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Abstract. In this article we show the existence of nontrivial solutions for
nonlocal elliptic equations involving the square root of the Laplacian with the

nonlinearity failing to have asymptotic limits at zero and at infinity. We use
a combination of homotopy invariance of critical groups and the topological

version of linking theorems.

1. Introduction

This article concerns the nonlocal elliptic equation

A1/2u = f(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.1)

where Ω is a smooth bounded domain of RN (N > 2) with Lipschitz boundary ∂Ω,
and the nonlinearity f : Ω× R→ R is a Carathéodory function which satisfies the
subcritical growth condition

(A1) There exist C > 0 and 1 6 p < 2? := 2N
N−1 such that

|f(x, t)| 6 C(1 + |t|p−1) uniformly for a.e. x ∈ Ω and t ∈ R. (1.2)

The nonlocal elliptic operator A1/2 in (1.1) is defined as the square root of the
Laplacian −∆ in Ω with zero Dirichlet boundary data on ∂Ω. Let {λj , ϕj}∞j=1

satisfy
−∆ϕj = λjϕj x ∈ Ω,

ϕj = 0 x ∈ ∂Ω,
(1.3)

and
∫

Ω
ϕjϕkdx = δj,k. For u ∈ H1

0 (Ω),write u(x) =
∑∞
j=1 αjϕj(x), x ∈ Ω,

the nonlocal operator A1/2 appearing in (1.1) is defined (see [12]) as A1/2u :=∑∞
j=1 αj

√
λjϕj . It has been proved in [12] that {µj :=

√
λj}∞j=1 are the eigen-

values of A1/2 on Ω with the corresponding eigenfunctions {ϕj}∞j=1. The precise
mathematical description and basic properties of the operator A1/2 will be stated
in Section 2.
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In this article, we assume that f(x, 0) ≡ 0 so that (1.1) has a trivial solution
u = 0. We will find via Morse theory nontrivial solutions to (1.1) in the situations
the nonlinear term f has a linear growth and that there may not be the asymptotic
limits of f(·, t)/t near both zero and infinity.

We impose the following assumption on the nonlinearity f :

(A1’) There exist p ∈ (2, 2?) and C > 0 such that for all s, t ∈ R,

|f(x, s)− f(x, t)| 6 C(|s|p−2 + |t|p−2 + 1)|s− t|, uniformly for a.e. x ∈ Ω. (1.4)

It is easy to see that (1.4) implies (1.2). Denote by 0 < µ1 < µ2 6 · · · 6 µk 6
· · · → ∞ the eigenvalues of A1/2. We impose on f the following conditions near
zero and near infinity.

(A2) There exist δ > 0 and k > 1 such that for two adjacent eigenvalues µk <
µk+1 of A1/2, it holds that

µkt
2 6 2F (x, t) 6 µk+1t

2, for |t| 6 δ, uniformly for a.e. x ∈ Ω. (1.5)

(A3) There exist δ > 0 and k > 1 such that for two adjacent eigenvalues µk <
µk+1 of A1/2, it holds that

µk 6
f(x, t)

t
6 µk+1, for 0 < |t| 6 δ, uniformly for a.e. x ∈ Ω. (1.6)

(A4) There are ε > 0 and M > 0 such that for two adjacent eigenvalues µm <
µm+1 of A1/2, it holds that

µm + ε 6
f(x, t)

t
6 µm+1 − ε, for |t| >M, uniformly for a.e. x ∈ Ω. (1.7)

(A5) There are ε > 0 and M > 0 such that for two adjacent eigenvalues µm <
µm+1 of A1/2, it holds that

µm + ε 6
f(x, t)

t
6 µm+1, 2F (x, t) 6 (µm+1 − ε)t2, (1.8)

for |t| >M uniformly for a.e. x ∈ Ω.
(A6) There are ε > 0 and M > 0 such that for two adjacent eigenvalues µm <

µm+1 of A1/2, it holds that

µm 6
f(x, t)

t
6 µm+1 − ε, 2F (x, t) > (µm + ε)t2, (1.9)

for |t| >M , uniformly for a.e. x ∈ Ω.

Our main results are the following two theorems.

Theorem 1.1. Assume (A1’). Then (1.1) admits at least one nontrivial weak
solution in each of the following cases:

(i) (A2), (A4) and µk 6= µm hold;
(ii) (A2), (A5) and µk 6= µm hold.

Theorem 1.2. Assume (A1’). Then (1.1) admits at least one nontrivial weak
solution in each of the following cases:

(i) (A3), (A4) and µk 6= µm hold;
(ii) (A3), (A5) and µk 6= µm hold;

(iii) (A3), (A6) and µk 6= µm hold.
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Now we give some remarks on the conditions and conclusions. Conditions (A2)
and (A3) were first introduced in [31], and (A4)–(A6) were first introduced in [29].
Conditions (A2) and (A3) mean that (1.1) may be resonant near zero between any
two consecutive eigenvalues of A1/2, and there may not be any asymptotic limits of
f(x, t)/t as t goes to zero. Obviously (A2) is weaker than (A3) and both of them
are very general conditions when the trivial solution of (1.1) acts as a local saddle
point. Condition (A4) means that (1.1) is non-resonant at infinity which contains
lim|t|→∞ f(x, t)/t ∈ (µm, µm+1) (see [18, 48]) as a special case. Condition (A5)
characterizes (1.1) as resonance near infinity at µm+1 from the left side, and (A6)
characterizes (1.1) as resonance near infinity at µm from the right side.

Semilinear variational problems with resonance have attracted much attention
since the appearance on the great work [26] by Landesman and Lazer in 1970. In
the setting of the semilinear elliptic equation

−∆u = f(x, u) x ∈ Ω,

u = 0 x ∈ ∂Ω,
(1.10)

one version of the Landesman-Lazer type resonance condition can be formulated as
follows (see [1]),

(LL) f(x, t)− λmt is bounded, and lim|t|→∞
∫ t

0
(f(x, τ)− λmτ)dτ = ±∞.

