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Abstract. This article concerns the clamped plate equation

∆2u = λa(x)f(u), in Ω,

u =
∂u

∂ν
= 0 on ∂Ω,

where Ω is a bounded domain in R2 of class C4,α, a ∈ C(Ω̄, (0,∞)), f :

[0,∞) → [0,∞) is a locally Hölder continuous function with exponent α, and

λ is a positive parameter. We show the existence of S-shaped connected com-
ponent of positive solutions under suitable conditions on the nonlinearity. Our

approach is based on bifurcation techniques.

1. Introduction

Let Ω denote a bounded domain in R2 of class C4,α. We consider the clamped
plate problem

∆2u = λf̃(x, u) in Ω, (1.1)

u =
∂u

∂ν
= 0 on ∂Ω, (1.2)

where ∂/∂ν is the outward normal derivative, α ∈ (0, 1], f̃ : Ω̄× [0,∞)→ [0,∞) is a
locally Hölder continuous function with exponent α. (1.1), (1.2) forms a model for

the clamped plate where f̃ is the load and u the deviation of the plate Ω. Boggio
[2, 3] and Hadamard [16, 17] extensively studied this model when λf̃(x, u) = e(x)

and f̃(x, u) = u, respectively.
Dalmasso [7] used the Schauder fixed point theorem to study the existence of

positive solutions of nonlinear boundary-value problem of elliptic equation of order
2m under the assumptions

(1) for x ∈ Ω, f̃(x, s) is nondecreasing in s;

(2) lims→0 minx∈Ω̄ f̃(x, s)/s =∞, lims→∞maxx∈Ω̄
f̃(x,s)
s = 0,
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and considered the following domains: the unit ball B = {x ∈ RN : ‖x‖ < 1},
N ≥ 1, and a bounded domain of class C2m,α close in C2m,α-sense to a ball.
Mâagli, Toumi, and Zribi [20] also used the Schauder fixed point theorem to show
the existence of positive continuous solution (in the sense of distributions), when

Ω is the unit ball B in RN and N ≥ 2, and the nonlinearity f̃ satisfies appropriate
conditions related to a Kato class of functions Km,N . At most two radial positive
solutions were obtained in above mentioned papers.

The aim of this article is to study the global structure of positive solutions for
problem (1.1), (1.2) on Ω ⊂ R2 when

f̃(x, s) = a(x)f(s), x ∈ Ω̄, s ∈ [0,∞),

and to show that the positive solutions set contains an S-shaped connected com-
ponent under suitable conditions; consequently, (1.1), (1.2) possesses at least three
positive solutions for λ belonging to certain open interval.

We work on Ω ⊂ R2 for the following two reasons:
(1) we need to assume that Ω is a bounded domain of class C4,α(Ω̄) which is

ε0-close in C4,α-sense to B ⊂ R2 for some ε0 > 0 (see Grunau and Sweers [13, 14]
for the detail);

(2) Harnack inequalities are very important in study of the shape of connected
components of positive solutions of second order elliptic problems, see Sim and
Tanaka [23]. However, no general Harnack inequalities are available for the poly-
harmonic problems, see Gazzola, Grunau, and Sweers [11, P.146]. Caristi and
Mitidieri [6, Theorem 3.6] proved a Harnack type inequalities for linear biharmonic
equations containing a Kato potential when N > 4, which cannot be used to treat
the biharmonic problem on Ω ⊂ R2. To establish a Harnack inequality for bihar-
monic problems on Ω ⊂ R2, we need (4.13) below. Notice that (4.13) need the
restriction N = m = 2.

For earlier results on the existence and multiplicity of solutions to the mathe-
matical models of nonlinearly supported bending beams see the well-known survey
paper of Lazer and Mckenna [18].

2. Preliminaries

Let Y be the Banach space C(Ω̄) equipped with the supremum norm ‖ · ‖C(Ω̄).

2.1. Principal eigenvalue. The biharmonic eigenvalue problem with Dirichlet
boundary conditions has the form

∆2ϕ = λϕ in Ω,

ϕ =
∂ϕ

∂ν
= 0 on ∂Ω.

(2.1)

The famous conjecture for this problem was as follows; by now it has numerous
counterexamples.

Conjecture (Szegö, 1950) If Ω is a ‘nice’ domain (convex), then the first eigen-
function for (2.1) is of fixed sign.

