, T) — El_%,p))

such that u(t) € Br,(w(t)) C U for everyt € [to, T).

(ii) If to € [0,T) and uy,uz : [to,T] — E;_1, are two strict solutions to problem
(4.8) on the time-interval (to,T) with initial values u1(to) = up,1 and ua(to) = up 2
in Br,, (w(to)) C U, then one has uy(t),us(t) € Br,(w(t)) C U and

lur () —ue(®)lle,_, < Li"lluon —wo2lle, o forallt€lto, T]. — (4.22)

5. ANALYTICITY IN TIME FOR THE ABSTRACT CAUCHY PROBLEM

In this section we establish a few temporal analyticity results, Theorem [5.3| being
the most important among them, that will be used later (in Section |8) in order to
prove Part (ii) of Theorem [3.4

5.1. Auxiliary linear perturbation results. We begin by quoting a well-known
result: If B € Gen(FE) is the generator of a holomorphic semigroup on Ey with the
domain D(B) = Ei, i.e., B € Hol(E), then so is every operator B, = (1 +iv)B :
E, C Ey —» Ey, v € R, provided |v] is small enough, |v| < d; < 1; see, e.g.,
Amann [6 Chapt. I, §1], pp. 9-24, Pazy [72, §3.2, pp. 80-81], or Tanabe [81]
Chapt. 3, §3.1-§3.4], pp. 51-72. A more general perturbation theorem for generators
of holomorphic semigroups is proved in Pazy [72, §3.2], Theorem 2.1 on p. 80. An
analogous perturbation result for the smaller class MR,,(E) (MR, (E) C Hol(E) C
Gen(E)) is proved in Amann [6, Chapt. III, §1.6], Proposition 1.6.3 on p. 97. Since
we take advantage of the latter in an essential manner, we now give its precise
formulation.

Let 1 < p <ooand 0 < T < co. Given any generator B € Gen(FE), let us
consider the bounded linear operator Kp : L'((0,T) — Eo) — L®((0,T) — Ej)
defined by

(Kpg)(t) := /0 et=3)Bg(s)ds € By (5.1)

for all t € [0,7] and all g € L*((0,T) — Ep). It is proved in [6, Chapt. III,
§1.5], Theorem 1.5.2 on p. 95, that if B € Hol(E) and B possesses the maximal



46 F. BAUSTIAN, P. TAKAC EJDE/SI/01

LP-regularity property, i.e., B € MR, (E) = MR, (E1 — Ej), then the restriction
Kp = Kp|yr of Kp to X" :=X?_,(0,T) = L*((0,T) — Eq)

1
p
is a bounded linear operator from the Banach space X7 into another Banach space

YT .:=YP (0,T) = LP((0,T) — Ey) N\ W'P((0,T) — Ey)

with the operator norm ||Kpg|zxr—yr) < oo. For the perturbed initial value

problem
du
— — (B+Au(t) =g(t) forae. te(0,T);
= (B + Ault) = 9(1) 0.7) 5
u(0) =up € By_1 ),
the following result is established in [6l, Chapt. I1I, §1.6], Proposition 1.6.3 on p. 97:

Lemma 5.1. Assume that B € MR,(E) and let A € L(E1 — Ey) be arbitrary with
the norm

Al 2By —Eo) < ’Y/||KB“£(XT4,Y'T) for some v € (0,1).

Then also the operator B4 = B+ A € L(E1 — Ey) belongs to the class MR, (E)
and the operator norms of the inverses of the abstract (linear) partial differential
operators

(=B, 1), (0:—B—-A,71):Y]",
defined in (4.12) satisfy

1@ —B—A 1) <C- A=y (@ —B )", (5.3)
where C = C(p, E,T) > 0 is a constant independent of A, B, and ~.

(0,7) = L7((0,T) = o) x By_1,

More precisely, we have
(@ —B—-A 1) ' =(I-KgA) (0 B, 1) (5.4)
with the operator norm of the product
KpA: YT - yT = Yﬂ%(o,T) = LP((0,T) — E1)
bounded above by
KAl cyroyry < [[KBllexroyry - [Allem—»my) <7 <1.

Here, I stands for the identity mapping in £(Y? — Y7T). Hence, the Neumann
series (I — KpA)™! = 377 ((KpA)* converges absolutely in £L(YT — YT) and
I(I = KpA) Heoroyry < (1—7)7" < oo

The following claims are trivial applications of this lemma: MR, (E) = MR, (E; —
Ey) is an open subset of the Banach space L(F; — Ep). Furthermore, if B €

MR, (E) and A € L(Ey — Ep) then also B,4 = B+ vA € MR, (E) holds for every
v € C provided |v| is small enough,

v <61 = ’Y”A”Z(lEl_)EO)||KBHZ(1XT%yT) < 0.

Naturally, the special case A = iB is of interest.

The following perturbation lemma for problem is related to Angenent [7]
Lemma 2.5, p. 97]; see also Denk, Hieber, and Priiss [23], Proposition 4.3 on p. 44
and Theorem 4.4 on p. 45.



EJDE-2021/SI/01 SPACE-TIME ANALYTICITY OF WEAK SOLUTIONS 47

Lemma 5.2. Assume that B € MR,(E). Then there exists a number é € (0,1) and
a constant Cs € Ry with the following property: If A € L(FE1 — Ey) is arbitrary
with the norm

|Au|| g, < d||Bullg, + Csl||lullg, for allue Ey, (5.5)

then also the operator By = B+ A € L(E1 — Ey) belongs to the class MR, (E).
Furthermore, there exists a constant M = M(p,E,B,é, Cs,T) > 0, independent
of (9,u0) € LP((0,T) — Eo) x Ey_1 ,, such that the unique strict solution v =

(0 — B— A, 7)71 (g,ug) to the perturbed initial value problem (5.2)) satisfies the
inequality

T dv,p T »
|0 e [ B+, a

dt
T
[ gt @),
iy
and g € LP((0,T) — Ep).

(5.6)
< 31 (Jluo %

-1
P

whenever ug € By _1 p
x,

Proof. Step 1. First, we prove the lemma for [0, 7] C Ry replaced by a sufficiently
short time interval [tg,to + T1] C [0,T], i.e.,, 0 <to <to+ Ty < T with T} € (0,00)
small enough. Without loss of generality, we may assume tg =0 and 0 <77 <T.
Let us recall our notation and the continuous imbedding (cf. (4.13))
YT = VP 1(0,T1) = LP((0,T1) — E1) N WP((0,Ty) — E)
! (5.7)
> (0.1 > By, -
It is easy to see that a function v € Y7t is a strict solution of the perturbed initial
value problem (5.2) on (0,77) if and only if it satisfies
dv
— — Bu(t) = Av(t) + g(t) for a.e. t € (0,71);
T = Bu(t) = Av(t) + g(1) 0.73) -
1)(0) =ug € El_%@ ,

in the strict sense, again. Notice that § = Av + g € LP((0,71) — Ey). We observe
that problem (5.8) has a unique strict solution v € Y71 as soon as we have shown
that the affine self mapping F : v — o : Y1 — Y71, defined by
do
— — Bo(t) = Av(t) + g(t) for a.e. t € (0,17);
T~ Bolt) = A(t) + (0 0.73) 59
0(0) =g € El_%)p,

possesses a unique fixed point v € Y71, Obviously, such a fixed point must belong
to the (closed) affine subspace
\o

(wo) —

{veY™ :0(0) =uo} of the Banach space Y'*;

hence, Y(Zt) = ug + Y(g Clearly, Y(gi = {ve Y™ :v(0) =0} is a closed vector

subspace of Y. The former one inherits the norm from the latter.
Next, we prove that F' : v — 0 is a contraction on Y(Zt) To this end, let

v; € Y(ﬁ) be arbitrary and set 9; = F(v;); i = 1,2. The differences z = v; — vo and
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2 =101 — ¥ are in Y(:(% and, by (5.9, they satisfy

dz

— —B Az(t) for ae. te€ (0,71);

g 2(t) = Az(t) for a.e. t € (0,T1); (5.10)
20)=0€E,_1,.

By Remark [£.2] Part (a), the operator B € MRy, (E) satisfies ({.11)) with a constant
M(p,E,B,Ty) < M(p,E,B,T) = My < co. Hence, we have

T T
/O || ”EodH/O I\Bf(t)ll%odtéMT/O 1A= (t) |, dt .

Now we estimate the integrand on the right-hand side of (5.5]),

T, T
/0 y| ||E dt+/0 | B2()|[B, dt

T
< MT/0 (81B2(t)|| 5y + Csllz(t)||5,)" dt (5.11)

Th
Qp—lMT((;p/o |B=(t)|[%, dt+0§’/ 12(t) 1, )

The integrand in the second integral on the right-hand side is estimated by Holder’s
inequality:

t d t
Wl =] [ G|, < [ 16k s
bodz, Up, [t \1/P
< (/O (=1 ds) (/0 ds) for all t € [0,T1],

where p’ =p/(p — 1) € (1,00). Here, we have used z(0) =0 € Ey. Hence,

=, <o ([ 1, 05)-

After integration we thus obtain, thanks to p/p’ =p — 1,

Tl 1 7 Tl dZ P
/0 Hz(t)||%0dt§5T1/0 ||a(s)||Eod5. (5.12)

Of course, the same inequality is valid for Z € Y(gﬁ in place of the function z. We
apply the last inequality to the right-hand side of (5.11]),

/0 H HP dt—i—/o B2, di

T 1 I
SprlMT((;p/ IB2(b)|[%, dt+];0§Tf’/ H I3, ae).
0 0

The integrals on both sides containing the generator B € MR, (E) are estimated
as follows. First, there are constants ¢;,Cy € (0,00) and co, Cy € Ry such that the
inequalities

(5.13)

allulle, — c2llullz, < ||Bullg, < Cillulle, + Calullz, hold for all u € Ey .
Consequently, we have

Allull, < 227" (| Bully, + éllull,)  and
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| Bully, < 227" (CT|lullfy, + CEllully,) forallue E;.

Applying these inequalities to ((5.13|), we arrive at

T T
/O || ||p dt 4 2=~ 1&”/ %, dt—c”/o 12(t)]1%, dt

T
<2 g iops [ s, d
0

T: 1 T
+2p*1MT(2pflc§5p/ ()%, dt+fC§Tf’A 1Sz, ar)
Finally, we estimate the integrals fo 2(t)|%y, dt and f ()|, dt above by
-, thus obtaining
1 T
(1—7chg)/ 1S5, dt +270 %P/ bt
p 0
Ty
< 22~V PP My / 2(t) 1%, dt (5.14)
0

p—1

T
+ e (ricge + ) [,

We finish this step by choosing first 6 € (0,1) then T3 € (0,7] small enough, such
that

[t

22(p=D PP My < 3 27PNk and

2r—1

TP My (2071 CE6P + CF) < (1 - %chg) ,

respectively, or, equivalently,

0<6<2 Cr2/P(c;/Cy )M and (5.15)
TP[2° My (2P~ CE6P + CF) +02] <p. (5.16)

With these choices of § and T3, we obtain

R 1
12157 < §HZ||§T1 (5.17)

in the new, equivalent norm

= [(1 = Lrrer " dt + 27~ 1>c” poar]” (518
lullyr, == |( et 5) ; H HE + IIU ), (5.18)

on the abstract Sobolev space Y =Y , (0, T1) = Lp((O, T1) = E)NWLP((0,Ty) —
Ep); see (4.5) and below in Inequglity shows that F' : v+ 0 is a con-
traction on Y&]) (c Yh) w1th the Llpschltz constant 5 with respect to the new
norm || - Hg,Tl. Consequently, problem (5.8) has a unique strict solution v € Y71;
in fact, we have v € Y(z:;)

The following estimate for v can be proved by the same arguments as those
used in our proof of contraction above: There is a constant I' = I'(T7) € (0, c0),
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independent from uy € E;_1 , and g € LP((0,T) — Ejp), such that

Tl d Tl
(Ios)” = [ 155 ae+ [ Iotol, a

Ty
<r(lully_, + [ Lol ).

Recall that || - Hngl is an equivalent norm on the Banach space YT'; cf. (£.5). In
analogy with Remark Part (b), we may take the constant I' = I'(T}) > 0 in
(5.19) above to be the smallest nonnegative number I' € R, for which is
valid. It is easy to see that I' = T'(Th) € R4 is a nondecreasing function of time
T, € (0,T] and T > 0. The last estimate, , easily implies with T3 in place
of T. The imbedding being continuous, by , there is another constant
I =1(Ty) € [1,0), independent from ug € El_%)p and g € L?((0,T) — Ey), such
that

(5.19)

(T,

A !
<Pl + [ a0, o). (5.20)
PP pP 0

Again, similarly to I' = T'(T}) > 0 in (5.19), we may take the constant I' = I'(T}) >
0 in (5.20)) above to be the smallest number I' € [1, 00) for which (5.20)) is valid. It
is now easy to see that also the constant I' = I'(T}) > 1 is a nondecreasing function
of time Ty € (0,T].
Step 2. We may take T} = T'/m sufficiently small in Step 1 above, where m € N
is a sufficiently large positive integer. Next, we replace the interval [0,7}] from
Step 1 by any subinterval [to,to + T1] = Jr = [(k — 1)T1, kT3] of [0,T] of length
Ty for k =1,2,...,m; hence, U | Jix = [0,T]. We make use of the existence and
uniqueness of a strict solution

v E Ylpil(thtO —+ Tl) = Lp((to,to + Tl) — El) M Wl’p((to,to —+ Tl) — Eo)
of the perturbed initial value problem (/5.2 in every subinterval Jy; k = 1,2,...,m,
together with the estimates (5.19) and (5.20)) on Ji, by Step 1. Thus, from (5.19)
and (5.20)) we obtain, respectively,

kT, dU » kT, v
- dt +/ [lo®)]|%. dt
/(k_lm Gl e [ et

kT,
<Ol - 0Tl L+ [ e, d).
L=pp (k—1)T

(5.21)

EGAA

kTy
< (el - DT, + /( lo@l, d) . (5:22)

4 k—1)Ty

l«
P
We recall that I' > 1. Consequently, iterating inequalities (5.22)) for k = 1,2,...,¢,
1 </ < m, we arrive at

kT

¢ 1
o), ,  <Tluoll , +) F“’“*l/ lg(t) 1%, dt
P P k=1 (k—1)T1 (523)

< 0Ty
<l o+ [ ool at)
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Next, we sum inequalities (5.21)) for k = 1,2,...,m, thus obtaining

(Hvlli ) —/ || }|” dt+/T [o(t)|[, dt

T (5.24)
<r(Shott =0Tl ) +T [ ool a
k=1 P
To estimate the first summand on the right-hand side from above, we apply (5.23)
with £ =k — 1 for £k =1,2,...,m, thus arriving at
Z lo((k = DTy,
m—1 . m—1 . 0Ty
< (ol + B[ a0, d
£=0 P £=0 0

) . (m—1)T1
<l =D [ (o, a
pwp

T
<30 (uolly, , + [ a0, de)
P 0

where M = mI™ 1T € [1,00) is a constant independent from v. We apply this
estimate to the right-hand side of (5.24]) to obtain

T
(I0lf2)” < Stlually,_, |+ (T +T) [ a(o)liy, at. (5.25)

We conclude the proof by applying (5.5) with B, A € L(E; — Ey) to the left-
hand side of m,

[ 1% dt+/ (B -+ Aoy, at

T T
< [1%0, + v [ il a5 [ i, o
0 0 0
T T
< 1S, + (4 DBl [ o0l 4G [ 1, 0
< M(S(H’UHyT) )

by , with a constant Ms € (0,00) independent from v. Now we apply
to the last estimate to arrive at the desired inequality with the constant
M = Ms(M+T) > 0. We have proved that the operator By = B+A € L(E; — Ej)
belongs to the class MR, (E). O

5.2. Proof of analyticity in time. Now we are ready to prove that any global
strict solution w : [0,7] — U C By 1 , to problem that satisfies the hypothe-
ses of Theorem above must be analytic in time ¢ € (0,7"). Let us recall that a
strict solution to problem has been introduced in Deﬁnition Indeed, below
we will prove a more detailed result on a complex analytic (i.e., holomorphic) exten-
sion of u(t) from the real time interval (0,7) C R C C to the open complex domain
A?l’T which is the intersection of the (open) triangle A1(9T,) with the (open) complex
strip T() defined in (L-6), (1.7), and (1.8), respectively, where ¥ € (0, 7/2) is a given
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angle and 0 < T/ < T < oco. Here, the constants ¥ € (0,7/2) and T" € (0,T] will
be chosen sufficiently small, but positive; hence, we have (0,7) C Agl’T. Finally,
we denote by A?’T the closure of Agl’T in C.