The crucial feature of the (LL) condition is the boundedness of f(x, t)−λmt which
implies the asymptotic limit lim|t|→∞ f(x, t)/t = λm. In [34] the Saddle Point The-
orem was applied to (1.10) with (LL) and infinite dimensional Morse theory was
applied to (1.10) with (LL) (see [18, 19, 32, 48]). The study of the Landesman-Lazer
type resonance problems motivated a large number of works involving resonance un-
der different situations. Landesman, Robinson and Rumbos [27] considered (1.10)
under a generalized Landesman-Lazer resonance condition, and Robinson [35] ex-
tended the results in [27]. They treated the double resonance case in the sense
that

λm 6 lim inf
|t|→∞

f(x, t)

t
6 lim sup
|t|→∞

f(x, t)

t
6 λm+1

and multiple solutions were obtained via Leray-Schauder degree when the trivial
solution was nondegenerate. Costa and Magalhães [24] treated (1.10) via the linking
theorem under the so-called non-quadratic condition. Su and Tang [43] used via
Morse theory and critical groups at infinity to study (1.10) with resonance and the
nonlinearity g(x, t) := f(x, t)− λmt being unbounded and satisfying

there exist c1 > 0, c2 > 0, θ ∈ (0, 1), and R > 0 such that g(x, t)t > 0 or
g(x, t)t 6 0, c1|t|θ 6 |g(x, t)| 6 c2|t|θ, for all x ∈ Ω, |t| > R . (1.11)

Su [44] studied (1.10) with the double resonance between two consecutive eigen-
values λm and λm+1 and obtained multiple solutions via Morse theory and critical
groups when 0 is a degenerate solution of (1.10). For other works involving (1.10)
with various resonance we mention the works [1, 7, 8, 17, 27, 31, 35, 37, 38, 39, 40, 42]
and their references. The existence of the asymptotic limits of f(x, t)/t near zero
and near infinity had been required in most of the works mentioned above. Li, Per-
era and Su[29] first treated the existence of nontrivial solutions of (1.10) without
assuming asymptotic limits of f(x, t)/t near zero and infinity under the conditions
in this article. However, the abstract homotopy theorem used in [29] should be
modified. Therefore the analogue results for (1.10) are also new.
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The fractional powers of the Laplacian, such as the square root A1/2 of the Lapla-
cian considered in this paper, appear in flame propagation and chemical reactions
in liquids, population dynamics, geophysical fluid dynamics, anomalous diffusions
in plasmas, and American options in finances (see [3, 25, 47]). In their well-known
work [12], Cabré and Tan explored an essential characteristic of the nonlocal op-
erator A1/2 in the sense that it could be realized in a local manner through the
notion of harmonic extension and the Dirichlet-Neumann map due to Stein([41])
on Ω. More precisely, by introducing an harmonic extension problem in a cylinder
C = Ω × (0,∞) in one more dimension, the nonlocal problem (1.1) is transformed
to a local problem in the half cylinder C = Ω × (0,∞) with mixed boundary data
which has a variational structure(see Section 2). Based on the variationl framework
from [12], many efforts have been made in the applications of the variational and
topological methods to (1.1) with various nonlinearities in getting the existence and
multiplicity and many known results for (1.10) in literature have been extended to
(1.1), see [2, 4, 6, 9, 10, 11, 12, 13, 14, 16, 20, 21, 36, 45, 46, 49] and some references
therein. For examples, the existence of a positive solution of (1.1) for f(u) = |t|q−1t
with 1 < q < N+1

N−1 was obtained in [12] by constrained minimization method, Tan

studied in [45] the existence of a positive solution of (1.1) with critical nonlinear-

ity case of f(t) = µt + |t|
2

N−1 t by the mountain pass theorem. In [23], nontrivial
solutions and multiple solutions for (1.1) were obtained by comparing the critical
groups at zero and infinity. To the authors’ knowledge, there are few works in
literature for (1.1) with resonance near zero or near infinity at higher eigenvalues.
Thus the results in this paper are quite new in the setting of the nonlocal problem
considered here.

This article is organized as follows. In Section 2 we present the functional frame-
work related to (1.1) together with basic properties of the operator A1/2. Then we
recall some preliminary results about Morse theory and critical groups. In Section
3 we compute the critical groups at zero, and in Section 4 we compute the critical
groups at infinity. Finally in Section 5 we give the proofs of Theorems 1.1 and 1.2.

2. Preliminaries

In this section we will give the preliminaries for the variational settings related
to the nonlocal problem (1.1) and some abstract results in Morse theory.

2.1. Variational framework. We first recall briefly the functional framework of
(1.1) given by Cabré and Tan [12]. Denote the half cylinder standing on Ω by

C = {(x, y) : x ∈ Ω, y > 0} = Ω× (0,+∞) ⊂ RN+1
+

and its lateral boundary by

∂LC = ∂Ω× (0,+∞).

Consider the Sobolev space of functions with trace vanishing on ∂LC:

H1
0,L(C) =

{
v ∈ L2(C) : v = 0 on ∂LC,

∫
C
|∇v|2 dx dy <∞

}
.

Then H1
0,L(C) is a Hilbert space with the scalar product

〈v, w〉 =

∫
C
∇v∇w dxdy
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and the norm

‖v‖ =
(∫
C
|∇v|2 dx dy

)1/2

.

From [12, Lemmas 2.4 and 2.5] we have the following embedding results.

Proposition 2.1. The embedding from H1
0,L(C) into Lq(Ω) is continuous for all

q ∈ [1, 2?] and is compact for all q ∈ [1, 2?). Moreover, there is cq > 0 such that(∫
Ω

|v(x, 0)|qdx
)1/q

6 cq
(∫
C
|∇v|2 dx dy

)1/2

for all v ∈ H1
0,L(C). (2.1)

We denote by trΩ the trace operator on Ω× {0} for functions in H1
0,L(C):

trΩ v := v(·, 0), for v ∈ H1
0,L(C).

Let V0(Ω) be the space of all traces on Ω× {0} of functions in H1
0,L(C), that is,

V0(Ω) :=
{
u = trΩ v : v ∈ H1

0,L(C)
}
.

Then by [12, Lemma 2.10], V0(Ω) can be characterized as

V0(Ω) =
{
u ∈ L2(Ω) : u =

∞∑
j=1

αjϕj satisfies

∞∑
j=1

α2
j

√
λj < +∞

}
(2.2)

and the space H1
0,L(C) can be characterized as (see the proof of [12, Lemma 2.10])

H1
0,L(C) =

{
v ∈ L2(C) : v(x, y) =

∞∑
j=1

αjϕj exp(−
√
λjy),

∞∑
j=1

α2
j

√
λj < +∞

}
.

Where the pair {λj , ϕj}j∈N are the eigenvalue and the corresponding eigenfunction
of −∆ on Ω with zero boundary value on ∂Ω, as stated in (1.3).