This conjecture was proved to be wrong, see Duffin and others [8, 10, 19, 4, 22].
Coffman [4] proved that the first eigenfunction on a square changes sign. For the
domains

Aε = {(x, y) ∈ R2 : ε2 < x2 + y2 < 1} with 0 < ε < 1.
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Coffman, Duffin and Shaffer [5] proved the fundamental mode of vibration of a
clamped annular plate Aε is not of one-sign.

We first recall the definition of closeness of domain introduced by Grunau and
Sweers [13].

Definition 2.1. Let ε > 0, α ∈ (0, 1], Ω is called ε-closed in Ck,α-sense to Ω∗, if
there exists a Ck,α mapping g : Ω̄∗ → Ω̄ such that g(Ω̄∗) = Ω̄ and

‖g − Id‖Ck,α(Ω̄∗) ≤ ε.

Using Dalmasso [7, Lemma 3.1(2)] and Dalmasso [7, Theorem 2.2 (ii)], we may
deduce the following result.

Lemma 2.2. Let Ω ⊂ R2 and Ω is a bounded domain of class C4,α. Then there
exists ε0 > 0 such that if Ω is ε-close in C4,α sense to B for all 0 < ε ≤ ε0, then

(1) the problem

∆2u = e in Ω,

u =
∂u

∂ν
= 0 on ∂Ω

with some e ∈ C0,α(Ω̄) has unique solution u ∈ C4,α(Ω̄).

(2) If e ≥ 0 and e 6≡ 0, then ∂2u
∂ν2 > 0 for x ∈ ∂Ω.

In the following, we consider the eigenvalue problem

∆2u = λa(x)u, in Ω,

u =
∂u

∂ν
= 0 on ∂Ω,

(2.2)

where a ∈ C(Ω̄, (0,∞)). The first eigenvalue of (2.2) is defined as

λ1(a(·)) = min
u∈H2

0 (Ω)\{0}

‖∆u‖2
H2

0

‖a1/2u‖2L2

,

where H2
0 (Ω) is the closure of C∞c (Ω) with respect to the normal ‖ · ‖W 2,2 , and

C∞c (Ω) is the space of C∞(Ω)-functions having compact support in Ω.
Applying Lemma 2.2 and the standard Krein-Rutman type argument, we may

obtain the following result.

Lemma 2.3. Let ε0 be the constant as given in Lemma 2.2. If Ω ⊂ R2 and Ω is a
bounded domain of class C4,α(Ω̄) which is ε0-close in C4,α-sense to B, then

(1) the first eigenvalue λ1(a(·)) of (2.2) is simple;
(2) the corresponding eigenfunction ψ is of one sign;

(3) ∂2ψ
∂ν2 > 0, x ∈ ∂Ω.

2.2. Shape of positive solutions. We will make the following assumptions:

(H0) f : [0,∞) → [0,∞) is a Hölder continuous function with exponent α, and
f(s) > 0 for s > 0;

(H1) a ∈ C(Ω̄, (0,∞));
(H2) there exist β > 0, f0 > 0 and f1 > 0 such that

lim
s→0+

f(s)− f0s

s1+β
= −f1;
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(H3)

f∞ := lim
s→∞

f(s)

s
= 0.

Remark 2.4. It is easy to show that if (H2) holds, then

lim
s→0+

f(s)

s
= f0.

Moreover, if (H3) holds, then there exists s̃ > 0, f∗ > 0 and γ∗ > 0 such that

f(s) ≤ f∗s, ∀s ≥ 0; f(s) ≥ γ∗s, ∀s ∈ [0, s̃]. (2.3)

Lemma 2.5. Let (H0)–(H2) hold. Let s0 ∈ (0,∞) be a constant and let (λ, u) be
the nonnegative solution of

∆2u = λa(x)f(u) x ∈ Ω,

u =
∂u

∂ν
= 0 x ∈ ∂Ω

(2.4)

with max{u(x) : x ∈ Ω̄} = u(x0) = s0. Then

λ ∈ (0,M1]

for some positive constant M1 > 0, which is independent of u and λ.

Proof. Assume on the contrary that there exists a sequence {(µn, un)} of positive
solutions of (2.4) with

‖un‖C(Ω̄) = s0, µn →∞ as n→∞. (2.5)

Let yn := un/‖un‖C(Ω̄). Then

∆2yn = µna(x)
f(un(x))

un(x)
yn x ∈ Ω,

yn =
∂yn
∂ν

= 0 x ∈ ∂Ω.