In addition to (H4) and (H5), we assume that A and f satisfy the following
analyticity hypotheses (cf. Lunardi [65, Chapt. 8], §8.3.3, p. 308):

5.3. Hypothesis. Recall that both spaces, Fy and F;, in the Banach couple FF =
(Ey, E1) are assumed to be complex Banach spaces (over the field C) with F; — E
densely and continuously. Furthermore, we assume that there are positive constants
o € (0,7/2) and Ty € (0,T], and open sets U C C and U C Ek%’p containing
the compact set Agg’T and the open set U, respectively, i.e., Agz’T cU c Cand
UcCcUCE,_ such that

(H4') A:[0,T]xU — L(E, — Ey) possesses a holomorphic extension A : UxU —
L(E; — Ejp) to the complex domain U x U which satisfies A(t,v) € MR,,(E)
for all (t,v) €U x U.

(H5") f:[0,T] x U — Ey possesses a holomorphic extension f:UxU = Ey to
the complex domain U x U.

1
2P’

Again, the metric on U x U is induced by the canonical norm on C x Ei_1,.
A precise definition of a holomorphic (i.e., complex analytic) mapping F : O C
X — Y from an open subset & of a complex Banach space X’ into another complex
Banach space ) is given in Deimling [22, Definition 15.1, p. 150] (see also [22]
Proposition 15.2, p. 150]).

Without assuming (H4) and (H5), we observe that (H4’) and (H5’) still guar-
antee the following claims, respectively: Given any compact set K C U and any
continuous function z : [0,7] — K, one can easily verify that both substitution
mappings,

v [t A(2(0),0(2(8)]
C(K — U) — L(LP((0,T) — E1) — LP((0,T) — Ey)) and
v [t £ (20, 0((0)] : C(K = 0) = LP((0,T) — By,
the former one meaning that
(v,u) = [t —= A(z(t),v(2(¢))) u(z(¢))] :
C(K — U) x LP((0,T) — Ey) — LP((0,T) — Ej),
are locally Lipschitz continuous, the former one with values in £(L?((0,T) — E;) —
L?((0,T) — Ey)) and the latter one with values in L?((0,T) — Ey). We will take
advantage of this local Lipschitz continuity in our proof of Theorem below. We

remark that the operator norm in £ (LP((0,T) — E1) — L?((0,T) — Ey)) of the
linear substitution operator

u [t A(z(t),v(z(t))u(t)] : LP((0,T) — E1) — LP((0,T) — Ey),
with z € C([0,T] = K) and v € C(K — U) being fixed, is bounded above by the
supremum norm

A (2(-), v(2(-)) 2o 0,7y == It = A(z(t), v(z(E))]ll (o, 1= £(Er— Eo))

= swp [AG®) v(z0)) e —m) (< 00).
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Theorem 5.3. Let 1 < p < 00, 99 € (0,7/2), 0 < Ty <T < 0o, and assume that
g € LP((0,T) — Ey) possesses a holomorphic extension g : U — Ey to an open
set U C C containing AgZ’T, i.e., Ag‘;’T C U C C. Assume that U is a nonempty

open subset of Ey_1 , and A and [ satisfy (H4’) and (H5’), respectively, and their

;a

respective restrictions A = 121|[O,T]><U and f = f|[0,T]XU to [0,T]xUCRx Ey_1,

satisfy (H4) and (H5) with an open set U C U C Ey_1,. Finally, assume that
T

w:[0,T] - U C Ey_1, is a fized global strict solution to problem (4.8) (hence,

satisfying (4.17)) with a prescribed initial value w(0) = wo € U and such that
w(t) € U and A(t,w(t)) € MR, (E) for allt € [0,T].
Then there exist constants ¥ € (0,9¢] and T' € (0,Tp], small enough, and a

holomorphic function  : Ag,"T — Ey_1, with the following two properties:
1

(a) w(t) € U for every t € Ag,/’T and W verifies the abstract nonlinear evolu-
tionary problem (4.8) in the complex domain Ag/ T e,

A ule)u(t) = Fu(t)) +3(0) Jor every t € AT
t . (5.26)

lim — u(t)=wo € By_1,.

t—0,te Al T b’

(b) w(t) = w(t) holds for a.e. t € (0,T).
Such a holomorphic extension W : Ag,/’T —UCE, 1 pofw:(0,T)=UCE,_

» P
T . .
from (0,T) to Ay,>" is unique.
Before proceeding to prove this theorem, we clarify our notation with the open
sets U and U in F;_1 , as follows.
L

Remark 5.4. We need to take advantage of our (H4) and (H5) (with an open
set U C Ey_1,) and (H4") and (H5’) (with another open set U C F;_1 ,) only

for the values of v = w(t) €e U C U (t € Ag/l’T) near the (compact) image K =
{w(t) € Ei_1,:te [0,T]} of the (continuous) curve w : [0,T] — Ei_1, Indeed,
(H4’) and (H5’) imply that both holomorphic extensions A : U x U — L(E; — Ey)
and f:U XU — Egof A:[0,T] xU — L(Ey — Eg) and f : [0,T] x U — Eq,
respectively, are locally Lipschitz continuous. Consequently, the Cartesian product
[0,7] x K being compact in the complex Banach space C x Ei_1, we use a
finite open subcover by open balls to find two bounded open setspZ/{ C C and
U=UCc B 1p0 such that both mappings A and f are Lipschitz continuous in

U x U. We conclude that, in our proof of Theorem below, we may assume that
0,T)cUcCcCand KU =U C El_%,p with both ¢ and U being open and
bounded. In particular, if the numbers ¥y € (0,7/2) and Ty € (0,T] are taken
sufficiently small, then we have also AgZ’T C U together with w(t) € U for all

te Aﬁ,”jﬂ provided ¢ € (0,%y] and T” € (0,Tp] are small enough. Consequently,

Ag,/ T c Agg’T C U. To simplify our notation, we work only with the holomorphic
extensions §: U — Eg, A: U x U — L(E, — Ep), and f: U x U — E
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of the mappings g, A, and f, respectively. Hence, we may remove the “tilde”
from these symbols and write simply g = g, A = A, and f = f. We also may and
will assume that both mappings A and f are Lipschitz continuous in all of U x U.

T 5 C of the strict

solution w : [0,T] — C, holomorphic in Agz’T, we take advantage of a factorization
approach for the complex time variable ¢ = pou where p € (0,79) and p € C with
| — 1| < sind. The numbers 79 € (0,7T) and ¥ € (0,9) are suitable constants.
Fixing such a constant y, we obtain a mild solution, w = w), : [0,79] = U C El_%m,

. . . ~ ~ T
In our construction of the continuous extension w : Aﬂg’

of the corresponding initial value problem with the real time variable ¢t = g € [0, 79].
Of course, this solution depends on the complex parameter p from the open disc
D.(1):={peC:|lu—-1<r}

centered at the point 1 € C with radius » = sin?. We will complete the proof
by showing that the mild solution, w, is holomorphic with respect to u. This
factorization approach has been used earlier in Henry [40, Chapt. 3, §3.4] and
Lunardi [65, Chapt. 8, §8.3.3].

Proof of Theorem[5.3 Given any two numbers ¢ € (0,7/2) and 79 € (0,00), we
define a bounded open sector in the complex plane C by

ngro) ={t=0p€C:0< o<1 and p € C with |p— 1] <sind} (5.27)

with vertex at the origin 0 € C and angle 29. Its closure in C is denoted by ngO).
Recalling our definition of the triangle A%T) by (1.6]), and setting » = sin¥ (hence,
0 < r < 1), we deduce that
(T1) (7o) (T2)

Ayt Cc Ay CAy?

holds whenever
0<Ty <719, 0<V <arctanr, (1+7)79<Ty<o00.

Following this factorization of the complex time ¢t € C in ¢t = pu with ¢ € (0, 7))
and p € D,(1) ={p e C:|p—1 <r}, sothat 0 < 1—r < Rep < 1+ r with

r =sin¥ (< 1), we replace the complex time ¢ € Agl’T in the initial value problem
(5.26]) by the product ut € C with ¢ € (0,79) and p € D,.(1), where we will choose

both ¥ € (0,7/2) and 7y € (0, 00) sufficiently small, so that qu(;‘)) C Agg’T holds,
ie., ut € Agz’T for every pair (¢, ) € (0,79) x D,-(1). Hence, we must have
O<19S’L90, TTogTo‘tan’l?(), and (1+’I’)TOST
Given a fixed number u € D,.(1) C C, we look for an unknown continuous
mapping w = w,, : [0,7] = U C Ey_1 ,, w(t) = w,(t) = w(ut), that according
to (5.26]) must be a strict solution to the following evolutionary problem (with the
tilde “~ 7, marking holomorphic extensions, having been removed),

di: — At o)t = plf (b, 0(O) + g(ut)] - for every £ € (0,m0)3 oy

w(O) = wp € El—l,p .

Of course, for p = 1 we will have w(t) = w1(t) = w(t) for ae. t € (0,T), by
uniqueness. We remark that, thanks to our hypothesis w(t) € U and A(t, w(t)) €
MR, (E) for all t € [0,T], we have also pA(t, w(t)) € MR, (E) for all ¢ € [0,T] and
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all p € C satisfying |u— 1] < sind with ¢ € (0, 7/2) small enough, say, 0 < 9 < 7/6
in which case |y —1| < 1/2. This claim follows easily from the perturbation lemma,
Lemma [5.2] thanks to 1 = 1+ v with v € C satisfying |v| < sind. Even Lemma5.]|
would do if ¢ € (0,7/2) were chosen sufficiently small. Clearly, it suffices to prove
that, for each fixed ¢t € (0,79), the function p — w,(t) : D,(1) — El_%w is
holomorphic. This approach to the analyticity in time of solutions to semilinear
parabolic problems can be found, e.g., in the monographs by Henry [40, Chapt. 3],
§3.4, Theorem 3.4.4 and Corollary 3.4.6 on pp. 63-66, and by Lunardi [65, Chapt. 8],
§8.3.3, p. 308.

Choosing ¢ € (0,7/2) and 79 € (0,7] small enough, such that QLEJO) C U, and
recalling r» = sin¥ € (0,1), we abbreviate

F(t,v,p) := p[f(ut,v) + g(pt)] for all (¢,v,u) € [0,70] x U x D.(1).  (5.29)

By (H5’), the mapping (v, u) — F(t,v,p) : Ux D, (1) — Ep is holomorphic for each
t € [0, 79], with all partial derivatives of F' with respect to v and p being continous
in [0,70] x U x D,(1). According to Amann [0, Chapt. III, §4.10], pp. 180-191, and
Clément and Li [20] Sect. 2], p. 18, given a fixed parameter value u € D,.(1), every
strict solution w = w,, € Y , (0,79) of the initial value problem satisfies the

following integral equation for the unknown function w =w, € Yf[:l (0,70),
P
w(t) = F(t,w,p) for every t € [0, 7], (5.30)
with the right-hand side equal to

F(t, v, p)

t
= A0 gy [ A (A, o) — A w0)] o) ds
0 (5.31)

¢
+/ e (t=8)A0w0) P 4(s), u)ds  for every t € [0, 7]
0

and for all v € Y , (0,70) satisfying v(t) € U for every t € [0,70]. In contrast
to defining a contraczjuion mapping using the (unique) strict solution to prove local
existence in Theorem in the case of problem we prefer to use the (unique)
mild solution defined by an integral representation (variation-of-constants formula);
cf. (5.31). The equivalence between strict and mild solutions is treated in Ball [10],
Henry [40, Chapt. 3], and Pazy [72, Theorem on p. 259].

Clearly, is a fixed point equation for the unknown functionw € Y” , (0, 7).

Here, one can choose 19 € (0, T3], where Ty € (0,7] and ¥ € (0,7/2) are sufﬁciently
small, such that §159T1) C U and the mapping
=, v [t — F(t,v,u)]

is a contraction in a closed ball

Z(wﬂ)

oy =0 €Y i0(0) =wo and o —wlomllyn < pi}

in the Banach space

yh = Yf_%(O,Tl) = LP((0,Ty) = E1) N WHP((0,T1) — Ej)
of radius p; € (0,00) centered at the point w € Y7''. As usual, the function
wljo,r,) € YT' denotes the restriction to [0,71] of the strict solution w € YT =
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Y/ 1(0,T) from the hypotheses of our theorem. The proof of this contraction

progerty follows the same ideas and steps as the proof of Theorem [L.5] taken from
Clément and Li [20, Theorem 2.1, p. 19]. The reader is referred to Priiss [74]
pp. 9-13], Chapt. 3, for further details. Notice that the numbers p; € (0, 00),
Ty € (0,T], and ¥ € (0,7/2), if chosen small enough, such that the contraction
holds with the Lipschitz constant %, are independent from the particular choice
of the parameter u € D,.(1) since Qlf;m is a compact subset of U; cf. our remarks
before this proof (Remark that remain valid also for the compact set §[1(9T1) x K
in the complex Banach space C x El_%yp. Of course, r = sin¥ € (0, 1) is sufficiently
small, and both p; € (0,00) and Ty € (0,7] must be also so small that v(t) € U
holds for all ¢ € [0,T}], whenever v € folvf’%l. Finally, the constants p1, 77, and ©
can be chosen independent from wy € K, so that one may use them in any time
interval [to, to 4+ T1] C [0, T] of sufficiently short length 77 > 0; the initial condition
w(0) = wo € K at t = 0 is replaced by w(ty) € K at arbitrary time to € [0, —T1].
Next, we analyze the holomorphy properties of the fix point mapping

F:[0,Ta] x T x Di(1) = 500,

defined in (5.31]) where we may take 79 = T7; more precisely, those of the mapping

(v, 10) = Flt,0,0) : 209 % Dp(1) = 209,

for each fixed ¢ € [0,71]. To begin with, for 0 < s < ¢t < Ty, p € D,(1), and

vE 221111,[)7)—‘17 we rewrite
Alps, v(s)) — A0, wo)
= {I - [>‘I - A(/J"Sa 'U(S))][)\I - A(vaO)]_l}P‘I - A(Oaw())] )

where A € (0,00) is large enough in order to guarantee that the (bounded) linear
operator AXI — A(0,wg) : By — Eg has a bounded inverse [\ — A(0,w)] ™" : By —
E;, and observe that the function (integrand)

p = =AW A5 1(s)) — A0, wo)] v(s) : Dp(1) = E

is holomorphic and so is the integral
t
m i—)/ M=) A0w0) [A(us, v(s)) — A(0,wo)] v(s)ds : D,.(1) = Eq.
0

We have used here the fact that the operator-valued function
> et t=9)A0wo) . D,.(1) = L(Ey — Ey)

is holomorphic for any fixed numbers s,t € R satisfying 0 < s < ¢t < Tj. Similarly,
the function
i =) A0w0) (g (), ) : Dp(1) — By

being holomorphic, so is the integral
t
w— / e (t=8)A0w0) P 4(s), p) ds : Dp(1) = Ey.
0

We conclude that the sum
i F(t,v, 1) : Do(1) = Ey
defined by (5.31)) with 79 = T3 is holomorphic for every ¢ € [0,T].
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Finally, from the fixed point equation (5.30)) we deduce that the function w =

wy  [0,10] = U C El_%ﬁp, which is continuous thanks to w € E;ﬁu% cyh =

Y 1(0,T1), is holomorphic in the variable ;1 € D,.(1). Although this holomorphy
clah;l follows directly from a well-known result in Deimling [22, Theorem 15.3,
Chapt. 4, §15, p. 151], cf. also Krantz and Parks [58, Theorem 6.1.2, §6.1, p. 118§],
we sketch a constructive proof below for the sake of completeness.