For a given function u ∈ V0(Ω), its harmonic extension v to the cylinder C is the
weak solution of the problem

−∆v = 0 in C,
v = 0 on ∂LC,

v = u on Ω× {0}.
(2.3)

The idea of the harmonic extension was introduced in the pioneering work of Caf-
farelli and Silvestre [15] where the fractional Laplacian in the whole space was
considered.

The definition and properties of the operator A1/2 are stated as follows.

Proposition 2.2 ([12]). For u =
∑∞
j=1 αjϕj ∈ V0(Ω), there exists a unique har-

monic extension v in C of u such that v ∈ H1
0,L(C), and it is given by the expansion

v(x, y) =

∞∑
j=1

αjϕj(x) exp(−
√
λjy), for all (x, y) ∈ C. (2.4)

The operator A1/2 : V0(Ω)→ V∗0 (Ω) is given by the Dirichlet-Neumann map

A1/2u :=
∂v

∂ν

∣∣
Ω×{0}, (2.5)



120 Y. CHEN, J. SU, M. SUN, R. TIAN EJDE/SI/01

where V∗0 (Ω) is the dual space of V0(Ω) and where ν is the unit outer normal to C
at Ω× {0}. We have

A1/2u =

∞∑
j=1

αj
√
λjϕj , (2.6)

and that A1/2 ◦ A1/2 is equal to −∆ in Ω with zero Dirichlet boundary values on

∂Ω. The inverse A−1
1/2 is the unique positive square root of the inverse Laplacian

(−∆)−1 in Ω with zero Dirichlet boundary values on ∂Ω.

Now we consider the linear eigenvalue problem

A1/2u = µu in Ω,

u = 0 on ∂Ω.
(2.7)

By the definition of A1/2, we see that a nontrivial function u ∈ V0(Ω) is an eigen-
function associated to the eigenvalue µ if and only if the harmonic extension v of u
to the cylinder C satisfies

−∆v = 0 in C,
v = 0 on ∂LC,

∂v

∂ν
= µu on Ω× {0}.

(2.8)

We have that {
√
λj , ϕj}j∈N are the eigenvalues and the corresponding eigenfunc-

tions of (2.7) (see [12, Lemma 2.13 ]). Setting

µj =
√
λj and ej(x, y) = ϕj(x) exp(−µjy) for all j ∈ N. (2.9)

Then all the pairs {µj , ej}j∈N satisfy (2.8), the eigenfunction sequence {ej}j∈N
forms an orthogonal basis of H1

0,L(C). The eigenvalue sequence {µj}j∈N has the
following variational characterizations:

µ1 = min
v∈H1

0,L(C)\{0}

∫
C |∇v|

2 dx dy∫
Ω
|v(x, 0)|2dx

=

∫
C
|∇e1|2 dx dy, (2.10)

and

µj = min
v∈Pj\{0}

∫
C |∇v|

2 dx dy∫
Ω
|v(x, 0)|2dx

=

∫
C
|∇ej |2 dx dy, (2.11)

where

Pj = {v ∈ H1
0,L(C) : 〈v, ei〉 = 0 for i = 1, 2, . . . , j − 1}.

Moreover, µ1 is simple and 0 < µ1 < µ2 6 · · · 6 µj 6 · · · → ∞ as j →∞, and that
each µj has finite multiplicity. For j ∈ N, let τj be the multiplicity of µj , that is

µj−1 < µj = µj+1 = · · · = µj+τj−1 < µj+τj .

Set

H−(µj) = span{e1, . . . , ej−1}, H(µj) = span{ej , . . . , ej+τj−1},

H+(µj) = span{ej+τj , ej+τj+1, . . . , } =
[
H−(µj)⊕H(µj)

]⊥
.

Then

H1
0,L(C) = H−(µj)⊕H(µj)⊕H+(µj). (2.12)
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Proposition 2.3. The following variational inequalities hold:∫
C
|∇v|2 dx dy 6 µj−1

∫
Ω

|v(x, 0)|2dx for all v ∈ H−(µj),∫
C
|∇v|2 dx dy = µj

∫
Ω

|v(x, 0)|2dx for all v ∈ H(µj),∫
C
|∇v|2 dx dy > µj+`j

∫
Ω

|v(x, 0)|2dx for all v ∈ H+(µj).

We say that a function u ∈ V0(Ω) is a weak solution of (1.1) if the function
v ∈ H1

0,L(C) with trΩ v = v(·, 0) = u weakly solves the extended problem

−∆v = 0 in C,
v = 0 on ∂LC,

∂v

∂ν
= f(x, v(·, 0)) on Ω× {0},

(2.13)

that is the function v satisfies the variational formula∫
C
∇v∇φdx dy =

∫
Ω

f(x, v(x, 0))φ(x, 0)dx for all φ ∈ H1
0,L(C). (2.14)

Since f satisfies (A1), it follows by Proposition 2.1 that the functional

J (v) =
1

2

∫
C
|∇v|2 dx dy −

∫
Ω

F (x, v(x, 0))dx, v ∈ H1
0,L(C) (2.15)

is well-defined on H1
0,L(C) and is of class C1 with derivative given by

〈J ′(v), φ〉 =

∫
C
∇v∇φdx dy −

∫
Ω

f(x, v(x, 0))φ(x, 0)dx. (2.16)

Therefore critical points of J are exactly weak solutions of (2.13) and then the
traces of critical points of J are exactly weak solutions of (1.1).

We will apply Morse theory and critical groups to find critical points of J and
the following results will be necessary.

Proposition 2.4. Assume that (A1’) holds. Then J ∈ C2−0(H1
0,L(C),R).

Proof. The arguments are similar to that in [5] and we sketch out them for the
readers’ convenience. We only need to prove I(v) =

∫
Ω
F (x, v(x, 0))dx is C2−0 on

H1
0,L(C). For any v, w, φ ∈ H1

0,L(C) with ‖φ‖ = 1, we have by (A1’), Proposition
2.1 and Hölder inequality that

|〈I ′(v)− I ′(w), φ〉|

6
(∫

Ω

|f(x, v(x, 0))− f(x,w(x, 0))|
p

p−1 dx
) p−1

p
(∫

Ω

|φ(x, 0)|pdx
)1/p

6 C
(∫

Ω

|v(x, 0)− w(x, 0)|
p

p−1
(
1 + |v(x, 0)|p−2 + |w(x, 0)|p−2

) p
p−1 dx

) p−1
p

6 C
(∫

Ω

|v(x, 0)− w(x, 0)|pdx
)1/p

×
(∫

Ω

(
1 + |v(x, 0)|p−2 + |w(x, 0)|p−2

) p
p−2 dx

) p−2
p

6 C (1 + ‖v‖+ ‖w‖)p−2 ‖v − w‖.

(2.17)
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For ς > 0 and ‖v‖ 6 ς, ‖w‖ 6 ς, it follows from (2.17) that

‖I ′(v)− I ′(w)‖ = sup
φ∈H1

0,L(C),‖φ‖=1

|〈I ′(v)− I ′(w), φ〉| 6 C(ς)‖v − w‖,

where C(ς) is a constant depending on ς. Therefore I ′ is locally Lipschitz continu-
ous. �

Proposition 2.5 ([23, Lemma 3.1]). Assume that (A1) holds. Then any a bounded
sequence {vn} ⊂ H1

0,L(C) satisfying J ′(vn)→ 0 as n→∞ has a convergent subse-
quence.