(2.6)

Since (H0) and (H2) imply that f(s)/s ≥ ρ0 for s ∈ (0, s0] for some ρ0 > 0, we let
ψ : ψ(x) > 0 in Ω, be the eigenfunction corresponding λ1(a(·)), i.e.

∆2ψ = λ1(a(·))a(x)ψ, in Ω,

ψ =
∂ψ

∂ν
= 0 on ∂Ω.

(2.7)

Multiplying the equation in (2.6) by ψ and multiplying the equation in (2.7) by yn,
integrating over Ω by parts and using that∫

Ω

ψ ∆2yndx =

∫
Ω

∆yn∆ψ dx, (2.8)

we deduce from µn → ∞ that yn must change its sign in Ω if n is large enough.
However, this is a contradiction. �

Lemma 2.6. Let (H0)–(H2) hold. Let s0 ∈ (0,∞) be a constant and let Λ :=[
0,max{M1, λ1(a(·))/f0 + 1}

]
be a compact interval. Let (λ, u) be the nonnegative

solution of

∆2u = λa(x)f(u) x ∈ Ω, (2.9)

u =
∂u

∂ν
= 0 x ∈ ∂Ω, (2.10)
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with λ ∈ Λ and max{u(x) : x ∈ Ω̄} = u(x0) = s0. Then

x0 ∈ Ωδ := {x ∈ Ω : d(x, ∂Ω) ≥ δ} (2.11)

for some positive constant δ = δ(s0), which is independent of λ ∈ Λ.

Proof. Assume on the contrary that there exists a sequence {(µk, yk)} of nonnega-
tive solutions of (2.9), (2.10) with µk ∈ Λ, ‖yk‖C(Ω̄) = s0 and

d(x0,k, ∂Ω)→ 0 as k →∞,
where yk(x0,k) = max{yk(x) : x ∈ Ω̄}. Since {µka(·)f(yk(·))} is uniformly bounded
in C(Ω̄), it follows that

‖µka(·)f(yk(·))‖Lp(Ω) ≤M2 (2.12)

for some constant M2 > 0.
By Agmon-Douglis-Nirenberg estimates in [1], for any p > 1,

‖uk‖W 4,p(Ω) ≤ Cp‖µka(·)f(yk(·))‖Lp(Ω) ≤ CpM2, (2.13)

where Cp is a positive constant. By the embedding theorem [11, Theorem 2.6],

W 4,p(Ω) ↪→ C3,α(Ω̄)

for all p > 2
4−3 = 2 and α ∈ (0, 1− 2

p ] ∩ (0, 1). Thus

‖uk‖C3,α(Ω̄) ≤M3 (2.14)

for some constant M3 > 0. Since C3,α(Ω̄) ↪→↪→ C(Ω̄) is a compact embedding,
it follows that after taking a subsequence if necessary, yk converges to ŷ in C(Ω̄).
Moreover,

‖ŷ‖C(Ω̄) = s0. (2.15)

Since Ω̄ ⊂ R2 is bounded and closed, we may assume that x0,k → x∗, and conse-
quently, ŷ(x∗) = s0. On the other hand, x∗ ∈ ∂Ω, which together with the fact
yn(x) = 0 on ∂Ω imply ŷ(x∗) = 0. However, this contradicts (2.15). �

2.3. Global solutions branches for positive mappings. Suppose that E is a
real Banach space with norm ‖ · ‖. Let K be a cone in E. A nonlinear mapping
A : [0,∞)×K → E is said to be positive if A([0,∞)×K) ⊆ K. It is said to be K-
completely continuous if A is continuous and maps bounded subsets of [0,∞)×K
to precompact subset of E. If L is a continuous linear operator on E, denote r(L)
the spectral radius of L. Define

cK(L) = {λ ∈ [0,∞) : there exists x ∈ K with ‖x‖ = 1 and x = λLx}.
The following Lemma will play a very important role in the proof of our main

results, which is essentially a consequence of Dancer [9, Theorem 2] .