Indeed, any standard proof of the Banach fixed point theorem for the (contrac-

tive) self mapping

=, v [t— F(t,o,p): nwo) _y 5y(wo)

p1,Th p1,T1
shows that, given an arbitrary “initial” function ¢g € ZS:J?T)I, the iterates
On =P(pn_1) =P (pn2) = ... =" 1) = ®"(py); forn=1,2,3,...,

Z(wo)

form a Cauchy sequence in P
:

which converges to the unique fixed point w = w,

of ®, namely, ¢, = w in Eg‘f% C Y™ as n — co. The convergence is uniform for
i € D,.(1). Recalling the continuous imbedding (5.7]), we have also ¢, (t) — w(t) in
El_%@ as n — oo, uniformly for ¢ € [0,71] and p € D,(1). Choosing wo = w|jo,1,],
a function of time ¢ € [0,77] which does not depend on the parameter u € D,.(1),
we observe that each iterate

on(t) = F(t,on_1,n); n=123,..., te€[0,Ty],

is a holomorphic function in the variable (parameter) u € D,(1). Applying Os-
good’s theorem and the Cauchy integral formula for discs to each iterate o, (t)
(see e.g. Krantz [57], Theorem 1.2.2 (p. 24), or John [50], Chapt. 3, Sect. 3(c), eq.
(3.22¢), p. 71), we conclude that also the limit function w = w, is holomorphic in
the variable y € D,(1) and satisfies ®(w) = w.

We have thus verified that the strict solution w : [0,T] — U C El*%vp of problem
possesses a holomorphic extension to the bounded open sector ngTl). In fact,
we have proved that this claim is valid in any time shift of this sector by a number

to € [0,T — T1], that is, in any sector
t0+2[f9T1) ={t=to+opeC:0<p<Ty and |p — 1] < sinv}

with vertex at the point ¢ty € C and angle 2¢. We apply the last result with ¢

ranging from 0 to T'— T} over the interval [0,T — T7] to conclude that the function

w:[0,7] - U C Ey_1 , possesses a holomorphic extension to the bounded open
=

set

Uroefo.r—m (fo + 25™) € C

which contains the open complex domain Ag,/’T defined in , whenever TV = T}
and 0 < ¥’ < arctan(sind), owing to Agl) C 9[1(9T1).

Hence, we have proved that there are constants ¥ € (0,99] and T" € (0,T],
small enough, and a holomorphic function w : Ag,/’T — E,_ 1p with the desired

properties (a) and (b) in the conclusion of our theorem. Since (0,7) C Ag,/’T, such
a holomorphic function @ must be unique. The proof is complete. [
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6. ANALYTICITY IN SPACE FOR THE CAUCHY PROBLEM IN RY x (0,7)

In the previous two sections, Sections [4] and [5] we have treated the initial value
problem for a strict solution u : (0,T) — Ey with the initial condition ug in
the real interpolation space E;_ = (EO,El)k%}p between E; and Ey, F1 —
El—{p — FEjy.

pr Theorem [£.7 such a strict solution belongs to the abstract Sobolev space
YT =Y ,(0,T) introduced in ([.10). Hence, we have u(t) € El_%w for every

tefo,1].

In this section we replace the triplet of abstract (complex) Banach spaces E; —
El—%,p — FEy by the following complex Sobolev, Besov, and Lebesgue spaces,
respectively,

1
P

W2m,p(RN> SN Bs?p’p(RN) o LP(RN)7 s = 2m(1 — %) € (0,2m),

where
B*PP(RY) .= (LP(RY), W2™P(RY))
= (LP(RY), w2m™P(RY))

s/(2m),p

1-(1/p).p
is the Besov space obtained by real interpolation (see, e.g., [I} [65] [84]). We recall
that 2+ < p < co which guarantees (s—m)p > N and, thus, the Sobolev(-Besov)
imbeddings B*~™P?(RN) — CO(RN) N L>®(RY) and B*PP(RY) — C™([RN) N
W2 (RN) are continuous.

Throughout this section we restrict ourselves to the easiest case of analytic initial
conditions that we are able to treat in our present work.

6.1. Hypothesis. We use the following assumptions:

(H6) The initial data ug : RY — CM, up = (ug1,u02,---,u0,nm), can be ex-
tended to a holomorphic function Gy = (o1, %o,2, - - -, Uo,a) : X M
in a complex strip X ¢ CV defined in , for some r € (0,00), such
that every component g ; : X" = C; j =1,2,...,M, has the following
properties:

(H6.1) the function z + g j(z + iy) : RY — C is in the (complex) Besov
space BSPP(RN),
(H6.2) the Besov norm ||t ;(- + iy)||gsiw.r(r~y is uniformly bounded for all
y e Q) and
(H6.3) y ~ g ;(- +iy) : Q) — B5PP(RN) is continuously (partially) differ-
entiable with respect to the parameter y = (y1,...,yn) € Q") = {y €
RY i |yleo <7} j=1,2,..., M.
Equivalently, the function  ~— t1g(z+iy) : R — CM belongs to the Carte-
sian product BSPP(RY) = [B=PP(RN)]M its norm [[0g(- + iy) || pewor @)

satisfies (cf. (3.10]))

N (dg) = sup |fo(- + iy)l| gewr@y) < 00,
yEQ("‘)

and it is continuously differentiable with respect to the parameter y € Q).
The “shift” isometry |[To (- + 2o +iyo)|| psrrwy) = [[To(- +iy0) || Biw.p ) is obvious
for all pairs (zg,%0) € R x Q) i.e., for all complex numbers zy = xo+iyy € X().
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The restriction in (H6) is motivated by the following approximation property of
the Sobolev and Besov spaces, see e.g. Triebel [84) Chapt. 2].

Remark 6.1. The Fréchet space S(RY) of all complex-valued, rapidly decreasing
infinitely differentiable functions ¢ : RV — C being dense in all of the spaces
LP(RN), W2mp(RN) BsPP(RN), and L2(RY), by [84, Chapt. 2], §2.3, Theorem
2.3.2 on p. 172, we take ug : RY — CM so smooth and rapidly decreasing near
infinity that its holomorphic extension 1y : ¥(") — CM satisfies even the following
stronger regularity condition: The family of functions x — tig(z +iy) : RY — CM|
parametrized by y € Q)| belongs to a bounded subset of

N
L2RY)nW?™P(RY) forsomep €R, 2+ — <p<o00.
m

For instance, all complex linear combinations of Hermite functions form a dense
vector subspace V of the Fréchet space S(R™), by Reed and B. Simon [75, Chapt. V,
§3], Theorem V.13 on p. 143. Hermite functions are entire complex functions
h: CN — C of the form

N

1

h(Z) :P(Zl,ZQ,...7ZN).eXp(— 52222) for z = (zl>£V:1 :_q;+1y€ (CN’
i=1

where P(z) is a complex polynomial in N complex variables z; € C; i =1,2,..., N,

see [0, p. 142]. One may take functions from V as components g ; of Qg; j =

1,2,..., M. Indeed, notice that

1, Ik , 1.,
o (- 1354|355 35000

i=1
1 1
< exp (5 er) - exp ( ~3 |:17|§)

holds for all z = x + iy € ¥(") ¢ CV, where

N N\ 1/2
> = (Z;Iin ) e = _max il <
P

It is well known that all three vector spaces V C S(RV) C L*(RY) are invariant
under the (unitary) Fourier transformation F : L2(RY) — L2(RY). (We always
consider the wunitary Fourier transformation F as described in Stein and Weiss
[80, Chapt. I].) Consequently, if the Fourier transform Fug; : RY — C of each
component of ug : RV — CM decays at least exponentially fast at infinity, then the
holomorphic extension of the function ug ; : RN — C to a complex strip X cch,
for some r € (0,00), is easily obtained in the form of the inverse Fourier-Laplace
transform F 1 (Fug ;) : X" 5 Cof F ug,j, by the classical Paley-Wiener-Schwartz
theory, see e.g. Hormander [44] Theorem 7.4.2, p. 192] or Stein and Weiss [80,
Chapt. IT1], §2, pp. 91-101, and §6.12, pp. 127-128. An interested reader is referred
to Tak&ac [82, Chapt. 5] for a brief review of the (inverse) Fourier-Laplace transform
that applies to our current setting.

In regard to later applications (cf. Proposition and Theorem , in our
(H6) above we have not specified the number r € (0,00) corresponding to the
half width of the complex strip X" = RN +iQ("), a tube in CV with the base
Q" = (—r,7)N. Hypotheses (H1)-(H3) in Section 3| show that only the case
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0 < r < rg is useful. We will comment on the choice of r € (0,70] in Remark
right after Theorem below. Concerning this question of choosing (finding) a
suitable half-width r € (0, ro], we begin with the following observation.

Remark 6.2. The Hermite functions h : CV — C described in Remark [6.1] are not
the only way for approximating the initial values u(-,ty) = ug € B*??(RY) at time
to = 0 in the Besov space within the Besov norm ||-|| gs:.»(~). In our approximation
procedure we need to guarantee the following “uniformity” of the half width of the
complex strip X" = RN +iQ("), i.e., the same half-width r € (0,7,] for each
approximating function Gg, : XM - CM: p =1,2,3,.... In precise analytic
terms, this means that, for any given radius Ry € (0,00) of the ball Bg, (0) in
B#?P(RYN), there exists a number r; € (0, 7] small enough, such that, whenever
r € (0,r], the approximating sequence of functions {ay,}5>; has the following
properties (cf. (H6)):
(H7.1) each function = +— Qg ,, (z+iy) : RY — CM is in the Besov space B*PP(RV),
for every y € Q(),
(H7.2) the “proximity to ue” estimate ||tig (- +1iy) — ol gsiw.p(mny < Ry holds for
ally € Q) and n =1,2,3,...,
(H7.3) ag,p : X" — CM is holomorphic for every n =1,2,3, ..., and finally
(H7.4) the restrictions ug, = Ugn,|r of g, to the real line R satisfy ||ug, —
ol gsimp(ryy — 0 as n — oo.

)

We keep the natural notation L2(RY) = [L%(RY)]M etc. introduced for spaces
of vector-valued functions in the Introduction (Section . We recall the continuous
Sobolev(-Besov) imbeddings

S(RY) — L*(RY) nW2™P(RN) — B5PP(RYN) — C™(RY) n W™>(RY),
w2mp(RN) — BsPP(RN) — LP(RY) N L2RY), 2+ N p<oo.
m

We remark that W2mP(RYN) ¢ L*(RY) if 2 < p < co. From now on we identify
ug = Uy and drop the tilde “7” in the (unique) holomorphic extension.

By (H1)-(H3) (cf. Theorem [3.4)), let us set 7 = 7y € (0, 00) above. In the Cauchy
problem (I.1)) we may replace the real space variable x € RY by its complex shift
z = x + x9 + iyo by a fixed complex vector zyp = xg + iyg € % < CN with any
zo € RY and any yo € Q). In the sequel we consider zy € X to be a parameter
and z € RV an independent variable in the Cauchy problem spatially “shifted”

by zo, 5
% +P(x+ 20, t, %%)u = f(erzo,t; <66|a:|/;1)ﬁ§m>

for (z,t) € RY x (0,7);
u(z,0) = ug(z + 29) for z € RV .

(6.1)

By our hypothesis on the initial data ug : RN — CM and its holomorphic extension
uy = o : ¥ — CM stated above, for each zg € X("), the “shifted” function
x = u(()ZO)(x) = ug(z + 20) : RY — CM belongs to L2(RY) N W2mP(RY) where
24 % < p < oo. Consequently, we have ugzo) € B*iPP(RY), and thus, we may apply
the local (in time) existence and uniqueness result (Theorem on a short time
interval [tg,T1] C [0,T] with the initial condition u(-,t9) = uéz‘)) in B5PP(RV) at
time t = tg € [0,T) to conclude that the spatially “shifted” Cauchy problem
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possesses a unique weak solution u*) € C ([to, T1] — B*PP(RY)), local in time.
Of course, the length of the time interval [to,T}] depends on the shift zy € X(;
more precisely, on its imaginary part yo = Smzg € Q). However, when making use
of the abstract reformulation of the Cauchy problem , we must guarantee
that the values of the (unique) strict solution u(*0) : [to, Ty] — B*PP(RN) to
the Cauchy problem (6.1]), the (continuous) “shifted” function t — u(- + z9,t) =
u®0) (- ) : [to, T1] — BSPP(RN), stay in the bounded open set U = U C Ei_1,
for all times t € [tg, T1] (cf. Remark. To avoid this technical problem, we mapke
the following global existence hypothesis, cf. Theorem [3.4}

6.2. Hypothesis.

(H8) The original Cauchy problem ([1.1)), i.e., problem (6.1]) with zo = 0 and the
initial data uy = ty € B*PP(RY) at t = 0, possesses a global weak solution
u e C([0,T] — B=PP(RY)).