2.2. Preliminaries about Morse theory. In this subsection we collect some
abstract results on Morse theory [18, 32] for a C1 functional defined on a Banach
space X.

Let J ∈ C1(X,R) and K = {v ∈ X : J ′(v) = 0}. For c ∈ R we denote
J c = {v ∈ X : J (v) 6 c} and Kc = K ∩ {v ∈ X : J (v) = c}. We say that J
satisfies the Palais-Smale condition at the level c ∈ R if any sequence {vn} ⊂ X
satisfying J (vn) → c and J ′(vn) → 0 as n → ∞ has a convergent subsequence.
We say that J satisfies the Palais-Smale condition if J satisfies the Palais-Smale
condition at each c ∈ R.

Let v0 be an isolated critical point of J with J (v0) = c ∈ R, and U be a neigh-
borhood of v0 such that U ∩ Kc = {v0}. The group Cq(J , v0) := Hq(J c ∩ U,J c ∩
U \{v0}), q ∈ Z is called the q-th critical group of J at v0, where H∗(A,B) denotes
a singular relative homology group of the pair (A,B) with integer coefficients (see
[18, 32]).

Assume that J (K) is bounded from below by a ∈ R and J satisfies the Palais-
Smale condition at all c 6 a. The group Cq(J ,∞) := Hq(X,J a), q ∈ Z, is called
the q-th critical group of J at infinity([8]).

Assume that J satisfies the Palais-Smale condition and K is a finite set con-
taining 0. Then the critical groups of J at infinity and at 0 are well-defined. The
basic idea of Morse theory tells us that if K = {0} then Cq(J ,∞) ∼= Cq(J , 0) for
all q ∈ Z. It follows that if Cq(J ,∞) 6∼= Cq(J , 0) for some q ∈ Z then J must have
a nontrivial critical point. Therefore the basic method in applying Morse theory
to find nontrivial critical points of J is to compute critical groups Cq(J , 0) and
Cq(J ,∞).

The groups Cq(J , 0) can be computed partially when J has a local linking
structure at zero.

Proposition 2.6 ([30]). Let J ∈ C1(X,R) satisfy the Palais-Smale condition and
0 ∈ K. Assume that J has a local linking structure at 0 with respect to X =
X−0 ⊕X

+
0 , i.e. there exists ρ > 0 such that

J (v) > 0 for v ∈ X+
0 , 0 < ‖v‖ 6 ρ, J (v) 6 0 for v ∈ X−0 , ‖v‖ 6 ρ. (2.18)

Then C`0(J , 0) 6∼= 0 if `0 = dimX−0 <∞.

The concept of local linking in Proposition 2.6 was introduced by Li and Liu
[28] for the existence of nontrivial critical points. If X is a Hilbert space and J
is of C2 then Cq(J , 0) can be computed clearly provided `0 is the Morse index or
augmented Morse index of J at 0. See [44, Proposition 2.3].

Proposition 2.7 ([8]). Assume X = X1 ⊕ X2 and J ∈ C1(X,R) satisfies the
Palais-Smale condition. If J is bounded from below on X2 and is anti-coercive
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on X1, i.e. J (v) → −∞ as v ∈ X1 with ‖v‖ → ∞, then C`(J ,∞) 6∼= 0 if ` =
dimX1 <∞.

The above proposition is a version of the famous Rabinowitz’s Saddle Point
Theorem [34, Theorem 4.6]. We regard Propositions 2.6 and 2.7 as the topologi-
cal versions of corresponding linking theorems since there are no minimax values
involved. Next we give two theorems about the homotopy invariance of critical
groups that can be used to compute directly the critical groups at isolated critical
point and infinity respectively.

Theorem 2.8 ([18, 32]). Let X be a Hilbert space and {Jt ∈ C2−0(X,R) : t ∈ [0, 1]}
be a family of functional satisfying the Palais-Smale condition. Assume that there
exists an open set U such that Jt has a unique critical point vt ∈ U for each t ∈ [0, 1]
and t 7→ Jt is continuous in C1(Ū) topology. Then Cq(Jt, vt) is independent of
t ∈ [0, 1].

Theorem 2.9 ([22]). Let X be a Hilbert space and let Jt ∈ C1(X,R) be a family
of functionals, t ∈ [0, 1]. Assume that each Jt satisfies the Palais-Smale condition,
J ′t and ∂tJt are locally Lipschitz continuous in u. If there exists a ∈ R and δ > 0
such that for some C > 0

Jt(u) 6 a ⇒ ‖∂tJt(u)‖ 6 C‖u‖2, for all t ∈ [0, 1], (2.19)

Jt(u) 6 a ⇒ ‖J ′t (u)‖ > δ‖u‖, for all t ∈ [0, 1], (2.20)

then

Cq(J0,∞) ∼= Cq(J1,∞). (2.21)

We point out that Theorem 2.9 is a new modification of [29, Theorem 3.1] (see
[33]), where the given conditions were not sufficient to ensure the existence of flow.
This new version of homotopy theorem has its own meanings and can be applied to
many variational problems. The proof of Theorem 2.9 has been given in [22] where
another type of nonlocal variational problem was studied.

3. Critical groups at zero

In this section we compute C∗(J , 0) under the assumptions (A2) and (A3). We
make a conventional assumption that the trivial solution 0 of (1.1) is isolated. By
Proposition 2.5 we see that J satisfies the Palais-Smale condition over any a closed
ball centered at 0. We use the following orthogonal decomposition:

H1
0,L(C) = H−(µk)⊕H(µk)⊕H+(µk),

Hk = ⊕µj6µk
H(µj), `k = dimHk.

(3.1)

Proposition 3.1. Assume that (A1) and (A2) hold. Then C`k(J , 0) 6= 0.