Lemma 2.7. Assume that

(i) K has nonempty interior and E = K −K;
(ii) A : [0,∞) ×K → E is K-completely continuous and positive, A(λ, 0) = 0

for λ ∈ R, A(0, u) = 0 for u ∈ K and

A(λ, u) = λLu+ F (λ, u),

where L : E → E is a strongly positive linear compact operator on E with
r(L) > 0, F : [0,∞) × K → E satisfies ‖F (λ, u)‖ = ◦(‖u‖) as ‖u‖ → 0
locally uniformly in λ.
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Then there exists an unbounded connected subset C of

DK(A) = {(λ, u) ∈ [0,∞)×K : u = A(λ, u), u 6= 0} ∪ {(r(L)−1, 0)}

such that (r(L)−1, 0) ∈ C.

3. Main results

Let s̃ be a positive constant. In the rest of this paper we will take δ to be
the constant in Lemma 2.6 with Λ = [0,max{M1, λ1(a(·))/f0 + 1}]. To study the
multiplicity of positive solutions of (2.9),(2.10), we need the following assumption

(H4)

min
s̃
C≤s≤s̃

f(s)

s
>

Cf0

λ1(a(·)) minΩδ/2 G2,2,Ω(x, y)a0|Bδ/2|
, (3.1)

where a0 = minΩ̄ a(·), |Bδ/2| = measBδ/2,

Ωr := {x ∈ Ω : d(x, ∂Ω) > r}, Br := {x ∈ B : d(x, ∂B) > r},

and C is the constant satisfying

1

C
(d(x))2G2,2,B(0, y) ≤ G2,2,B(x, y) ≤ CG2,2,B(0, y) x, y ∈ B, (3.2)

where d(x) = d(x, ∂Ω), G2,2,B is the Green function of ∆2 for the Dirichlet
problem in B, see Mâagli, Toumi and Zribi [20, P.3] for the details.

Using a similar idea to show the existence of three positive solutions of one-
dimensional p-Laplacian problem and arguing the shape of bifurcation as in Sim
and Tanaka [23], we have the following results for

∆2u = λa(x)f(u) in Ω, (3.3)

u =
∂u

∂ν
= 0 on ∂Ω. (3.4)

Theorem 3.1. Let ε0 be the constant in Lemma 2.2. Let Ω ⊂ R2 is a bounded
domain of class C4,α(Ω̄) which is ε0-close in C4,α-sense to B. Let (H0)–(H4) hold.
Then there exist λ∗ ∈ (0, λ1(a(·))/f0) and λ∗ ∈ (λ1(a(·))/f0,∞) such that

(i) (3.3), (3.4) has at least one positive solution if λ = λ∗;
(ii) (3.3),(3.4) has at least two positive solutions if λ∗ < λ ≤ λ1(a(·))/f0;

(iii) (3.3), (3.4) has at least three positive solutions if λ1(a(·))/f0 < λ < λ∗;
(iv) (3.3), (3.4) has at least two positive solutions if λ = λ∗;
(v) (3.3), (3.4) has at least one positive solution if λ > λ∗.

See illustrations in Figure 1.

Remark 3.2. From Grunau and Sweers [14, 15], the Green function in (3.2) is

G2,2,B(x, y) = k2,2|x− y|2
∫ ∣∣|x|y− x

|x|

∣∣/|x−y|
1

(v2 − 1)v−1dv, x, y ∈ B, (3.5)

and satisfies

G2,2,B(x, y) ∼ d(x)d(y) min
{

1,
d(x)d(y)

|x− y|2
}
, (3.6)

where k2,2 is a known constant. By combining (3.5), (3.6) and doing numerical
calculation, the exact value of C in (H4) can be obtained, denoted as C�.



EJDE-2021/SI/01 BIHARMONIC EQUATIONS 245

-

6‖u‖∞

λ∗ λ1((a(t))
f0

λ∗ λ

Figure 1. Connected component of the solution set of (3.3), (3.4)

Remark 3.3. For the general case Ω 6= B, we may transform (3.3), (3.4) into a
new problem in B using the holomorphic mapping from Ω to B, see Grunau and
Sweers [15]. By (3.5) and some simple computations, we may obtain a constant
C∗ > 0 such that the Green function G2,2,Ω(x, y) of (3.3), (3.4) and G2,2,B(x, y)
satisfy

1

C∗
G2,2,B(x, y) ≤ G2,2,Ω(x, y) ≤ C∗G2,2,B(x, y).