= B*PP(RY) that appears in (H4), (H5), (H4"),

Now define the set U C By _1 ,
(H5’), as follows: First, let
Up = conv(BRo(O) U Usepo.ry Br, (8(., t))) c BsPP(RY) (6.2)

be the convex hull of the union of open balls

Br,(0) := {w € B¥"P(RY) : [|W| geuwnmny < Ro} C B*PP(RY),
Bpg,(v) := v + Bg,(0) with v =u(-,t) for t € [0,T],

where their radius Ry € (0,00) is an arbitrary positive number. Of course, the
symbol “0” stands for the zero function in B®PP(RY). Alternatively, we may
take Uy = Bg,(Up) to be any open ball in B*??(RN) centered at Uy = U(-,0) with
(sufficiently large) radius Ry € (0, 00), such that 0 € Bg,(Uo) and u(-,t) € Bg,(to)
holds for every ¢ € [0,T]. However, this choice of Ry would not fit in Example
in Section |§| below. Clearly, Uy is a bounded open set in B*??(R"). From now
on we take the initial values u?0)(-,tp) = ulf® = u)(. + 2, t,) € BsPP(RN)
at time ¢ = to € [0,T) in the Cauchy problem (and similar related initial
value problems) from the set Uy only, i.e., u((f”) € Up. This choice will guarantee
that the values of the (unique) strict solution u(*0) : [to, T1] — B*??(RY) to the
“shifted” Cauchy problem stay for all times t € [tg, T1] in the bounded open
set U=U C El*%’p = B*PP(RY) defined next, U D Uy. We put

U=U{Bg,(v):v €Uy} CB*PPR"Y); (6.3)
hence,

U={weB*""R"): |w-v|

Bewr®N) < R for some v € Uo} .

One may call U the open Rg-neighborhood of Uy in B*PP(RYN). Also U = U
is a bounded, open, and convex set in the complex Besov space B*PP(RY) and,
consequently, in W™P(RM) and in CI'y,(RY) = C™(RY) N W™>*(RY), as well,
owing to the continuous Sobolev(-Besov) imbeddings

BsPP(RN) s WmP(RY)  and  BSPP(RY) — C™(RN) nW™>(RY),  (6.4)
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respectively, where

(1+ m<s:2m(1f%)<2m

)
2m+ N
thanks to the inequalities 2 + % < p < o0; see Adams and Fournier [I, Chapt. 7],
Theorem 7.34(a,c), p. 231. This shows that, for any function w € U, the partial

derivatives ag;lg"’7 B=(B1,...,8n5) € (ZL)N, of order |B] = By + -+ + B < m, are
uniformly bounded on RY

18l
|867WB($)|§CEC(U)zconst<oo for all z € RV, (6.5)
x
for a constant C' € R depending solely on U. These partial derivatives are argu-

ments in the reaction function f(:lc7 t; (86‘Z;u)|ﬁ|<m) on the right-hand side of (|1.1))

and (6.1). In (H3) on f we take  C CM¥ to be the closed polydisc ¥ = [D¢(0)] MY
where D¢ (0) := {z € C: |z2|] < C} is a closed disc. This restriction on the values
of the (unique) strict solution to the bounded open set U = U C El—%,p will be
used in applications to semilinear Heston-type models in “Mathematical Finance”
treated in Section )

From (H3) we deduce immediately that each component f; : Qx[D¢c(0)]MN — C
of the reaction function f = (f1,..., far) is continuously differentiable (i.e., of
class C1) with the time derivative % fj(z,t; X) and all argument first-order partial
derivatives

of;
8X57k

being uniformly bounded on §2 x ¥. Consequently, each f; is Lipschitz continuous
with respect to the variables ¢ and Xg j,, uniformly on € x 3.
Recalling the continuous Sobolev(-Besov) imbeddings (6.4), i.e.,
B5PP(RN) — WmP(RY) N C™(RY) n W™ (RY) |

and the LP-integrability condition in (3.4)), we have just proved the following lemma
(cf. (H4), (H5), (H4'), (H5")):

(z,;X), for|B]|<mandjk=1,2,...,M,

Lemma 6.3. Assume that f : Q x CMN 5 CM satisfies (H3), and (H8) is also
satisfied. Let U =U C By 1, = B¥P(RY) be as in (6.3). Then the Nemytskii
operator F : [0,T] x U — Ey = LP(RY) defined by

F(t,v)(z) := f(:l:, t; (%) ng) , zeRN, (6.6)

forallt € [0, T] and all v € U, satisfies the following properties:
(a) F:[0,T] x U — Ey is a Lipschitz continuous mapping, i.e., F satisfies
(H5).
(b) The substitution mapping § : C([0,T] — U) — LP((0,T) — Ey) defined by
F(v)() :=F(t,v(t)), forallte]0,T], veC(0,T]—1U),
is Lipschitz continuous with values in LP((0,T) — Ey).
Proof. The only claims in Parts (a) and (b) that remain to be verified are that
F maps [0,T] x U into Ey and § maps C([0,7] — U) into LP((0,T) — Ey),
respectively.
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(a) For each component F; of F = (F,..., Fy) from we derive
Fj(t,v1)(x) — F;(t,va)(x)

1 1Bly, 1Bly,
= > E:[Z;aigk( u(@‘*”imﬁ +9iMﬁ)mgm>dﬂ (6.7)

18] <m k=1

o8l )
X p (v1k(z) —voi(x)), = eRY, j=1,2,...,M,

for all ¢ € [0,7] and for all vi,vy € U. Notice that the partial derivatives with
respect to 2 emerge from the chain rule applied to the right-hand side of
using the partial derivatives ﬁfj (x,t; X) with respect to the argument Xz and
the convex combination w = (1 —0)vy + 6vs € U for 0 < 6 < 1, thanks to U being
convex. Consequently, with this abbreviation for w and our choice of the constant
C =C(U) in (6.5), all partial derivatives Wﬁ ,B=(B1,...,08n) € (Zy)N, of order
18] = B+ - + Bn < m, are unlformly bounded on R, by (6.5] . By (H3), cf.
Remark m all partial derivatives 5<— X f] (z,t;-) : ¥ — C are uniformly bounded,

|8fj(xat;X
0Xp.k

| < Ci =C1(C(U)) = const < oo (6.8)

(cf. B35)) for all (z,t) € Q and all X = ((Xﬁyk)|5|§m)24:1 € X, by a constant
Cy € Ry depending solely on C(U). We apply these estimates to the integrands
in to conclude that there is a Lipschitz constant L = L(U) € R, depending
solely on U (through the constant C1(C(U)) > 0 in above), such that

M 5lBl
F(t,vi)(@) = FEv2) @] <L Y0 3|55 (@) —van@) | (69)

|Bl<m k=1

for all z € RN ¢t € [0,7T] and vq,vo € U.

We recall U C B%P?(RY) and the imbeddings in to deduce from that
the mappings F(¢,-) : U — Ey = LP(RY) are uniformly Lipschitz continuous (with
the same Lipschitz constant) for all ¢t € [0,7]. Here, we single out the special case
of vi = v € U being arbitrary and vo = 0 € U, i.e., vo(x) = 0 € CM for all
x € RN, Then yields

18]
F(t,v)(@)| < [F(t,0)(x |+LZZ\8 (6.10)

|8|<m k=1

for all » € RN, ¢ € [0,7] and v € U, where
F(t,0)(z) = f(z,1;0), 2 € RY, 0= (0)3<,n = (0,...,0) € CM¥.
satisfies F(t,0) € Ey = LP(RY), by the LP-integrability condition in (3.4), i.c.,

- 1/
|F(t,0)| g, = (/RN |f(x,t;0)P dx) 3 < K foralltel0,T],

where K € (0, 00) is a constant. Now it follows from above that also F(t,v) €
Ey holds for all t € [0,T] and for all v € U, as claimed.

(b) Analogous results for the mapping § : C([0,T7] — U) — LP((0,T) — Ey)
follow from those we have just proved for F(t,-) : U — Eg, t € [0,T]. Namely, the
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“supremum” (or “maximum”) norm on the Banach space C([0,T] — E;_1 ) of
5
all continuous functions w : [0, 7] — E;_1 , is defined by
T
lelle= o) = Welo oy, , ) = S0b, Oz g, .

te[0,T
Remark 6.4. Analogous result (to Lemma hf)[ld %or the “shifted” Nemytskii
operator F(*0) : [0,T] x U — Ey = LP?(R"), by a complex vector zy € X", defined
by 18]

FCO) (4, v)(z) = f(m + 20t (%TB") WSm) , zEeRY, (6.11)
for allt € [0,T] and for all v € U. Both constants, C; = C1(C(U)) and L = L(U) in
inequalities and , respectively, are independent from the shift by zo € ¥(")
in case z € RY is replaced by z + zo, thanks to (z,t) € Q where the domain
Q= F&TD)(To,ﬁo) = x(r0) x Afgz’T C CN x C has been introduced in Section
before (H1)—(H3) (cf. and Theorem [3.4)).

In what follows, the initial data ugy in the Cauchy problem at time ty €
[0,T) have nothing to do with the initial value u(-,0) = Uy € B*PP(R"Y) of the
global weak solution u € C ([0, 7] — B*P*(RY)) in (H8), except for the restriction
ug € Uy, where Uy is determined by the values of the solution (-, t) in B¥P?(RY)
for 0 <t <T, see .

We take advantage of Remark to recall that, given a holomorphic function
Uy = g : X — CM as described before (H8), the spatially “shifted” Cauchy prob-
lem possesses a unique weak solution u®) = u(=0:%0) € C ([to, 1] — B*PP(RY)),
local in time, for every fixed shift zo € X("), locally uniformly in the complex do-
main, provided its real and imaginary parts, zo = Rezo, yo = Smzo € Q1) ¢ Q)
are small enough, i.e., max{|zo|oo, |Yoloc} < ™1 (< 7 = 719). Indeed, it suf-
fices to choose r; € (0,7) so small that each “shifted” function = — u(()z")(x) =
uo(z + z0) : RY — CM (serving as the initial data at time ¢t = ¢y € [0,7)), with
20 = xo + lyo satisfying max{|zo|eo, |[Y0|oo} < 71, lies in the open set Uy specified
in after (HS8), i.e., u(()z‘)) =ug(-+20) € Uy C El*%’p' Recall that Q1) and
X)) = RN +iQ(") stand for the respective closures of the cube Q") ¢ RN and
the strip X(") € CN. Indeed, our choice of r; € (0,7) small enough to guaran-
tee uéz‘)) = ug(- + x + iyg) € Up for every yo € Q") (and for all 5 € RY), is
possible thanks to the closed cube Q1) ¢ RY being compact. For “small” shifts
20 = xo + iyo € CV we introduce the complex cube

le) = Q) +iQU) = {z =z +iy € C: max{|#|oo, |[Yloc} <71}
cxtm) = RN 4iQ0m)

and denote by 7§CT1) its closure in C"; hence,

Q((Cﬁ) _ Q(h) + i@(’"l)
={z=z+1iy € C: max{|7|oo, |Yloc} <71}
c x(r) = RN + iQ(ﬁ) cx(™ ,
thanks to 0 < r; < r. We will call Q((C“) the small shift cube.

To obtain a spatially holomorphic extension u = @ : X)) x [0,7] — CM of
the function u € C ([0,T] — B¥PP(R")), from (H8), to the spatio-temporal strip
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X(m) % [0,T], having a (unique) continuous extension u : X(") x [0, 7] — CM to
the closed strip X(") x [0, 7], such that (yo,t) — u(- + iyo,t) : Q) x [0,T] —
B*P?(RN) is continuous and satisfies u(- + iyo,t) € U for every yo € Q") and
for every t € [0,T], we construct u first locally in time on a short time interval
[to, to + T1] C [0, T] as follows, where T; > 0 is small enough.

Let u*0) : ¢ — u®)(. ¢) = uo) (. ¢) from C ([to, to + T1] — B¥PP(RY)) be
as above, such that zp = iyg and ui%0) (-, t) € U for every pair (yo,t) € Q") x
[to, to + T1]. Given any yo € Q"), let us define

u(z +iyo, t) == u@) (1) for all (z,t) € RN x [to, to + T1] . (6.12)

Clearly, u : X(") x [tg,tg + T1] — CM is a well-defined mapping, and it has the
following properties.

Proposition 6.5. Let M,N > 1, 0 < T < oo, and assume that (H1)—(H3) are
satisfied with constants 0 < rg < 00, 0 < Ty < T, and 0 < 99 < w/2. Furthermore,
assume that 4 € C ([0,T] — B5PP(RYN)) is a globally defined weak solution to
the original Cauchy problem , i.e., (H8) is wvalid. Let the sets Uy C U C
El*%’f’ = B*PP(RN) be specified as in and (6.3). Given any to € [0,T),
let ug € Uy C B*PP(RN) be any initial data at time t = to, such that ug has a
holomorphic extension @y : X" — CM as described in (H6) and Remark (we

identify ug = 0g), with uézo) =ug(-+20) € Up C E,_1, whenever zog = x¢ +1iyo €
L,

P

le) C X" for some r1 € (0,7). (We have set r = ro; 1 may depend on ug.)
Then there exists a number Ty € (0,T — to], depending on r1 and U, but not on

to, such that the Cauchy problem (6.1) on the (local) time interval [to,to + T1] C

[0,T] with the initial condition u(-,ty) = u((JZO) possesses a unique weak solution
ul0) = =) e O ([to, to + 11 — B5PP(RYN)), such that u*0)(-,t) € U holds for
every t € [to,to + Ti]. The family u®0) | parametrized by zo = x¢ + iyo € le), has
the following properties:

(a) u®®0)(z,t) = o) (z 4 x¢,t) holds for all (z,t) € RN X [to,to + T1] and for
all zy € le); consequently, even for all zy € X,

(b) The mapping u : X0 x [tg,to + T1] — CM defined in satisfies
u(r + o + iyo, t) = ul@oHvo) (x t) for all (x,t) € RN x [tg,to + T1] and for
all zg = xo +iyo € CN with |yo|ee < 71-

(c) The mapping u : X0) x [to, to+Ty] — CM = (2,t) = (z+iy, t) — u(z+iy,t)
is continuously (partially) differentiable with respect to all the real variables
riandy; (i=1,2,...,N)inz = (z1,...,zn) andy = (y1,...,yn) in RY
with |[Y|eo < 71.

(d) For each fired t € [to,to + Th], the mapping u(-,t) : X1 — CM . 2 =
x +1iy — u(z + iy, t) is holomorphic, i.e., (partially) complex differentiable
with respect to all the complex variables z; = x; +1iy; (i = 1,2,...,N) in
z=(z1,...,2n) € X01) c CN.

As for Part (d) in this proposition, there are several equivalent definitions of a
holomorphic function of several complex variables used in the literature, cf. Krantz
[57, Definitions I-1V, pp. 3-4]. We adopt the most widely used definition in [57],
Definition IT (p. 3) and Definition 1.2.1 (p. 24). From this definition it is easy to de-
rive the existence of an absolutely convergent power series ([57, Definition III, p. 3])
and the Cauchy formula in a polydisc ([57, Definition IV, pp. 3—4]). Nevertheless,
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the equivalence of [57), Definition I, p. 3] verified in part (d) in our proposition above
with [57, Definitions II-IV, pp. 3-4] is a deep classical result due to Hartogs; see
[57, Theorem 1.2.5, p. 25]. However, taking also part (c) into account, we observe
that also [57), Definition II, p. 3] is verified in our proposition.

Proof of Proposition[6.5. Recalling our remarks on the local (in time) existence
and uniqueness before this proposition, we observe that it suffices to verify only
our claims in Parts (a)—(d).

(a) Clearly, given any fixed zop = o + iyo € le), both functions
tsul) (1) and  t e w0 (4 3o, t) 1 [to, to + Ti] — BPP(RY)

are weak solutions to our Cauchy problem on the (sufficiently short) time
interval [to,to + T1] C [0,T] with the same initial data uézo)(~) = u(()iyO)(- + ) at
time ¢t =ty € [0,T), for some Ty € (0,T — to]. The uniqueness for problem
now forces u(%0) (-, t) = ulo) (- + 2, t) for every t € [to,to + T1] as claimed.