Proof. We will show that J has a local linking structure at 0 with respect to
H1

0,L(C) = Hk ⊕H⊥k .

(i) Since Hk is finite dimensional, by (A2), Propositions 2.1 and 2.3 we can find
ρ > 0 small such that for all v ∈ Hk with ‖v‖ 6 ρ,

J (v) 6 −
∫

Ω

(
F (x, v(x, 0))− 1

2
µk|v(x, 0)|2

)
dx 6 0. (3.2)
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(ii) For v ∈ H⊥k , we write v = z + w, where z ∈ H(µk+1), w ∈ H⊥k+1. By
Proposition 2.3 we have

J (v) >
1

2

(
1− µk+1

µk+2

)
‖w‖2 −

∫
Ω

(
F (x, v(x, 0))− 1

2
µk+1|v(x, 0)|2

)
dx. (3.3)

For |v(x, 0)| 6 δ, by (A2) we have∫
{|v(x,0)|6δ}

(
F (x, v(x, 0))− 1

2
µk+1|v(x, 0)|2

)
dx 6 0. (3.4)

It follows from (A1) and Proposition 2.1 that for some q ∈ (2, 2?],∫
{|v(x,0)|>δ}

(
F (x, v(x, 0))− 1

2
µk+1|v(x, 0)|2

)
dx 6 C‖w‖q. (3.5)

Hence by (3.3)–(3.5) we have

J (v) >
1

2

(
1− µk+1

µk+2

)
‖w‖2 − C‖w‖q. (3.6)

Since q > 2, it follows from (3.6) that there is ρ > 0 small such that

J (v) > 0, ∀ 0 < ‖v‖ 6 ρ with w 6= 0. (3.7)

We can choose ρ > 0 so small that ‖v‖ 6 ρ⇒ ‖z‖ 6 ρ⇒ |z(x, 0)| 6 δ for all x ∈ Ω.
Then by (A2) we have

F (x, z(x, 0))− 1

2
µk+1z

2(x, 0) 6 0 uniformly in x ∈ Ω.

Thus

J (z) = −
∫

Ω

(
F (x, z(x, 0))− 1

2
µk+1z

2(x, 0)
)
dx > 0.

Let z∗ ∈ H(µk+1) be such that 0 < ‖z∗‖ 6 ρ and J (z∗) = 0. Then

F (x, z∗(x, 0))− 1

2
µk+1z

2
∗(x, 0) = 0 uniformly in x ∈ Ω,

and so

f(x, z∗(x, 0)) = µk+1z∗(x, 0) uniformly in x ∈ Ω.

As z∗ ∈ H(µk+1), going back to (2.13), we see that z∗ is a nontrivial solution for
(2.13) and z∗(·, 0) is a solution of (1.1). We conclude that there is ρ > 0 small such
that for all ‖v‖ 6 ρ with w = 0 and z 6= 0,

J (v) = J (z) = −
∫

Ω

(
F (x, z(x, 0))− 1

2
µk+1z

2(x, 0)
)
dx > 0. (3.8)

Otherwise, for any ε > 0 there exists 0 6= zε ∈ H(µk+1) such that ‖zε‖ < ε and
J (zε) = 0. Then zε(·, 0) is a nontrivial solution of (1.1). It contradicts the isolation
of the trivial solution. It follows from (3.7) and (3.8) that

J (v) > 0, for all v ∈ H⊥k with 0 < ‖v‖ 6 ρ.

Therefore J has a local linking structure at 0 with respect to H1
0,L(C) = Hk⊕H⊥k .

Since `k = dimHk <∞, it follows from Proposition 2.6 that C`k(J , 0) 6= 0. �

Proposition 3.2. Assume that (A1’) and (A3) hold. Then Cq(J , 0) = δq,`kF.
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Proof. For v ∈ H1
0,L(C), we write v = z + φ + w and set v̂ = −z + φ + w, where

z ∈ Hk, φ ∈ H(µk+1) and w ∈ H⊥k+1. We define a family of functionals

Jt(v) = (1− t)J (v) +
t

2

(
−‖z‖2 + ‖φ‖2 + ‖w‖2

)
, t ∈ [0, 1]. (3.9)

By (A1’) and Proposition 2.4 we have that Jt ∈ C2−0(H1
0,L(C),R) and

〈J ′t (v), ϕ〉 = (1− t)〈J ′(v), ϕ〉+ t〈v̂, ϕ〉. (3.10)

Now we show that there is ρ > 0 such that v = 0 is a unique critical point of Jt in
the ball Bρ(0) for all t ∈ [0, 1]. Denote g(x, t) = f(x, t)− µk+1t. Then by (A3) we
have that

0 < −g(x, t)

t
6 µk+1 − µk, 0 < |t| 6 δ.

Then for |v(x, 0)| 6 δ,

g(x, v(x, 0))v̂(x, 0) 6

{
0, if v(x, 0)ṽ(x, 0) > 0,

(µk+1 − µk)z2(x, 0), if v(x, 0)ṽ(x, 0) < 0.
(3.11)

Hence ∫
{|v(x,0)|6δ}

g(x, v(x, 0))v̂(x, 0)dx 6 (µk+1 − µk)

∫
Ω

z2(x, 0)dx. (3.12)

Since trΩHk and trΩH(µk+1) are finite dimensional, there is a ρ > 0 such that

‖z‖ 6 ρ⇒ |z(x, 0)| 6 δ

3
, ‖φ‖ 6 ρ⇒ |φ(x, 0)| 6 δ

3
.

For ‖v‖ 6 ρ and |v(x, 0)| > δ,

|v(x, 0)| 6 |w(x, 0)|+ |φ(x, 0)|+ |z(x, 0)| 6 |w(x, 0)|+ 2

3
δ,

and so
|v(x, 0)| < 3|w(x, 0)|, |v̂(x, 0)| < 3|w(x, 0)|.

Thus by (A1’) we have∫
{|v(x,0)|>δ}

|g(x, v(x, 0))v̂(x, 0)|dx

6 C
∫
{|v(x,0)|>δ}

|v(x, 0)|p−1|v̂(x, 0)|dx

6 C
∫
{|v(x,0)|>δ}

|w(x, 0)|pdx 6 C‖w‖p.