Remark 3.4. We may provide an example to illustrate the application of Theorem
3.1 in the case Ω = B. Take

K = max
{1

2
,

C�

λ1(1) G̃δ/2 |Bδ/2|

}
+ 1

and G̃δ/2 := minBδ/2 G2,2,B(x, y). Let us consider the boundary value problem

∆2u = f̂(u), in B,

u =
∂u

∂ν
= 0 on ∂B,

(3.7)

with

f̂(s) =


s− s2, if s ∈ [0, 1/2),

(2K − 1
2 )s−K + 1

2 , if s ∈ [1/2, 1),

Ks2, if s ∈ [1, C�],

K(C�)3/2
√
s, if s ∈ (C�,∞).

Obviously, f̂ is a continuous, non-decreasing function with f(0) ≥ 0, from [11,
Theorem 7.1] the solution u of (3.7) is radially symmetric. So, we may take δ = 1/4.

Obviously, f̂ satisfies (H2) and (H3) with β = 1, f1 = 1, f0 = 1; (H4) with
s̃ = C� is satisfied since

min
s̃
C�≤s≤s̃

f(s)

s
= min

1≤s≤C�
Ks > K >

C�

λ1(1)G̃1/8 |B1/8|
.



246 R. MA, Z. ZHAO, D. YAN EJDE/SI/01

Thus, we are in the position to use Theorem 3.1.

4. Bounds of solutions

4.1. A priori estimation. Let

X =
{
u ∈ C2,α(Ω̄) : u satisfies (3.4), and there exists γ ∈ (0,∞) such that

− γψ(x) ≤ u(x) ≤ γψ(x), x ∈ Ω
}
.

(4.1)

Then X is a Banach space under the norm

‖u‖X := inf{γ : −γψ(x) ≤ u(x) ≤ γψ(x) for x ∈ Ω}.

Let

P := {u ∈ X : u(x) ≥ 0, x ∈ Ω}. (4.2)

Then P is normal, has a nonempty interior, and X = P − P .

Lemma 4.1. Let Ω be as in Theorem 3.1. Let (H0)–(H3) hold. Let J := [a1, b1] ⊂
[0,∞). Assume that {(µn, yn)} be a sequence of solutions of (3.3),(3.4) with

µn ∈ J, ‖yn‖C(Ω̄) ≤M (4.3)

for some constant M , independent of n. Then yn ∈ C4(Ω̄)∩X and {yn} is bounded
in X.

Proof. It follows from (2.3),

∆2yn = µna(x)f(yn) in Ω,

yn =
∂yn
∂ν

= 0 on ∂Ω,

and Grunau and Sweers [14, P.620], that for any p > 1,

‖yn‖W 4,p
0 (Ω) ≤M4

for some positive constant M4, independent of n. Thus, the Sobolev imbedding
theorem [12, Corollary 7.1] guarantees that

‖yn‖C3(Ω̄) ≤M5,

and consequently, ‖yn‖C0,α(Ω̄) ≤ M6 for some positive constant M6, independent
of n. Thus

‖µnaf(yn)‖C0,α(Ω̄) ≤M7

for some positive constant M7, independent of n. Combining this with (3.3), (3.4)
and using [7, Lemma 3.1], it follows that

‖yn‖C4,α(Ω̄) ≤M8

for some positive constant M8, independent of n. Therefore,

|yn(x)| ≤ C8ψ(x) x ∈ Ω

for some positive constant C8, independent of n. Therefore, ‖yn‖X ≤M9 for some
positive constant M9, independent of n. �
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Let h : B → Ω be a bijection such that

h(x1 + ix2) = h1(x1, x2) + ih2(x1, x2)

is a holomorphic mapping. Then ∆(u ◦ h) = 1
2 |∇h|

2(∆u) ◦ h. We write

g(x) = 2|(∇h)(x)|−2. (4.4)

If ∂Ω is sufficiently smooth, then a Theorem of Kellogg-Warschawski (see [21])
implies that h is sufficiently smooth and that there exist ci > 0 such that c1 ≤
|(∇h)(x)|−2 ≤ c2. The problem (3.3), (3.4) can be transformed into

(g(·)∆)2(u ◦ h) = (λa(·)f(u) ◦ h) in B, (4.5)

(u ◦ h) =
∂(u ◦ h)

∂ν
= 0 on ∂B, (4.6)

which can also be written as(
(−∆)2 +A

)
(u ◦ h) = g−2

(
(λa(·)f(u)) ◦ h

)
in B, (4.7)

(u ◦ h) =
∂(u ◦ h)

∂ν
= 0 on ∂B, (4.8)

where for some A of the form

A =
∑
|α|<4

aα(x)Dα, aα ∈ C(B̄). (4.9)

And Ω is close to the disk B means that ‖h − Id‖C3(B̄) sufficiently small. For

example this holds for an ellipse that is close to a circle, see Grunau and Sweers[13].