Part (b) is an immediate consequence of Part (a) applied to (6.12)).

(¢) At the initial time ¢t = to, the continuous (partial) differentiability is valid by
our hypotheses on the initial data ug : ¥(") — CV viewed as a function

20 = xo + 1yo = (To, y0) — (- + 20) = u(()zo) XM =RY x QM) — B¥PP(RV)
valued in the Besov space E; 1 , = B*PP(RY); in particular, ug(- + zo) = uézo) €
Uo C Ey_1 , provided zp = z¢ +iyo € le) c X0 (c x(). We recall that Uy
is an open subset of F;_1 , defined in (6.2). We may view this C! differentiability

P

as (partial) differentiability with respect to the real parameters zo,; and yo,; in

the complex shift zg = xg + iyg € le), where xg = (20,1,...,Zo.n) and yg =
(Y0.1,---,yon) are in RY with max{|2o|oo, [Y0]oo} < 71

We now briefly interrupt our proof of Proposition to make the following
remarks:

Remarks. The kind of theory on continuous and differentiable dependence of the
solution

2o = u(- + 2o, 1) = u®) (1) X = RN x Q) — BsPP(RY)

for ¢ € [to,to +T11], on the real parameters zo; and yo, in 2z € .'%(”), that has been
developed in Henry [40, Chapt. 3], §3.4, pp. 62-70, or, alternatively, in Lunardi [65]
Chapt. 8], §8.3.1, pp. 302-306, can be adapted also to our setting for the spatially
“shifted” Cauchy problem (6.1)), with only minor changes. We should remark that,
in this approach, the following hypotheses on A and f will do; they follow from
(H1)—(H3) (cf. Lemma [6.3] and its proof):

6.3. Hypothesis. In analogy to, (H4’) and (H5’) let us assume that there are
positive constants ¥y € (0,7/2) and Ty € (0,7, and open sets Y C C and U C

El—%,p containing the compact set Agg’T and the open set U, respectively, i.e.,

Agz’T cUCCandUcCUC E,_1 ,, such that

(H4”) A:[0,T] x U — L(E1 — Ep) possesses a continuously (Fréchet-) differen-
tiable extension (i.e., of class C') A: U x U — L(E; — Ejp) to the complex
domain U x U which satisfies A(t,v) € MR, (E) for all (t,v) e Y x U.
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(H5”) f:[0,T] x U — Ej possesses a continuously (Fréchet-) differentiable ex-
tension f : U x U — Ej to the complex domain U x U.

Clearly, in both these hypotheses, the mappings A and f, respectively, are ex-
tended from the domain [0,7] x U C AgE’T x U to the complex domain U x U C
C x Elf%,p'

Now we continue the proof of Proposition Proof of part (c). Recall that the
metric on U x U ( C C x El_%yp) is induced by the canonical norm on C x El_%w.
It is evident that (H4’) and (H5’) imply (H4”) and (H5”), respectively.

Applying the results from [40, Chapt. 3, §3.4] or [65, Chapt. 8, §8.3.1], we now
conclude that the mapping

zo = u(-+ z0,1) : X = RN x Q) - B5PP(RN) |t € [to,to + T1],

is continuously differentiable with respect to the real parameters zy; and yo; in
2o € X("). The partial derivatives,
Ju Jdu Ou Ou Ou ou

==, — =—_—=i- X0 x [to, to + Th] — CM

Oro; Oxy Oz Oyoi Oy ' 0z; lto,to + Ti]
valued in C' ([to, to + T1] — B*P?(RY)), are the unique weak solutions of the follow-
ing Cauchy problems derived from (6.1)) by the corresponding partial differentiation,
respectively:
8(8u)+8P(+ tl@)(+ 0
— — |z + 20,t, —=— Ju(z + z
ot (91'1 833'1 0 10z o

+P(m+20,t,%%)(2;)(96—1-20775)

— 88;1 (:c + 20,1; (%(x + zo,t)>

<)

M
+ Z Z 82,Zk (x+20,t; (%i/;l)|g|<m)g;<gl::>(m+20’t)

Bl<m k=1""F

(6.13)

for (Q]‘,t) S RY x (to,to +T1),

ou Ju
oz, (x + 20,0) = 835? (x+2) forz e RN,

and
%(%) + %(w-l—m,h%%

+P(m+20,t, %%) (%)(m—kzo,t)

)u(x + zo,t)

= gyfz (m + 20, t; (aalilﬁu (z + 2o, t)) \ﬁ|§m)

M 18] 18]

for (.’I},t) S RN X (to,to +T1),

(6.14)

8;(a:+zo,()) = E;Zj(erzo) for x € RY
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where the complex variable Z3 ; stands for Zg; = %uk = ilfl chuk € C. This
proves Part (c).

Proof of part (d). We take advantage of the two equations (6.13) and (6.14)), to
apply the Cauchy-Riemann operator 9/90z; from (2.2)) to problem (6.1)) to conclude
that the Cauchy-Riemann derivative

0.0 (95071' - 0z; ) ox; 8yl
is in C ([to,to + T1] — B*PP(R")) and obeys the following homogeneous linear
Cauchy problem, which is a simple linear combination 3-(6.13)) +3- (6.14) = (6.15):

)U_ s x0r) % [to,to -‘rTﬂ - CcM

) (@ep )+ 20,1

d ,= 1
7(82071.u) + P(x + 29, t, e

ot

_Ziag

£ 91814 o8l
=a B,k(“zo’f’(W)mgm)w(azovi“k““zo’t) (6.15)

for (z,t) € RN x (to,to +T1);
(520.iu) (x+20,0) =0 forze RY.

Here, we have used that both operators
10
Z= P(Zat, T@j) and z — £(2,8; (Z3)151<m) : x5 cM (r=1rp)

are holomorphic, i.e., 8., P(z,t, %a%) = 0 and 0.,f (2,t;(Zg)|5<m) = 0, by (H1)
and (H3), respectively. By our choice of uy = 11y : X(") — CM being holomorphic,
we have also 0,,u9(z) = 0;4 = 1,2,..., N. Notice that is valid only for every
20 € X (C X)),

By (H1) and (H2), the linear differential operator on the left-hand side of (6.15)),
ie.,
is uniformly parabolic of order 2m with smooth coefficients. It is proved in Denk,
Hieber and Priiss [23, p. 67], Theorem 5.7 (cf. also [74], Theorem 2.1 (p. 8) and

remarks thereafter (p. 9)) that, for every z, € X(") and for every ¢ € [0, T],

A (1) = P (m + 20,1, %a%) . W2mp(RV) - LP(RY) (6.16)
is a bounded linear operator, i.e., A%0)(t) € L(E, — E), and it possesses the
maximal LP-regularity property, i.e., A0)(t) € MR,(E) = MR,,(E; — Ep). Let us
recall that By = W2mP(RYN) — Fy = LP(RY).

Furthermore, in view of (H3), the pointwise multiplication and differentiation
operators on the right-hand side of are of order 8] (|8] < m < 2m) and
all have bounded continuous coefficients, by u(-,t) € U C B*?P?(RY) for every
t € [to,to + T1] combined with the Sobolev imbedding B*P?(RN) — C™(RN) N

Wmo(RN) where 2—1—% <p<oocandm< s= 2m(1—%) < 2m. We denote their

sum, which appears in (6.15), by f*0)(¢) : Bsf’*p(RN) — LP(RN), ie., fG(t) €
E(El,;’p — Eo). Here, we allow any zy € X("). Consequently, the mappings

(t,v) = A (t) 1 [0, T x U — L(Ey — Ep) and (t,v) — ) (t)v : [0, T] x U — Ey
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satisfy (H4) and (H5) for A and f, respectively, with U = E;_1 , Ao (t) €

L(E; — Ep) being independent from v € U, and v — f(*0)(t)v linear in v € U.
We observe that the homogeneous linear Cauchy problem (6.15) for the Cauchy-
-Riemann derivative 0., ,u of u takes the following abstract linear form, whenever

20,i
20 € %(7"1):

d

a(520‘1.11) — A ()(D,, 1) = fE (1) (85, 1) for ace. t € (to, to +T1);

- (6.17)
(0z,u)(0) =0 ¢ Ek%’p.
This abstract linear problem corresponds to the nonlinear initial value problem
treated in Section (4. We apply the uniqueness part of Theorem to deduce
(9z,u)(x,t) = 0 for all (z,t) € RY x [to,to + T1]. This implies that the mapping
2+ up(z,t) : X" — C is holomorphic in each complex variable z; € C, for every
fixed time t € [tg, to+T1]; k = 1,2,..., N. Moreover, by part (c), all complex partial
derivatives 0,,uy(-,t) are continuous in X("1). Finally, we take advantage of the
classical fact that such a function uy(-,t) : X(") — C is holomorphic (Remark [2.1));
see e.g. John [50, Theorem, p. 70] or Krantz [57, Definition II, p. 3]. Also Part (d)
and, thus, the entire proposition is proved. [

7. SPACE-TIME ANALYTICITY FOR THE CAUCHY PROBLEM IN RY x (0,7)

We summarize the time and space analyticity results from the last two sections
(Sections and @, for the mapping u : X" x [tg, to + T1] — CM defined in (6.12),
in the following theorem.

Theorem 7.1. Let M, N > 1,0 < T < oo, and assume that (H1)—(H3)are satisfied
with some constants 0 < rg < 00, 0 < Ty < T, and 0 < 99 < w/2. Furthermore,
assume that U € C ([0,T] — BSPP(RY)) is a globally defined weak solution to
the original Cauchy problem , i.e., (H8) is valid. Let the sets Uy C U C
El_%m = BsPP(RYN) be specified as in and (6.3). Given any to € [0,T), let
ug € Bs?p’p(RN) be any initial data at time t = tg, such that ug € Uy and ug has a
holomorphic extension g : ¥ — CM as described before Lemma (we identify
ug = 0y, with u(()z") =ug(-+ 29) € Uy C Ek%,p whenever zy € Q¢ " C X)) for
some 1 € (0,7), ¢f. (HG). (We have set r = ro; 1 may depend on ug.)

Finally, let u : £01) x [to,to+T1] — CM be the continuous mapping obtained in
Proposition with Ty € (0, T —to] depending onry and U, but not on tg. Replace
To € (0,T] by min{To,T1} if necessary, so that 0 < Ty < Ty < T holds. Then
there exist constants ¥ € (0,9] and T" € (0,Tp], small enough, and a continuous

mapping @ : X1 x (to + Ag,/’Tl) — CM with the following properties:

(i) For each zy € XU) | the (unique) weak solution
u®0) € C ([to, to + T1] — B*PP(RV))

to the Cauchy problem (6.1) on the time interval [to,to + T1] C [0,T] with
the initial condition u(-,ty) = u(()ZO) at time t = to satisfying zg € le)
possesses a unique holomorphic extension from (to,to+T1) to to + Ag, ’Tl,

such that u*0) (- to + s) = (- + 20,t0 + 5) € U holds for every s € Ag,l’Tl.
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ii) The complex function @ : X)) x (to + AT T 5 CM s holomorphic

(i) p P
(jointly) in all its variables, z = (21, 22,...,2x) € X)) c CN and t €
to + Ag,’Tl c C.

Let us recall that, by our notation in (1.7)), for ¥ € (0,7/2), 0 < to < T < o0,
and 0 < T’ < T —tg, we have

to+ AT T — (1, + AN N {t € C : |Smt| < T’ tan 9}
=Up<e<r-r{§+t' € C:t' € A%T )} (7.1)
= Uty<e<r—1 (E+ AY))

with the closure tg + Agl’T_to in C.

Remark 7.2. (a) The main difference between our main result, Theorem (Sec-
tion [3), and Theorem [7.1]above is the temporally local character of the latter stated
for the time interval [tg,to + T1] C [0, 7] with the additional analyticity hypothesis
on the initial data ug (as in part (iii) of Theorem [3.4]).

(b) Recalling our choice of the number r € (0,00) in (H6) (before Remark
on the complex analyticity of the initial data ug = 1 : X" — CM extended to
the complex strip X(") ¢ CV, we observe that the number 7 € (0,7), originally
introduced in the spatially “shifted” Cauchy problem , is needed for sufficiently
small perturbations (“shifts”) 2o € CV of the space variable z € (") in order to
keep z + zp € X("). As we have already mentioned after Remark (H1)-(H3)
show that only the case 0 < r < ry is useful. We now recall from Proposition
and Theorem (7 - that, to avoid excessive notation, r; € (0,7) must be chosen

(z0) _ =uy(-+20) €Uy CU C El_;p for every zg €

le) c X)), We recall that the sets Uy and U are defined in ) and .,
respectively. We stress that both, Uy and U, are open in E17 Whlle being

small enough, such that ug

1,
determined solely by the restriction to the real line R, ug = Gip|r pE Uy C El_%w,
of the initial data @y : X(") — CM, i.e., by ug : RY — CM as an element of the
Besov space By 1, = B*PP(RY). Consequently, the number r; = r;(ug) € (0, c0)
is determined by these initial data ug € Up; we have 0 < r1 < r < rg where we may
choose r = rg, by Remark Such a choice of 71 € (0,7) is possible thanks to the
closed cube Q") being compact in RV,

Proof of Theorem[7.1. (i) Let zy = xo —|— iyo € X01) be arbitrary, but fixed, with
max{|Zo|oo, |Y0|oc} < 71, 1€y 20 € QC . We apply our time analyticity result in

Theorem [5.3] to the Cauchy problem (6.1} ) on the time interval [tg,to + T3] C [0, T]
with the initial condition u(-,¢p) = u( € Uy at time t = ¢( to derive the conclusion
of Part (i).

(ii) The second part is obtained by combining Part (i) with Proposition
particularly Part (d). Finally, the joint time and space analyticity of the complex
function @ : X)) x (t + AT Tl) — CM is obtained by applying the classical
characterization of holomorphlc functions by the Cauchy-Riemann equations (Re-
mark; see e.g. John [50, Theorem, p. 70] or Krantz [57, Definition II, p. 3]. O
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8. PROOFS OF MAIN RESULTS

Now we are ready to prove Theorem Then Proposition [3.5is a consequence
of Theorem and Lemma inequality ([5.6). We give its proof right after that
of Theorem [3.4]

Proof of Theorem[3.]} (i) The existence and uniqueness of a weak solution u €
C ([0, T1] — B*P?(RY)) to the Cauchy problem (L.I]), local in time for ¢ € [0, T]
with some Ty € (0,77, is obtained directly from the abstract result in Theorem 4.5
where E, 1, = B*PP(RY) = [B¥PP(RN)]M. The technical details in applying
Theorem (an abstract result) to problem have been given in Section [6]
right after problem . The linear parabolic operator on the left-hand side in
is treated by the maximal LP-regularity described in Remark [£.2(a). The
special case of p in this remark, po = 2, is taken care of by standard parabolic
regularity making use of Garding’s inequality in Corollary see, e.g., Friedman
[31, Chapt. 10]. If a weak solution u € C ([0,7] — B*PP(RY)) exists globally in
time ¢ € [0, T, then it is unique, by Theorem [4.7} Part (i).