(3.13)

Now for ‖v‖ 6 ρ, it follows from (3.12) and (3.13) that

〈J ′(v), v̂〉

= 〈v, v̂〉 − µk+1

∫
Ω

vv̂dx−
∫

Ω

g(x, v(x, 0))v̂(x, 0)dx

>
(

1− µk+1

µk+2

)
‖w‖2 −

(
‖z‖2 − µk+1

∫
Ω

|z(x, 0)|2dx
)

−
∫
{|v(x,0)|6δ}

g(x, v(x, 0))v̂(x, 0)dx−
∫
{|v(x,0)|>δ}

g(x, v(x, 0))v̂(x, 0)dx

>
(

1− µk+1

µk+2

)
‖w‖2 −

(
‖z‖2 − µk

∫
Ω

|z(x, 0)|2dx
)
− C‖w‖p.

(3.14)
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Therefore for ‖v‖ 6 ρ, take ϕ = v̂ in (3.10), we obtain from (3.14) that

〈J ′t (v), v̂〉 > (1− t)
[(

1− µk+1

µk+2

)
‖w‖2 −

(
‖z‖2 − µk

∫
Ω

|z(x, 0)|2dx
)]

− (1− t)C‖w‖p + t‖v‖2.
(3.15)

Since p > 2, it follows that 0 is the only critical point of Jt in Bρ(0) for all t ∈ [0, 1]
if ρ > 0 is sufficiently small. Since

J1(v) =
1

2

(
−‖z‖2 + ‖φ‖2 + ‖w‖2

)
(3.16)

is a C2 functional and has 0 as a non-degenerate critical point with Morse index
`k = dimHk, it follows that

Cq(J1, 0) = δq,`kF, ∀q ∈ Z. (3.17)

By Theorem 2.8 and (3.17) we have

Cq(J , 0) = Cq(J0, 0) ∼= Cq(J1, 0) = δq,`kF. (3.18)

The proof is complete. �

4. Critical groups at infinity

In this section we compute C∗(J ,∞) under the corresponding assumptions (A4)–
(A6). We use the following orthogonal decomposition:

H1
0,L(C) = H−(µm)⊕H(µm)⊕H+(µm),

Hm = ⊕µj6µmH(µj), `m = dimHm.
(4.1)

We will use C to denote various positive constants in the sequel.

Proposition 4.1. Assume that (A1’) and (A4) hold. Then J satisfies the Palais-
Smale condition and Cq(J ,∞) ∼= δq,`mF.

Proof. We will apply Theorem 2.9 to prove this proposition. Set

f̃(x, t) = f(x, t)− (µm+1 − ε)t, F̃ (x, t) =

∫ t

0

f̃(x, ζ)dζ.

Then J can be rewritten as

J (v) =
1

2

∫
C
|∇v|2 dx dy − 1

2
(µm+1 − ε)

∫
Ω

|v(x, 0)|2dx−
∫

Ω

F̃ (x, v(x, 0))dx.

For v ∈ H1
0,L(C), we write v = z + w and set ṽ = −z + w where z ∈ Hm and

w ∈ H⊥m. We define a family of functionals

Jt(v) = (1− t)J (v) +
t

2

(
−‖z‖2 + ‖w‖2

)
, t ∈ [0, 1]. (4.2)

By (A1’) we have that Jt ∈ C2−0(H1
0,L(C),R) and

〈J ′t (v), ϕ〉 = (1− t)〈J ′(v), ϕ〉+ t〈ṽ, ϕ〉, ∀v, ϕ ∈ H1
0,L(C). (4.3)

By (A4) we have

0 6 − f̃(x, t)

t
6 µm+1 − µm − 2ε, ∀|t| >M, x ∈ Ω.
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For |v(x, 0)| >M we have that

f̃(x, v(x, 0))ṽ(x, 0) 6

{
0, v(x, 0)ṽ(x, 0) > 0,

(µm+1 − µm − 2ε)z2(x, 0), v(x, 0)ṽ(x, 0) < 0.

Hence∫
{|v(x,0)|>M}

f̃(x, v(x, 0))ṽ(x, 0)dx 6 (µm+1 − µm − 2ε)

∫
Ω

|z(x, 0)|2dx. (4.4)

By (A1) there is C > 0 such that∫
{|v(x,0)|<M}

|f̃(x, v(x, 0))ṽ(x, 0)|dx 6 C‖ṽ‖. (4.5)

Now it follows from (4.4) and (4.5) that

〈J ′(v), ṽ〉

= 〈v, ṽ〉 − (µm+1 − ε)
∫

Ω

v(x, 0)ṽ(x, 0)dx−
∫

Ω

f̃(x, v(x, 0))ṽ(x, 0)dx

>
ε

µm+1
‖w‖2 −

[
‖z‖2 − (µm+1 − ε)

∫
Ω

|z(x, 0)|2dx
]

−
(∫
{|v(x,0)|<M}

+

∫
{|v(x,0)|>M}

)
f̃(x, v(x, 0))ṽ(x, 0)dx

>
ε

µm+1
‖w‖2 −

[
‖z‖2 − (µm + ε)

∫
Ω

|z(x, 0)|2dx
]
− C‖ṽ‖

>
ε

µm+1
‖w‖2 +

ε

µm
‖z‖2 − C‖ṽ‖

>
ε

µm+1
‖v‖2 − C‖v‖.

(4.6)

Taking ϕ = ṽ in (4.3), we obtain from (4.6) that

〈J ′t (v), ṽ〉 > (1− t)
[

ε

µm+1
‖v‖2 − C‖v‖

]
+ t‖ṽ‖2 > Cε‖v‖2 − C‖v‖. (4.7)

where Cε = min{1, ε/µm+1}. By (4.7) we see that any a Palais-Smale sequence of
Jt must be bounded. By Proposition 2.5([23, Lemma 3.1]) we have that Jt satisfies
the Palais-Smale condition for all t ∈ [0, 1]. Moreover, it follows from (4.7) that
there are a� −1 and δ > 0 such that

Jt(v) 6 a⇒ ‖J ′t (v)‖ > δ‖v‖. (4.8)

For any a < −1 being fixed, it always holds that

Jt(v) 6 a⇒ |∂tJt(v)| 6 C‖v‖2. (4.9)

From the definition we see that J0(v) = J (v) and

J1(v) =
1

2
(−‖z‖2 + ‖w‖2). (4.10)

Then J1 is a C2 functional and has 0 as a unique non-degenerate critical point with
Morse index `m = dimHm. It follows that

Cq(J1,∞) = Cq(J1, 0) ∼= δq,`mF, ∀q ∈ Z. (4.11)
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By Theorem 2.9 and (4.11) we have

Cq(J ,∞) = Cq(J0,∞) ∼= Cq(J1,∞) = δq,`mF. (4.12)

The proof is complete. �

We note here that the conclusion of Proposition 4.1 is valid in the case that (A1)

holds and lim|t|→∞
f(x,t)
t = ξ ∈ (µm, µm+1). This is the completely non-resonant

case at infinity. See [18] for a proof in abstract version. However, the arguments in
[18] would not be applied to the case of Proposition 4.1.