Lemma 4.2. Let Ω be as in Theorem 3.1 and N = 2. Let I ⊂ (0,∞) be a compact
interval. Assume that (H0)–(H3) hold. Then there exists M10 > 0, such that for
any positive solutions of (3.3), (3.4) with λ ∈ I, we have

‖u‖C(Ω̄) ≤M10. (4.10)

Proof. Suppose on the contrary that there exists a sequence {(µn, un)} of positive
solutions of (3.3), (3.4), such that

µn ∈ I, ‖un‖C(Ω̄) →∞. (4.11)

This together with the fact h : B → Ω is a bijection and ‖h−Id‖C3(B̄) is sufficiently
small that

‖un ◦ h‖C(B̄) →∞. (4.12)

By Mâagli, Toumi and Zribi [20, P.3], N = m = 2 implies

1

C
(d(x))2G2,2,B(0, y) ≤ G2,2,B(x, y) ≤ CG2,2,B(0, y) x, y ∈ B, (4.13)
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where d(x) := dist(x, ∂B) > 0 in B. From this and (4.11), (4.12), it follows that
for x ∈ B,

(un ◦ h)(x) = λ

∫
B

G2,2,B(x, y)af((un ◦ h)(y))dy

≥ λ
∫
B

1

C
(d(x))2G2,2,B(0, y)af((un ◦ h)(y))dy

≥ λ
∫
B

1

C
(d(x))2 1

C
G2,2,B(xu, y)af((un ◦ h)(y))dy

=
( 1

C

)2
(d(x))2

∫
B

λG2,2,B(xu, y)af((un ◦ h)(y))dy

=
1

C2
(d(x))2‖un ◦ h‖C(B̄),

(4.14)

where (u ◦ h)(xu) = ‖u ◦ h‖C(Ω̄). Thus, for any σ > 0,

lim
n→∞

(un ◦ h)(x) =∞ uniformly for x ∈ Ωσ. (4.15)

Let

yn :=
un ◦ h

‖un ◦ h‖C(B̄)

.

Then by (4.11), (4.12) and standard compact argument, we deduce that after taking
a subsequence if necessary, yn → y∗ for some y∗ with ‖y∗‖C(B̄) = 1.

On the other hand, combining (4.11), (4.12), and using f∞ = 0, I ⊂ [0,∞), and
(4.15), it follows that ‖y∗‖C(B̄) = 0. However, this is a contradiction. �

Using a similar argument for (4.14), we obtain the following Harnack type in-
equalities.

Lemma 4.3. Let Ω ⊂ R2 be as in Theorem 3.1. Let β1 and β2 ∈ (0,∞) be two
positive constants. Let V ∈ C(Ω̄) with

β1 ≤ V (x) ≤ β2 x ∈ Ω.

If u is a nonnegative weak solution of

∆2u = V (x)u x ∈ Ω,

u =
∂u

∂ν
= 0 x ∈ ∂Ω,

then for any σ > 0, there exists C = C(β1, β2) such that we have

sup
Ω̄

u ≤ C inf
Ωσ
u,

where C is independent of u and V ∈ {w ∈ Y : β1 ≤ w(x) ≤ β2 for x ∈ Ω}.

5. Rightward bifurcation

Define L : D(L)→ Y by

Lu := ∆2u,

on the domain

D(L) = {u ∈ C2,α(Ω̄) ∩ C4(Ω) : u satisfies (3.4)}.

It is easy to check that L−1 : Y → Y is compact.
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It follows from Dalmasso [7, Theorem 2.3] that if for any z ∈ Y with z ≥ 0 and
z(x0) > 0 for some x0 ∈ Ω̄ with

Lu− z = 0. (5.1)

Then u ∈ intP .
Let ζ, ξ ∈ C([0,∞)) be such that

f(u) = f0u+ ζ(u),

f(u) = f∞u+ ξ(u)

with

lim
u→0

ζ(u)

u
= 0, lim

u→∞

ξ(u)

u
= 0.