(ii) The (unique) temporal extension of the function u : RY x (0,7) — CM to a
holomorphic function uf : Ag,/’T — B*PP(RY) that possesses another extension to

a continuous function on the closure Ag,/’T, denoted again by uf, is derived from
Theorem Part (i). More precisely, Part (i) of Theorem is applied to the
(global) weak solution u € C ([0, T] — B*7?(RY)) of the Cauchy problem (L.1)),

which is assumed to exist, in the temporal complex domain ty + A(?I) with the
initial value u(-,tg) € B*PP(RY) at every initial time t, € [0,7 — T"]. Here, we
have used that

Ag’T = Uo<to<r—1 (to + Aff )) (8.1)

(cf. (71)).

(iil) We remark that (H8) is satisfied with the function
i=ueC([0,7] = B*"?R"Y)),

a globally defined weak solution to the original Cauchy problem , which exists
by our hypothesis. Let us recall the definitions of the bounded, open, and convex
sets Up and U in B5P»P(RN), Uy c U =U C Ei1,= BsPP(RY), in and
, respectively, where the radius Ry € (0,00) is an arbitrary positive number.
We recall also our hypothesis that the initial condition u(-,0) = uy € B*PP(RY)
possesses a (unique) holomorphic extension g : xo) — CM from RV to the
complex domain X(0) = RY 4 iQ(<0) ¢ CN (a tube), for some kg € (0,7¢], that
satisfies .

We begin with a construction of the (unique) spatial extension of the continuous
function u : RY x [0,7] — CM to a continuous function u’ : X x [0,T] — CM
that is holomorphic in the space variable z = z +iy € ¥(?) = RN +iQ(®) with some
p € (0,Kp] small enough. Let us recall our notation with the “shifted” function
z — ul () == ug(z + 20) : RY — CM introduced in the Cauchy problem
spatially “shifted” by zy = x¢ +iyo € X" € CN. The constant r € (0,00) has
been introduced in (H6); only the case 0 < r < kg < rg ( < 00) is useful. We wish
to apply Proposition with the constant r1 € (0,r) specified there. We choose
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p € (0,71) small enough, such that also
||u(()iy) — Wl gewr@yy = [[uo(- +1iy) — ol swrryy < Ro  holds for all y € Q).

Here, we have used the (Lipschitz) continuity of the mapping y u(()ly) =u(-+
iy) : Q) — B*PP(RN), thanks to 0 < r; < kg supplemented by the Cauchy
formula in a polydisc centered in X(") (with radius < ko —71) and contained in the
complex strip X(*0) ¢ CN. From we deduce that uéiy) € U for all y € Q).
In analogy with our proof of Part (i) above, we apply Theorem to conclude
that the spatially shifted Cauchy problem (6.1)), with the shift zo = iy (y € QP),
possesses a unique weak solution u®) e ¢ ([O7 T)] — B&PP (]RN)), local in time for
t € [0,T1] with some Ty € (0,T], that satisfies u®(-,¢) € U for every t € [0,T}].
We apply part (c¢) or part (d) of Proposition with tg = 0 to conclude that there
is a number R, € (0, Ry) small enough, such that even u®(-.t) € Uy C U holds
for every t € [0,T1], provided p € (0,r;1) is chosen so small that also

lul® — Wl geww@yy < Ri (< Ro) holds for all y € Q).

Here, besides the (Lipschitz) continuity of the mapping y +— u(()iy) = up(- +iy) :

Q) — BsPP(RY) mentioned above, we have used also the continuous depen-
dence of the solution u®¥) upon the initial data uély) € B*PP(RY) obtained in

Theorem 7part (ii); see also Remark According to (6.12), we define the
function v’ : X(¥) x [0, T1] — CM by the formula

W (x4 iy, t) == u®(2,t) forall (z,y,t) e RN x Q¥ x [0,T1]. (8.2)
Clearly, by Proposition part (c), the function u’ : X() x [0,7}] — CM is
continuous and, by Proposition part (d), also holomorphic with respect to the
complex variable z = x + iy € X(°) = RN +-iQ() at every time t € [0, Ty].

Next, we set ugly) = u(iy)(-,Tl) € Uy and repeat the procedure from above on
the interval [Ty, 277] with the initial data ugly) € Uyp at tg = T3 in place of u(()ly) e Uy
at to = 0. We stress that the interval length Ty € (0,7 — tp] in Proposition is
independent from the choice of the initial time ¢y € (0,7") whenever [to,to + T1] C
[0, T]. Again, we apply part (c) or part (d) of Proposition[6.5]with ¢ty = T} (in place
of tg = 0) to conclude that there is a number Ry € (0, R;) small enough, such that
even u) (- t) € Uy C U holds for every ¢ € [0,2T}], provided p € (0,7;) is chosen
so small that also

pewr@y) < R (< Ry < Ro) holds for all y € Q.
b

[u§™ — o]

The desired function u’ is naturally extended from the domain X(P) % [0,T1] to
X x [0,2T1] by setting (cf. ([8.2))
(x4 iy, t) = u® (z,t) for all (z,y,t) € RN x Q) x [Ty, 2Ty]. (8.3)
We keep repeating this procedure (by “induction” on k) with the initial data
u,(:y) = ul¥ (., kTy) € Uy successively for every k = 0,1,2,...,m until reaching the
inequalities
m-1DT1 <T<mTy atk=m-—1.

(iy)l = ul) (., (m —1)T1) € Uy and repeating the procedure from

m—

In fact, setting u
above on the time interval [(m — 1)T1, mT}] with the initial data u%’ll e Uy at
to = (m—1)Ty in place of ugy) € Uy at tg = 0, we can apply Theoremto conclude
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that the spatially shifted Cauchy problem (6.1)), with the shift zo = iy (y € Q),
possesses a unique weak solution u® € C ([(m — 1)Ty, mT;] — B*P?(R")), local
in time for t € [(m — 1)Ty, mT}], that satisfies u¥)(-,t) € U for every t € [(m —
1)T1, mT;]. Consequently, we may assume 7' = mT} instead of (m — 1)1} < T <
m11. In this way we have constructed a finite set of numbers Ry, Ra, ..., Ry_1, Rm
such that 0 < R, < Rpp—1 < -+ < Ry < Ry and, provided p € (0,71) is chosen
small enough, also

[ul® — wo|| gewp@ny < R, holds for all y € Q)| k=0,1,2,...,m 1,

together with u®)(-,t) € Uy C U for every t € [0, (m — 1)T}] and u¥)(-,t) € U for
every t € [(m — 1)Ty, mTy]. Finally, the desired function u’ is defined successively
on the domains X(?) x [(k — 1)Ty, kTy] for each k = 1,2,3,...,m by the formula

W (z+iy,t) == u®(2,t) forall (z,y,t) e RN x QW x[0,T7]. (8.4)

To summarize the result of the procedure described above, we have determined
a constant p € (0,71), small enough, such that for each shift y € Q) there is
a unique weak solution u® € C ([0,7] — B*P?(RY)) to the spatially shifted
Cauchy problem with the shift zy = iy, that satisfies u®)(-,¢) € Uy C U for
every t € [0, (m — 1)T1] and u¥)(-,t) € U for every t € [0,T], where T = mT;. We
apply Proposition Parts (¢) and (d), once again to conclude that the function
u’ : X x [0,7] — CM constructed above in has the desired properties: it is
continuous and holomorphic in the space variable z = = + iy € ¥(?) = RY 4 iQ(®
with some p € (0,71) small enough, where 0 < 71 < kg < ryg.

Now we are ready to finish our proof of part (iii) by further extending the (global)
weak solution u € C ([0,7] — B*P?(RY)) of the Cauchy problem from the
domain X() x [0,T] of the (unique) spatial extension u’ : X(») x [0,7] — CM
to another continuous function @ : X x Ag’T — CM which is holomorphic in

x() x Ag,/’T. We recall that the solution u € C ([0,7] — B*??(R")) is assumed
to exist by hypothesis (in part (iii)) with the initial data uy € B*??(RY) having a
(unique) holomorphic extension 0y : x(r0) - CM from R to the complex domain
X(0) © CN, for some g € (0,70).

We apply Theorem to the function u’ : X(») x [0,T] — CM on every time
interval [tg,to + T1] C [0,T]. We remark that the number Ty € (0, T — to] depends
on r; and U, but not on ty € [0,T), provided [tg,to + T1] C [0,T]. In fact, making
use of the same argument as above, where we have extended the function u’ from
the domain X(” x [0,T] to X x [0,mTy] in case (m — )Ty < T < mT}, we
can extend 1’ from the domain X" x [to,T] to X(?) x [tg,tg + T1] in case 0 <
to < T < tog+ Ty. Thus, if T < tg + T1 then we may replace T by T = tg + T1
and, hence, assume that [to,to + T3] C [0,7]. Consequently, by Theorem
the (unique) weak solution u € C ([0,T] — B*??(RY)) to the Cauchy problem
possesses a unique holomorphic extension from the time interval (to, to + 71)

to the complex temporal domain tg + Ag,/’Tl, such that the continuous mapping

a: X0 x (to + Ag,/’Tl) — CM constructed in Theorem is holomorphic in the
space-time domain X(") x (to + Ag,,’Tl). Since the interval [to,to + T3] C [0, 7] is
arbitrary, both statements (iii;) and (iiiz) and the complex analyticity statement
(iii3) in part (iii) of Theorem follow from (8.1). More precisely, the desired

holomorphic extension @ : (") x Ag,/’T — CM is obtained by shifting the temporal
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domain tg + Ag//’Tl with the vertex to ranging from the left to the right over the
time interval [0, 7 — T1]. In this process, the uniqueness result in Theorem Part
(i), guarantees that the function @(-+iy,t) = u¥) (t) = a(-+iy, to+s) = ul¥(t) €
BsPP(RN), with 0 < s =t — tg < T, is well defined for all (y,t) € Q") x Ag,/’T
independently from the particular choice of the vertex ty € [0,7 — T3] of the the
complex temporal domain ¢y + Ag,l’Tl. Furthermore, in part (iii), (iiiy),
holds with p in place of kg, whereas 1’ € (0, ko] has to be replaced by p, as well.
This concludes our proof of Theorem O

We conclude this section with the proof of the estimate in (3.14)).

Proof of Proposition[3.5, We recall from Section[f]that the shifted continuous func-
tion u®) : ¢ = u¥) () = a(-+iy, t) : [0,7] — B¥PP(RY) is a unique weak solution
of the spatially shifted Cauchy problem with the shift zo = iy (y € QU)).
Consequently, u® € C ([0,7] — B*PP(RY)) is also a strict solution (cf. Defini-
tion to the following abstract initial value problem, for every y € QU1):

d . . . . .
=Gy o AGy) (iy) — pwliy) (iy) .
e AW (H)u FU (¢, u'™(t)) for ae. t € (0,T); (55)

ul) (O) — ﬁO( + 1y) c El—%,p = BSP#’(RN) ’

cf. and (6.17). Here, A*0)(t) € L(E, — Ep) is the bounded linear (partial
differential) operator introduced in (6.16), satisfying A*0)(t) € MR, (E1 — Ej) for
every t € [0,T], and F(*0) : [0,T] x U — Ey = LP?(R") stands for the “shifted”
Nemytskii operator defined in Remark . We recall that both constants,
Cy = C1(C(U)) and L = L(U) in inequalities and (6.9), respectively, are
independent from the shift by zo € (") in case x € RY is replaced by z + z; with
20 = iy (y € QU")) in our case.

We now derive an estimate analogous to for our shifted Cauchy prob-
lem in place of the (original) abstract problem . Inspecting the proof of
Theorem 2.1 in Clément and Li [20, pp. 20-23] and combining it with our linear
perturbation result in Lemma and the estimate in , we arrive at the follow-
ing estimate for our shifted Cauchy problem in place of the abstract problem

9.
T qutv) T ) )
LIS e [ A @utne)
0 0

T
SMﬂ(Huﬁy)(o)HI];kl +/0 HF(iy)(t, u(iy>(t))|]’];0dt),
p;ZD

where M, 7 € (0,00) is a constant independent from the initial data u(i¥)(0) =
(- +iy) € El*%*p = B*P?(RV) and the right-hand side F@) (¢, u@)(t)) of
(85), as well. Since A1) (0) € MR, (E; — Ey) C Hol(E; — Ej) holds by the proof
of Proposition part (d), there is a number Ag € R4 = [0, 00), sufficiently large,
such that the bounded linear operator A\gI — A()(0) : B} — Ej is an isomorphism
of E; onto Ey. Hence, its inverse satisfies (\gI — A@)(0))™ € L(Ey — E;). We
conclude that there are constants ¢, C; € (0,00) and ¢z, Cy € Ry (both sufficiently
large, depending on A\g > 0) such that both inequalities

p
de
Eq

(8.6)

cllulle, — eallullg, <A™ (0)ull5, < Cillulle, + Cellulls,
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hold for all u € E;. Consequently, we have (respectively)

27 ey |lull, < AW (0)ulf, + llulf;, and (8.7)
||A(iy)(0)u||’,§0 < op—1 (Cf”u”%l + C§||u||’fED) for all u € Fy . (8.8)

Furthermore, for every t € [0,T], we split the expression
Fwwth@>:ﬂmGﬂ%wwM@UM@»_ﬁM@gﬂ

and apply Lemma and Remark to derive the following analogue of ([6.10))
(where we insert v = ui¥)(t)):

|FMGMWWD(M IR (¢,0)(x ‘+L§:§]@iuw )],

|8|<m k=1

(8.9)

for all z € RN ¢ € [0, T)]. Here,
F(t,0)(z) = f(z +iy,1:0), z€RY, 6= (0)5<m = (0,...,0) € CMN,

satisfies F(W)(¢,0) € Ey = LP?(RY), by the LP-integrability condition in (3.4)), i.e.,
. o 1/p
1P (¢, 0)| 5, = (/ o+ ig.t:0)Pde) " < K forall € [0.7],
RN

where K € (0,00) is a constant. Each term 8 = u,(cly)(- t) € LP(RY) on the right-
hand side of - ) above belongs to the Besov space B~ I8lr» (R™) which, thanks

to |8l <m < s=2m (1 - 7) < 2m, is continuously imbedded into another Besov

space, B*~IPlpP(RN) «— Bs—mipP(RN) < LP(RN). Applying these estimates to
the right-hand side of , we thus obtain

||F(iy)( u(ly) )HP prl(Kp+7N,va P . ||u(iy)(t)||%s;p,p(RN)) (8.10)

for all ¢ € [0, 7] and every y € Q") where vy, ar € (0,00) is a numerical constant
depending only on N,m, and M. Recalling u®(t) € U for all (y,t) € Q") x [0, T]
and the definition of the set U C By 1, = B¥P?(RY) in (6.3), we conclude that

the right-hand side of (8.10) can be estimated from above by a constant C' =
C(K,U) € (0,00) independent from (y,t) € Q") x [0,T7:

[FO) (¢, ) () ||}, < C(K,U) forall (y,) € QU x [0,T7]. (8.11)
Finally, we combine this estimate with Theorem [7.1] to arrive at