The next two results involve with (1.1) being slight resonant near infinity from
one side of an eigenvalue of A1/2.

Proposition 4.2. Assume that (A1’) and (A5) hold. Then J satisfies the Palais-
Smale condition and Cq(J ,∞) = δq,`mF.

Proof. We set f̃(x, t) = f(x, t)− µm+1t, F̃ (x, t) =
∫ t

0
f̃(x, ζ)dζ and rewrite J as

J (v) =
1

2
‖v‖2 − 1

2
µm+1

∫
Ω

|v(x, 0)|2dx−
∫

Ω

F̃ (x, v(x, 0))dx.

For v ∈ H1
0,L(C), we write v = z + φ+w, where z ∈ Hm, φ ∈ H(µm+1), w ∈ H⊥m+1

and set ṽ = −z + φ+ w. Define a family of functionals

Jt(v) = (1− t)J (v) +
t

2
(−‖z‖2 + ‖φ‖2 + ‖w‖2), t ∈ [0, 1]. (4.13)

By (A1’) we have that Jt ∈ C2−0(H1
0,L(C),R) and

〈J ′t (v), ϕ〉 = (1− t)〈J ′(v), ϕ〉+ t 〈ṽ, ϕ〉 . (4.14)

By (A5) we have that

0 6 − f̃(x, t)

t
6 µm+1 − µm − ε, ∀|t| >M, x ∈ Ω.

Thus for |v(x, 0)| >M we have

f̃(x, v(x, 0))ṽ(x, 0) 6

{
0, v(x, 0)ṽ(x, 0) > 0,

(µm+1 − µm − ε)z2(x, 0), v(x, 0)ṽ(x, 0) < 0.
(4.15)

Hence∫
{|v(x,0)|>M}

f̃(x, v(x, 0))ṽ(x, 0)dx 6 (µm+1 − µm − ε)
∫

Ω

|z(x, 0)|2dx, (4.16)

and there is C > 0 such that∫
{|v(x,0)|<M}

|f̃(x, v(x, 0))ṽ(x, 0)|dx 6 C‖ṽ‖. (4.17)
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Now it follows from (4.16), (4.17) and Proposition 2.3 that

〈J ′(v), ṽ〉 >
(

1− µm+1

µm+2

)
‖w‖2 −

[
‖z‖2 − µm+1

∫
Ω

|z(x, 0)|2dx
]

−
(∫
{|v(x,0)|<M}

+

∫
{|v(x,0)|>M}

)
f̃(x, v(x, 0))ṽ(x, 0)dx

>
(

1− µm+1

µm+2

)
‖w‖2 −

[
‖z‖2 − µm+1

∫
Ω

|z(x, 0)|2dx
]

−
∫

Ω

(µm+1 − µm − ε)|z(x, 0)|2dx− C‖ṽ‖

>
(

1− µm+1

µm+2

)
‖w‖2 +

ε

µm
‖z‖2 − C‖ṽ‖.

(4.18)

Taking ϕ = ṽ in (4.14), then we obtain from (4.18) that

〈J ′t (v), ṽ〉 > (1− t)
[(

1− µm+1

µm+2

)
‖w‖2 +

ε

µm
‖z‖2 − C‖ṽ‖

]
+ t‖ṽ‖2. (4.19)

We prove that there exists δ > 0 such that for any a ∈ R fixed

Jt(v) 6 a⇒ ‖J ′t (v)‖ > δ‖v‖. (4.20)

Arguing by contradiction, we assume that there exists tn ∈ [0, 1], vn ∈ H1
0,L(C)

such that

Jtn(vn)→ −∞ and ‖J ′tn(vn)‖ < 1

n
‖vn‖, (4.21)

this means that

‖vn‖ → ∞, as n→∞. (4.22)

We denote

v̂n =
vn
‖vn‖

= ẑn + φ̂n + ŵn.

Then ‖v̂n‖ ≡ 1. It follows from (4.21) that

〈J ′tn(vn), ṽn〉
‖vn‖2

→ 0, as n→∞. (4.23)

We have by (4.19) that

〈J ′tn(vn), ṽn〉
‖vn‖2

> (1− tn)
[(

1− µm+1

µm+2

)
‖ŵn‖2 +

ε

µm
‖ẑn‖2 −

C

‖ṽn‖

]
+ tn.

(4.24)

Since tn ∈ [0, 1], ‖ŵn‖2 6 1 and ‖ẑn‖2 6 1, we may assume, up to a subsequence,
that

tn → t∗ ∈ [0, 1], ‖ẑn‖2 → α ∈ [0, 1], ‖ŵn‖2 → β ∈ [0, 1], n→∞. (4.25)

It follows from (4.23)–(4.25) that

(1− t∗)
[(

1− µm+1

µm+2

)
β +

ε

µm
α
]

+ t∗ 6 0. (4.26)

It must be that t∗ = 0 and α = β = 0. This means that

ẑn → 0, ŵn → 0, as n→∞.
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Since ‖v̂n‖ ≡ 1, it holds that

φ̂n → φ̂ 6= 0, ‖φ̂‖ = 1.

It follows that

Jtn(vn)

= (1− tn)
(1

2
‖vn‖2 −

∫
Ω

F (x, vn(x, 0))dx
)

+
tn
2

(−‖zn‖2 + ‖φn‖2 + ‖wn‖2)

> (1− tn)‖vn‖2
(1

2

ε

µm+1
‖φ̂n‖2 − C(‖ẑn‖2 + ‖ŵn‖2)

)
− C

+
1

2
tn‖vn‖2(−‖ẑn‖2 + ‖φ̂n‖2 + ‖ŵn‖2)→∞, n→∞.

(4.27)
This proves (4.20). Using the same arguments above we can show that for each
t ∈ [0, 1], Jt satisfies the Palais-Smale condition. Moreover, it is easy to see that
for any a < −1 being fixed, it always holds that

Jt(v) 6 a⇒ |∂tJt(v)| 6 C‖v‖2. (4.28)

Since

J1(v) =
1

2
(−‖z‖2 + ‖φ‖2 + ‖w‖2) (4.29)

is a C2 functional and has 0 as a unique non-degenerate critical point with Morse
index `m = dimHm, it follows that

Cq(J1,∞) = Cq(J1, 0) ∼= δq,`mF, ∀q ∈ Z. (4.30)

By (4.20), (4.28), Theorem 2.9 and (4.30) we have

Cq(J ,∞) = Cq(J0,∞) ∼= Cq(J1,∞) = δq,`mF. (4.31)

The proof is complete. �

Proposition 4.3. Assume that (A1) and (A6) hold. Then J satisfies the Palais-
Smale condition and C`m(J ,∞) � 0.