[P 2, (- + iy, 1) [, ) forall (y,1) € QU x ALT (812)

where C' = C(K,U) € (0,00) is a constant independent from (y,t) € Q") x AT T,
Recall from our proof of Theorem [3.4 . part (iii), that the function @ %(’"1) X
Ag, T _y CM stands for the unique holomorphic temporal extension of the function

> X0 x (0,T) — CM defined in formula (8:4). This extension, u, satisfies
(z,y,t) = ul¥ (z,t) for all (z,y,t) € RN x Q") x [0, T] and (- +iy,t) € U for all
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(y,t) € Q) x Ag,/’T. We employ the norm defined in (3.10]) and (8.12)) to estimate
the right-hand side of :

T qutiv) T ; .
/0 1= y|’;0dt+/0 AT ()l (2|, dt

< Myr( sup [fio(-+iy)l perogen) + CK, U)T)
yeQ(r1)

for all (y,t) € Q) x [0, T]. However, in the norm
N (o) = sup o (- +iy)|

yeQ(ry)
we have u(¥)(0) = Gig(- +iy) € U C E, 1, = B*PP(RY) for every y € Q)
owing to our choice of the number r; € (0,r) being sufficiently small in (and
before) Proposition[6.5] Consequently, we can estimate the right-hand side of (8.13)

above by another constant ¢’ = C’/(p, T,K,U) € (0,00) independent from (y,t) €
Q) x [0,T):

(8.13)

Bsip.p(RN) <0

T (iy) T . : ~
L1 o [ @l 0 < 1 0).
0 dt 0 0 ’

We estimate the left-hand side of this inequality by combined with u¥)(t) € U
for all (y,t) € Q") x [0,T], thus arriving at

T quiv) o T
|15l a2y [ o), ar

T
<C'(p,T,K,U) + ¢ / [ @)}, dt < C(p, T, K, U),
0

(8.14)

where C' = C(p, T, K,U) € (0,00) is a constant independent from (y,t) € Q") x
0,7].
| V\;ithin the restriction to the real time ¢ € [0, T, the desired estimate in (3.13) is
derived directly from above for all pairs (y,t) € Q) x[0,T] ¢ QU x AL "
To extend to the complex time t € Ag’T with t = 0 +ir (0,7 € R),
we take advantage of Theorem once again. We will consider the function u :
X)) x Ag,/’T — CM constructed in our proof of Theorem , part (iii), along
the complex temporal path 6 : [0,T] — Ag,/’T 5 0(s) := s+ i (s/T")7 which
consists of two straight line segments,

0,:00, 7] — Ag,/’T D5 0)(s) = (1+i%) s with0<s<T',
by : [T, T) — Ag,/’T ts0y(s) i=s+ir withT' <s<T.

Notice that 6,(0) = 0, 01(T") = 62(T") = T' + ir, and 6(T) = T + ir. We replace
the (complex) time variable ¢ in the original Cauchy problem by the new (real)
time variable s € [0, T, thus obtaining two new abstract differential equations with
the time derivatives

ou T, 0u

A4 ,t‘ for 0< s <T', 1

s (—i—lT,)at(x )t:§1(5) or 0 <s< (8.15)
Ju Ou
—=— for 7" <s < 1
s at(:v,t)‘t:éz(s) or T <s<T, (8.16)
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respectively.

Finally, we apply Lemma and the estimate in (5.6) to the new problem for
0 < s < T, thus arriving at the desired estimate in for 0 < o < T'. For
T < s < T we can use the definition of a strict solution (Definition directly
and combine it with the estimate in to obtain the estimate in for
T’ < o <T. We conclude that is valid also for all pairs (y,t) € Q) x Ag’T
with ¢t = o +ir (0,7 € R).

The desired estimate in now follows from by applying and
(4.6)). Proposition is proved. (I

9. AN APPLICATION TO A RISK MODEL IN MATHEMATICAL FINANCE

Standard models in derivative pricing, including the Black-Scholes model (see
Black and Scholes [I3] and Merton [70]) and the Heston model (see Heston [41])
take advantage of risk neutral valuation methods for the arbitrage-free (“fair”)
price of the derivative. The methods are economically justified by riskless hedging
arguments introduced in [13] [70]; see also Fouque, Papanicolaou, and Sircar [29] and
Hull [45] for detailed explanations of these arguments. An important assumption
of these models, which is used in most of the hedging arguments, is the possibility
to borrow and lend any amount of money at a risk-free interest rate. This crucial
conjecture has been questioned as a consequence of the financial crisis that started
in 2007 and resulted in the bankruptcy of major financial entities like Lehman
Brothers. Enron’s bankruptcy in 2001 is briefly described in [45] p. 537], Business
Snapshot 23.1. Namely, traders have to take into consideration the increased chance
of a default. For this reason many trades contain a collateral against default and also
the pricing of non-collateralized derivatives has to be adjusted. A standard book
on risk management has been written by Hull [46]. Piterbarg [73] discusses the
differences or convexity adjustments between the price processes of collateralized
and non-collaterlized contracts which could result in funding value adjustments of
the price processes. It is only natural that traders have different funding costs for
transactions and try to include them in the price of the contract. Hull and White
reasoned in [47] that there exists no theoretical basis for such a funding value
adjustment (FVA). Also Burgard and Kjaer [10, [I8] came to a similar conclusion,
by using different arguments. However, since these theoretical arguments are not
convincing from a practitioner’s point of view, but traders make the adjustments
anyway, Hull and White studied the consequences of funding value adjustment in
a more practice-oriented way in [48] 49]. Further common adjustments of the no-
-default value of a derivative are credit value adjustments (CVA) and the related
debit value adjustments (DVA); see, e.g., [10, [I7, [I8]. In a particular trade both
parties have to take the possibility of default of the counterparty into account which
is the bilateral counterparty risk. Price-reducing credit value adjustments are made
by the trader to have a collateral against default of the counterparty (e.g., a bank),
whereas debit value adjustments are the corresponding adjustments made by the
counterparty. The sum of all adjustments to the value of the derivative evaluated
in the absence of default is often refered to as XVA with

XVA =FVA - CVA +DVA.

A general partial differential equation for the adjusted value under the bilateral
counterparty risk and funding value adjustments has been derived in Burgard and
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Kjaer [T, Section 3] using hedging arguments. This partial differential equation is
nonlinear if the mark-to-market value at default is considered to be the total value
of the derivative including all value adjustments (see [I7, Section 4]) and linear
if the mark-to-market value is given by the no-default value of the derivative (see
[T, Section 5]). In both cases, the partial differential equations are well suited for
numerical calculations of the adjusted value of the derivative; see, e.g., Arregui,
Salvador, and Vazquez [§] for recent results. Following notation introduced in [17],
let us consider a derivative contract with payoff H between a trader, B, and a
counterparty, C, on an asset S, e.g., a stock, that is not affected in case of a default
by one of the two counterparties and follows the stochastic dynamics,

where the drift p : [0,00) — R and the volatility ¢ : [0,00) — R are positive de-
terministic (Borel measurable) functions and (W;);>¢ is a one-dimensional Brow-
nian motion. Let V' denote the fair price (the “risk-less” value) of the derivative
in the setting without default and let V denote the adjusted price (the “risky”
value) including funding value adjustments (= FVA) and bilateral counterparty risk
(= —CVA + DVA),

V=V+XVA=V+FVA—CVA+DVA.

By Ito’s formula, the generator A; of the Markov process is the partial differ-
ential operator
2
A = 30252% + (s — 'YS)S% ; (9-2)

where vg is the dividend income rate of S and qg represents the financing costs
that depend on the risk-free rate r and repo-rate of the asset (e.g., under the Fed
Repurchase Agreement (Repo)). The decisive variable in the bilateral counterparty
risk models studied in [8] 16l 17, 18] is the mark-to-market value (cf. “close-out”),
M, introduced in [I7, Sect. 3, Eq. (24)]. Only two different values of M seem to be
of significant interest, namely, M =V and M =V as described below:

If we set the mark-to-market value at default M = V, then the total value V
satisfies the nonlinear partial differential equation

9 - . . N . .

EV + AV —rV = 7(1 — RB))\BV7 + (1 — RC)ACV+ + 5FV+ R (93)
with the final value V(S,T) = H(S) at maturity time ¢ = T, by [I7, Sect. 4,
Eq. (26)]. Here, we have abbreviated z* := max{z,0} and = := max{—z, 0} for

x € R; hence, z = 2 — 2~. We remark that the definition of the negative part
2~ of z € R often differs in the literature ([8, 16, 17]); it may be used with the

negative sign, i.e., z7 = min{z,0} (< 0), whence z = 7 + x~. We will respect
this convention below only when approximating the function z +— x~ within the
sum z = 2 4+ 7. Otherwise we use = = max{—z,0} (> 0). The parameters \p

and Ao are given by Ag = rp —r and A\¢ = r¢ —r, where rp and r¢ are the yields
on recovery-less bonds for B and C, respectively. Rp and Rc, respectively, are
recovery rates on the derivatives’ mark-to-market value at default and sp =rp —r
is the funding spread between the sellers funding rate rr for borrowed cash and the
risk-free rate r. We refer the interested reader to Burgard and Kjaer [I7, Sect. 2,
pp. 2-4] for further details concerning recovery-less bonds.
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In contrast, if we assume the mark-to-market value M = V, then the resulting
partial differential equation for V' is linear, albeit inhomogeneous with source terms
on the right-hand side,

%VJrAtV—(rJr)\B—MC)V = (ReAp+Ac)V ™ —(Ap+RcAc)V T +spVT, (9.4)
with the final value V(S,T) = H(S), by [I7, Sect. 5, Eq. (46)]. Of course, it
is assumed that the fair price of the derivative, V, is known. It is claimed in
[T7, Sect. 3] that the vast majority of papers on valuation of conterparty risk
uses this choice (M = V) for contracts that follow the well known “2002 ISDA
Master Agreement” initiated by the International Swaps and Derivatives Associa-
tion (ISDA). From the mathematical point of view, also any convez combination
M=(1-6)-V+6-V=V+6-(XVA) of V and V, with a constant § € [0, 1],
might be of economic interest, as well.

We would like to investigate the question of market completeness for the nonlin-
ear model raised for related financial market models in Davis and Obtéj [21].
There, the authors have shown that the problem of market completeness in Mathe-
matical Finance is closely connected to (in fact, follows from) the analyticity of the
derivative price. We refer to Takac [82, Section 8, pp. 74-83] for a survey of results
regarding the correlation between market completeness and the analyticity of the
solution and an application of analyticity results to the stochastic volatility model
in Fouque, Papanicolaou, and Sircar [29) p, 47]. The Heston stochastic volatility
model (Heston [41], which is more popular) is treated in Alziary and Takac [3].
Market completeness for other stochastic volatility models is discussed in [82, Re-
mark 8.7, pp. 82-83]. In our present work, we are primarily interested in analyticity
of the solution for the nonlinear partial differential equation since the linear
case can be studied by applying the results from [82].

The nonlinearities in are uniformly Lipschitz continuous which enables us
to apply standard existence and uniqueness results for regular, strongly parabolic
semilinear Cauchy problems from, e.g., Eidel’'man [25], Friedman [30] 31], 32], Pazy
[72, Chapt. 6, §6.1, pp. 183-191], or Tanabe [8I]. Due to the fact that the nonlin-
earities V — VE : R — R are not real-analytic, we cannot expect any analyticity
of the solution (S,t) — V(S,t) : (0,00) % (0,00) — R, neither in space nor in
time. In our approach we therefore modify the functions V — V* : R — R as
follows: We approximate them by real-analytic functions with complex-analytic
extensions to a domain (D R) in the complex plane C. We attempt to justify this
rather “nonrigorous” step by arguing that we deal with a model in Social Sciences
(Economics) where a precise nonlinear response (i.e., the reaction function of type
Vs VER > R) is hard to determine, while facing the dominant influence of
stochastic (and possibly also random) phenomena. In our example with a single
equation in one space dimension (M = N = 1), see 7 we thus replace the
nonlinearity f(u) = f*(u)+ f~ (u) by a suitable linear combination of real-analytic
approximations of the functions v — v : R — R and v — —u~ having the same
asymptotic behavior at 0o (as u — o0) and denoted by f(+)(u) and f)(u),
respectively, with a complex variable u € C. We postpone explaining the details of
this modification until Example below.

It is a common approach to replace V as a function of (S,t) by the function
(X, T) = V(S, t) that depends on the logarithm of the asset price X = InS and
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the time to maturity T = T — t. Hence, by (9.3)), this function satisfies the initial
value problem

%@ — Ao+ 10 =—(1— Rp)Apf ) (8) — (1 — Re)Ac f(9) — spf ) (5) (9.5)

with the initial value #(X,0) = H(X) := H(exp(X)) and the partial differential
operator

A P 1 5\ 0
At—§O' 8X2+<QS—’YS+§U>87X. (96)

As an alternative to the previous variable substitution it is also possible to directly
alter the stochastic processes by

gt = er(T_t)St and Xt =1In St = Xt + ’I“(T — t) 5

which yields the same partial differential equation and allows for a financial
interpretation of the new variables.

Since the coefficients of the operator A; defined in are independent of the
variables X and 7, the analyticity of the solution can be studied by means of the
Green function; see Takac et al. [83]. But if we replace the stochastic process
that drives the value process of the asset by a stochastic volatility process, e.g. the
mean-reverting process from the classical paper of Heston [41],

dS; = pS, dt + /V; Sy AW,
dV, = k(0 — V;)dt + oV /V; dWY | (9.7)
pdt = AW dw ,

the coefficients of the generator depend on the variables and we can no longer
calculate the Green function. In the volatility process 2 above, the parameters
K, 0, and the volatility of volatility ¢" are positive constants and (W;° )i>0 and
(WY )¢>0 are one-dimensional Brownian motions correlated by a correlation factor
p € [—1,1] through eq. 3. This model has been treated recently in Salvador
and Oosterlee [70] [77].

Remark 9.1. Hypotheses (H1) and (H2) on the partial differential operator are
consistent with the hypotheses (H1) and (H2) in Takd¢ [82 p. 56]. As mentioned
above, the operator connected to the stochastic volatility model of Fouque, Papan-
icolaou, and Sircar [29] p. 47], which is parallel to (but not more general than) the
Heston model (9.7), has been studied in detail in [82, Sect. 8, pp. 74-83]. Vari-
ous other stochastic volatility models have been discussed in [82] Remark 8.7, pp.
82-83], as well. Hence, (H1) and (H2) are satisfied for these models; we refer the
reader to [82] for further details.

According to this remark, hypotheses (H1) and (H2) are fulfilled for (9.5) even
if we consider a stochastic volatility model, e.g., like , instead of (9.1)). We
would like to give an example for suitable nonlinearities f(*) and f(=) that satisfy
the remaining hypothesis (H3) and approximate the functions v — u®™ : R — R
and u — —u~, respectively.

Our example is motivated by Takac [82] Example 8.2, pp. 79-80]. We define the
complex planar domains

Vfgr) ={¢=¢+inecC:¢£cR, ne(-rr), and |§] <V}, (9.8)
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Vi ={(=¢+ineC: R, ne (—rr)}

o | (9.9)
=MNo<y<n/2 Vﬂ =R+ 1(71", T)

for r € (0,00) and 0 < ¥ < /2 with their respective closures in C denoted by ?1(;)
and ?(()T); both contain the origin 0 € C. For any given numbers r € (0,00) and
0 < ¥ < /2, the domain Vg) is of the form

Vg‘) = Vg)) +i(=r,r) = Une(=rr) (i?’] + Vq(go)) cC,
where
VO = (¢ =¢ eC: ¢ eRand 6] <9} = (Ag) U (—Ay) U{0}
is a symmetric sector in C and the open sector Ay is defined as in (|1.5)). We notice
that V(()T) is a strip in C and X(") = (V(()T))N C CN for every r € (0,00). At last,
we define the domain
O;:=C\{iy:y € (—00,—1]U[1,00)}

that contains the closure vg“) whenever 0 < r < 1and 0 < ¢ < 7/2. The definitions
of these domains follow [82], pp. 78-79].

We now give an example for functions f(+) and f(-) (approximating v — v™
and v — —v~, respectively) that are analytic in O; and whose first derivatives are

bounded in VE;;O), whenever ¢ € (0,00) and 0 < ¥y < 7/2.

Example 9.2. We consider the functions
1 1 1 1
P () = vb + — arctan(v)], ) = vb — — arctan(v)] (9.10)
T T

defined for every v € R. We have chosen f(~) such that f(7)(v) = —f(+)(—v) and
W)+ £ (v) = v hold for all v € R since the nonlinearities v+ and —v~ in the
original equation satisfy the same relations, v~ = (—v)* and v* — v~ = v,
respectively. In addition, by 7 we have

v de 1 [ dt
+ _ - _
I )(U)_iv/,cc iy ) )(”)_EU/U 142 (9-11)

defined for every v € R, which yields

P () > 1 and () (v) < 1 with the limits ~ lim f™®)(v) = :Fl,
7r ™ v—Foo T
respectively. We could immediately extend these two (real analytic) functions to
holomorphic (i.e., complex analytic) functions f(+), f(=) . C\ {—i, i} by replacing
the Lebesgue integrals ffoo ... dt and fjoo ...dt in over the real domains
(—o0,v] and [v,+00) in , respectively, by the complex path integrals along
some suitable (continuously differentiable) paths

Y4 1 (—00,0] = C\ {—i,i} and ~_ :[0,+o0) = C\ {—i, i}

connecting the points —oco with v and v with +oo, respectively, whenever v &
C\ {—i, i}, where the paths 74 and v_ do neither pass through nor wind around
the points &i € C, i.e., they have the winding numbers Ind,, (&i) = Ind,_(&£i) = 0.
As a consequence, this extension procedure could produce multi-valued analytic
functions which is not desirable. Therefore, we prefer to perform this holomorphic
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extension of the functions f(+) and f() below, by formulas in (9.12), as they meet
our current goals better.
We calculate the derivatives

(f(+)(v))’ = % + —arctan(v) + 1 J:)”UQ >0,
(fO ) = % - arctan(v) — o1 _:_)UQ <0,
with
(FO@Y+ (W) =1, Jim (F@) = lim (f7@) =1,
By
7 1 2 - " L 2
(OO = e >0 and (PO =~y <0,

respectively, f(f) is a strictly monotone increasing and strictly convex function,
whereas f(7) is strictly monotone decreasing and strictly concave. We can use
Takaé¢ [82, Example 8.2, pp. 79-80] and extend f) and f) to homolomorphic
functions f() and f(-) on the domain O via the formulas

F® () = Z{% + ilog G;Z)} = z[% + %arctan(z)},

= 1 i 1—iz 1 1
6 =2y - g s (15 )| = 2[5~ poretane)
72 ==2 SR Gy z|5 — —arc an(z)
for every z € O = C\ {#iy : y € [1,00)}, thanks to the argument and logarithm
formulas

(9.12)

1—-iz
1+iz
for z € O;. The extensions f(+) and f(_) have the restrictions f(i)hR = f® to
the real axis R, respectively, and they are holomorphic on the domain O; since

the argument restriction arg (};iz) € (—m,m) holds for z € O;. We refer to [82]
Egs. (76)—(78), p. 79] for further discussion of the behavior of log(1 2). As a

consequence of the arguments in [82, Example 8.2, pp. 79-80], we obtain (f(+)(z))’+
(f)(2)) =1 for z € Oy together with limits

(F(
(f¢ )(z))'—>0 as |z| — oo with z € C, Rez > 0,

Fz)
( )(z)

arg(l + iy) = arctan(y) for y € R and log ( ) = —2i- arctan(z)

z)) =1 as|z| = co with z € C, Rez > 0,

(9.13)

"—0 as|z| > oo with z € C, Rez <0,

( )
(f ) =1 as|z| = oo with z € C, Rez < 0.

The domain O; = C\ £i[1, 00) contains the strip R xi(—rg, rg) for every 0 < o < 1
and the imaginary parts of (f(*)(2)) and (f(~)(2))’ are uniformly bounded for
|Smz| < 9. Consequently, it suffices to verify (9.13)) only for z = Rez = 2 > 0 and
x < 0, respectively, by Cauchy’s integral theorem applied to the integral formula

for the function arctan(z) in O;.



EJDE-2021/SI/01 SPACE-TIME ANALYTICITY OF WEAK SOLUTIONS 83

Finally, in order to approximate the functions u — v : R — R and u — —u™,
we take € € (0,1) small enough and use the functions

]FE(Jr)(z) = €]E(+)(§) = z[% + i log (:é;i))] , o1
0= 8- L ().

for every z € O, := C\ {£iy : y € [e,00)} = €01, respectively. Notice that
fg(ﬂ(z) + fg(f)(z) = z. In particular, for every u € R we obtain the approximation

fPw) s ut and fO(u) - —u” ase—0+ .

This convergence is uniform on any compact interval [-R, R] C R with 0 < R <
+00.

Example 9.3. Another example for real analytic functions f(+) and f(=) could be
obtained by means of Taka¢ [82] Example 8.3, p. 80]. For this purpose, we could
consider the real analytic functions

1 1
fH () = 3V + 3 log(cosh(v)) for every v € R,
which have similar properties as the functions defined in (9.10]).

We wish to apply our main result, Theorem [3.4 to the semilinear inital value
problem in (9.5) where we choose f(*) and f(=) as in (9.10), f(*) and f(-) as in

(9.12), and f5(+) and fs(_) as in (9.14)), respectively. On the right-hand side of (9.5)
we replace the (nonlinear) functions ¢ — 97 : R — R and 9 — —9~, respectively, by

the pair of functions 9 +— fg(ﬂ(ﬁ) :R— Rand 0 — fg(f)(f)) defined in (9.14)). Here,
we take € € (0,1) small enough, but fixed. The initial data in are given by a
payoff function H € B2 (RN) with p > 2+ % =3and s = 2m(1 — %) = 2(1 - 1%)
(M = N =m = 1). We assume that these initial data possess a holomorphic
extension H : X(0) — C! from R! to the complex domain X o) c C!, for some
ko € (0,70], such that the function

H(-+iy) :x+— H(z +iy) : R - C!

belongs to B57P(R!) for each y € Q*°) and has finite norm 9N (H) < oo which
has been defined in (3.10]). In the case of a simple European call or put option, i.e.,
H(x) = (e* — K)* or H(z) = (K —e®)", x € R!, respectively, one may use the

functions fs(ﬂ and f;(* in order to find the desired holomorphic extension H of H

that satisfies the hypotheses required in Theorem [3.4} part (iii).
According Example the nonlinearity

F(0) = =1 = Rp)Apf (1) = (1 = Ro)Acf D (0) = spfH)(0)
on the right-hand side of (9.5 possesses a holomorphic extension
Jo(0) = ~(1 = Rp)Apfi7(0) = (1= Ro)Ac S (0) = sp [P (0) (915
for all o € O, where O, =¢- 01 =C\ {iy : y € (—00, —¢] U [e,0)}.
Now let us recall the definition of the complex planar domain Vf;) CcCin

for r € (0,00) and 0 < ¥ < 7/2 with the closure ?f;) in C. We have ?f;) C O
whenever 0 < r < € and 0 < ¢ < 7/2. Moreover, both f. and its complex
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derivative f; are uniformly bounded in ?g). Thus, fixing any number ¢ € (0, 1)
and taking r € (0,), we observe that both f. and f/ are uniformly bounded
in ?g) and, consequently, also in the complex strip X, X" ?7(;) c O..
We stress that the number ¢ € (0,1) may be chosen arbitrarily small in order to
achieve a sufficiently precise approximation of the reaction function f = f(0) by
the holomorphic function f. = f. (0) as desribed in Example above. Naturally,
the choice of a smaller number ¢ € (0,1) diminishes the width of the strip X(")
according to 0 < 1 < €.

We have fi) ¢ A(O.) and f’ is bounded in Vg{;") for every 1o € (0,¢/2) and

0 < ¥ < 7/2. The technical estimate (3.4)) is trivially satisfied, owing to fs(i)(()) =

0.

Following the discussion in Section@, we recall that the (unique) strict solution is
restricted to the bounded open set U C Bs?p’p(RN) defined in , which is, due to
the continuous Sobolev imbedding B*PP(RY) «— L>(RY), bounded in L>(RY),
as well. Hence, it is convenient to loosen Hypothesis (H3) in the sense that we
replace the complex plane C in the assumptions by smaller domains. In particular,
the function f. in fulfills Hypothesis (H3) with such weakened assumptions.
Since all requirements are satisfied, we can apply Theorem to the initial value
problem and obtain the real analyticity of the solution.

Indeed, we apply our main result, Theorem to the inital value problem ,
where we choose () and f(=) as follows: We replace the functions f(+) and f(=),
respectively, by their complexifications fe(ﬂ(z) and fg(_)(z), respectively, defined in
formulas for z € O. = ¢-O;. Here, € > 0 is as small as needed. The initial
data is given by the payoff function H € B*PP(RN) for p > 3 and s = 2(1 — 1/p).
The partial differential operator A, defined in satisfies (H1) and (H2) (with
N = 1). If we replace A; by the generator of a stochastic volatility process like
(9.7), then (H1) and (H2) (with N = 2) are still fulfilled, according to Remark [0.1}
For the nonlinearity f(4) in (9.5]), extended in as f-(0) for o € O., we have
f- € A(O,) and f! is bounded in Vgoo) for every ro € (0,¢/2) and 0 < ¥y < 7/2.

The technical estimate (3.4)) is trivially satisfied, owing to fg(i)(()) =0.

10. HISTORICAL REMARKS AND COMMENTS

The questions we studied in this paper are clearly related to the classical Cauchy-
-Kowalewski theorem (John [50], Chapt. 3, Sect. 3(d), pp. 73-77). It has been
known since the work by Holmgren [43] that even the heat equation (in one space
dimension(!)) has solutions that are not real analytic in the time variable (cf.
Bilodeau [12] pp. 124-125]). This phenomenon is due to a possibly very rapid
growth of the solutions as the spatial variable x € R escapes to +o0o; to eliminate
it one needs to restrict the function space, where the solutions are considered at
each time moment ¢t € R, in order to prevent a too rapid growth of the solutions
as x — too. This is precisely what has been done also in our present article.

Here, the emphasis is on the analytic dependence in time ¢ and the Cauchy prob-
lem is viewed as an evolutionary equation in some suitable function space, e.g.,
L2(R) or L2(RY). Consequently, the solution is viewed as a vector-valued function
u: (0,T) — L*RY) and, thus, regularity results (including analyticity results)
have been obtained in this setting. The interested reader is referred to Takac [82]
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Sect. 9, pp. 83-85] for a number of pertinent references and their description; for
example, Kato and Tanabe [53], Komatsu [56], Massey 111 [66], Masuda [68], and
in particular Tanabe [81] and the references therein.

Investigation of the smoothing (or regularizing) effect in evolutionary equations
of parabolic type has a long history; see e.g. Eidel’'man [25], Friedman [30} 3T, [32],
Pazy [(2], and Tanabe [8I] and numerous references therein. Analytic smooth-
ing (or regularizing) effects, similar to those treated in our present article, in the
space (z) and/or time (t) variable(s), have been obtained somewhat later, begin-
ning with the theory of analytic semigroups (in an abstract Banach space), see
e.g. the monographs by Kato [52], Lions [62], Pazy [72], and Tanabe [81], and ap-
plying (extending) it to nonautonomous analytic evolutionary equations, see e.g.
Kato and Tanabe[53], Komatsu [56], Masuda [68], and Tanabe [8I]. Evolution-
ary equations exhibiting analytic smoothing effects may be split into the following
two classes: dissipative and dispersive. Again, we refer to [82 Sect. 9, pp. 83-85]
for greater details about these two classes. The results for dissipative evolutionary
equations establish only analyticity with respect to the time variable t € (0,T) C R.
Hayashi and Kato [39] establish an analogous time-analyticity result for the non-
linear Schrodinger equation (NLS). The early (general) treatments on the analytic
smoothing effect with respect to the space variable 2 € RV are given in Kahane
[51] and Foias and Temam [27] 28].

Finally, we mention the analyticity results by Komatsu [54] obtained for solu-
tions to elliptic and parabolic problems in a bounded spatial domain Q C R (with
analytic boundary 09). Analyticity in the space variable z and 2-nd Gevrey class
regularity (weaker than analyticity) in the time variable ¢ are established in Cav-
allucci [I9] Teorema 6.1, p. 166] for linear parabolic equations. Some results about
the analyticity of solutions of nonlinear parabolic systems, which are related to
ours, are stated in Friedman [30, Theorems 3 and 4] without proofs, and for linear
elliptic systems in Morrey, Jr., and Nirenberg [71]. For the Navier-Stokes equations,
such analyticity results have been established in Masuda [69] and, with respect to
the space variable z € RY only, earlier in Kahane [5I] and Masuda [67]. These
results state local analyticity of infinitely differentiable solutions without any de-
scription of their domain of holomorphy (i.e., domain of complex analyticity). Our
present article provides such description in Theorem and so do Refs. [14] [I5].
More results of global nature on the space analyticity can be found in Bardos and
Benachour [I1] and Gruji¢ and Kukavica [34].

11. DISCUSSION AND POSSIBLE GENERALIZATIONS

In contrast to the analytic smoothing results established in Tak4¢ [82, Theorem
3.3, p. 59] (for a linear parabolic problem) and Tak4c¢ et al. [83] Theorem 2.1,
p. 429] (for a semilinear parabolic problem), in the present work we have focused
on preserving the spatial analyticity of the initial data, ug, for all times ¢ € [0, T] as
long as a (global) weak solution u € C (]0,7] — B*P?(R)) to the Cauchy problem
(1.1) exists, that is, loosely written, u(-,0) = ug is spatially analytic (at t = 0)
implies u(-,t) is spatially analytic at all times ¢ € (0,7}, even for all t € (0,T + 17]
with some 77 > 0 small enough.

However, also a spatial analytic smoothing result analogous to those in [82]
Theorem 3.3, p. 59] and [83, Theorem 2.1, p. 429] should hold in our present
setting in the Besov space B*PP(R), by arguments similar to those used in [83]
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pp. 434-435], proof of Lemma 3.4. The Banach contraction principle can then be
used in analogy with [83 pp. 437—438], Step 4 in the proof of Theorem 3.1. This
approach requires separation of the linear part of the Cauchy problem (cf. [82])
followed by an application of the Banach contraction principle to the full semilinear
parabolic problem in (cf. [83, Theorem 2.1, p. 429]).
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