Proof. We will apply Proposition 2.7. We first prove that J satisfies the Palais-
Smale condition. Although the argument is somewhat similar to that of the previous
proposition, we prefer to give the details. Assume that {vn} ⊂ H1

0,L(C) satisfies

|J (vn)| 6 C, J ′(vn)→ 0, as n→∞. (4.32)

By Proposition 2.5, we only need to prove that {vn} is bounded. Assume that

‖vn‖ → ∞ as n → ∞. Set v̂n = vn
‖vn‖ = ẑn + φ̂n + ŵn where ẑn ∈ Hm−1,

φ̂n ∈ H(µm) and ŵn ∈ H⊥m. Then ‖v̂n‖ ≡ 1. Set

f̃(x, t) = f(x, t)− µmt, F̃ (x, t) =

∫ t

0

f̃(x, ζ)dζ.

By (A6) we have

0 6
f̃(x, t)

t
6 µm+1 − µm − ε, ∀|t| >M, x ∈ Ω.

For v ∈ H1
0,L(C), set ṽ = −(z + φ) + w. Then for |v(x, 0)| >M , we have

f̃(x, v(x, 0))ṽ(x, 0) 6

{
0, v(x, 0)ṽ(x, 0) < 0,

(µm+1 − µm − ε)w2(x, 0), v(x, 0)ṽ(x, 0) > 0.
(4.33)
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Hence∫
{|v(x,0)|>M}

f̃(x, v(x, 0))ṽ(x, 0)dx 6 (µm+1 − µm − ε)
∫

Ω

|w(x, 0)|2dx. (4.34)

There is C > 0 such that∫
{|v(x,0)|<M}

|f̃(x, v(x, 0))ṽ(x, 0)|dx 6 C‖ṽ‖. (4.35)

It follows from (4.34) and (4.35) that

〈J ′(v), ṽ〉

= 〈v, ṽ〉 − µm
∫

Ω

v(x, 0)ṽ(x, 0)dx−
∫

Ω

f̃(x, v(x, 0))ṽ(x, 0)dx

=
(
‖w‖2 − µm

∫
Ω

|w(x, 0)|2dx
)
−
(
‖z‖2 − µm

∫
Ω

|z(x, 0)|2dx
)

−
(∫
{|v(x,0)|<M}

+

∫
{|v(x,0)|>M}

)
f̃(x, v(x, 0))ṽ(x, 0)dx

>
(
‖w‖2 − µm

∫
Ω

|w(x, 0)|2dx
)
−
(
‖z‖2 − µm

∫
Ω

|z(x, 0)|2dx
)

−
∫

Ω

(µm+1 − µm − ε)|w(x, 0)|2dx− C‖ṽ‖

>
( µm
µm−1

− 1
)
‖z‖2 +

ε

µm+1
‖w‖2 − C‖ṽ‖.

(4.36)

By (4.32) and (4.36), we obtain

o(‖vn‖) = 〈J ′(vn), ṽn〉 >
( µm
µm−1

− 1
)
‖zn‖2 +

ε

µm+1
‖wn‖2 − C‖ṽn‖. (4.37)

Therefore,

o(1)

‖vn‖
>
( µm
µm−1

− 1
)
‖ẑn‖2 +

ε

µm+1
‖ŵn‖2 −

C

‖vn‖
. (4.38)

Since ‖ŵn‖2 6 1 and ‖ẑn‖2 6 1, we assume, up to a subsequence, that

‖ẑn‖2 → α ∈ [0, 1], ‖ŵn‖2 → β ∈ [0, 1], n→∞. (4.39)

It follows from (4.38) that( µm
µm−1

− 1
)
α+

ε

µm+1
β 6 0. (4.40)

It must be that α = β = 0 and thus ẑn → 0 and ŵn → 0 as n→∞. Since ‖v̂n‖ ≡ 1,
it follows that

φ̂n → φ̂ 6= 0, ‖φ̂‖ = 1.

Now we have

J (vn) =
1

2
‖vn‖2 −

∫
Ω

F (x, vn(x, 0))dx

6 ‖vn‖2
(
− 1

2

ε

µm
‖φ̂n‖2 + C(‖ẑn‖2 + ‖ŵn‖2)

)
+ C → −∞

(4.41)

as n→∞. This contradicts (4.32).
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Next we prove that J satisfies the geometrical assumptions of Proposition 2.7
with respect to H1

0,L(C) = Hm ⊕H⊥m. From (A6) it follows that

(µm + ε)t2 − C 6 2F (x, t) 6 (µm+1 − ε)t2 + C (4.42)

for some C > 0. Then for w ∈ H⊥m,

J (w) >
1

2
‖w‖2 − 1

2

∫
Ω

(µm+1 − ε)|w(x, 0)|2dx− C

>
ε

2

∫
Ω

|w(x, 0)|2dx− C > −C.
(4.43)

For z ∈ Hm,

J (z) 6
1

2
‖z‖2 − 1

2

∫
Ω

(µm + ε)|z(x, 0)|2dx+ C

6 − ε

2µm
‖z‖2 + C → −∞, ‖z‖ → ∞.

(4.44)

As dimHm = `m <∞, we have by Proposition 2.7 that C`m(J ,∞) � 0. The proof
is complete. �

5. Proofs of main theorems

Proof of Theorem 1.1. (i) By Proposition 3.1, we have that C`k(J , 0) 6= 0. By
Proposition 4.1, J satisfies the Palais-Smale condition and Cq(J ,∞) = δq,`mF.
Since µk 6= µm implies `k 6= `m, it follows that C`k(J ,∞) � C`k(J , 0). Therefore
J has at least one nontrivial critical point. The case (ii) is proved in a similar
way. �

Proof of Theorem 1.2. (iii) By Proposition 3.2, we have that Cq(J , 0) = δq,`kF. By
Proposition 4.3, J satisfies the Palais-Smale condition and C`m(J ,∞) � 0. Since
µk 6= µm implies `k 6= `m, it follows that C`m(J ,∞) � C`m(J , 0). Therefore J
has at least one nontrivial critical point. The other cases are proved in a similar
way. �
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