Let
ξ̃(r) = max{|ξ(u)| : 0 ≤ u ≤ r}. (5.2)

Then ξ̃ is nondecreasing and

lim
r→∞

ξ̃(r)

r
= 0. (5.3)

Let us consider

Lu(x) = λf0a(x)u(x) + λa(x)ζ(u(x)), x ∈ Ω̄ (5.4)

as a bifurcation problem from the trivial solution u ≡ 0.
Combining this with Lemma 2.7, we can conclude that there exists an unbounded

connected subset C of the set

{(λ, u) ∈ (0,∞)× P : (λ, u) satisfies (5.4), u ∈ intP} ∪ {(λ1(a(·))/f0, 0)}
such that (λ1(a(·))/f0, 0) ∈ C.

By the method used by Sim and Tanaka to prove [23, Lemma 2.3], with obvious
changes, we obtain the following result.

Lemma 5.1. Let Ω be as in Theorem 3.1. Let (H0)–(H2) hold. Let {(ηj , uj)}
be a sequence of positive solutions to (3.3), (3.4) which satisfies ‖uj‖C(Ω̄) → 0

and ηj → λ1(a(·))/f0. Let ψ be the eigenfunction corresponding to λ1(a(·)), which
satisfies ‖ψ‖C(Ω̄) = 1. Then there exists a subsequence of {uj}, again denoted by

{uj}, such that uj/‖uj‖C(Ω̄) converges uniformly to ψ on Ω̄.

Lemma 5.2. Let Ω be as in Theorem 3.1. Let (H0)–(H2) hold. Let C be as in

Lemma 2.7. Then there exists δ̂ > 0 such that (λ, u) ∈ C and |λ − λ1(a(·))/f0| +
‖u‖C(Ω̄) ≤ δ̂ imply λ > λ1(a(·))/f0.

Proof. Assume on the contrary that there exists a sequence {(ηj , uj)} such that
(ηj , uj) ∈ C, ηj → λ1(a(·))/f0, ‖uj‖C(Ω̄) → 0 and ηj ≤ λ1(a(·))/f0. By the

standard argument, we may get that there exists a subsequence of {uj}, again
denoted by {uj}, such that uj/‖uj‖C(Ω̄) converges uniformly to ψ on Ω̄, where

ψ > 0 is the first eigenfunction of (2.2) which satisfies ‖ψ‖C(Ω̄) = 1. Multiplying

(3.3) with (λ, u) = (ηj , uj) by uj and integrating it over Ω, we obtain

ηj

∫
Ω

a(x)f(uj(x))uj(x)dx =

∫
Ω

(∆uj(x))2dx.

Using the definition of λ1(a(·)), we obtain

ηj

∫
Ω

a(x)f(uj(x))uj(x)dx ≥ λ1(a(·))
∫

Ω

a(x)(uj(x))2dx.
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It is easy to see that∫
Ω

a(x)
f(uj(x))− f0uj(x)

|uj(x)|1+β

∣∣∣ uj(x)

‖uj‖C(Ω̄)

∣∣∣2+β

dx

≥ λ1(a(·))− f0ηj

ηj‖uj‖βC(Ω̄)

∫
Ω

a(x)
∣∣∣ uj(x)

‖uj‖C(Ω̄)

∣∣∣2 dx.
Lebesgue’s dominated convergence theorem and (H2) imply that∫

Ω

a(x)
f(uj(x))− f0 uj(x)

|uj(x)|1+β

∣∣∣ uj(x)

‖uj‖C(Ω̄)

∣∣∣2+β

dx→ −f1

∫
Ω

a(x)|ψ(x)|2+βdx < 0

and ∫
Ω

a(x)
∣∣∣ uj(x)

‖uj‖C(Ω̄)

∣∣∣2 dx→ ∫
Ω

a(x)|ψ(x)|2 dx > 0.

This contradicts ηj ≤ λ1(a(·))/f0. �

6. Direction turn of bifurcation

In this section, we show that there is a direction turn of the bifurcation under
assumptions (H3) and (H4).

Lemma 6.1. Let Ω be as in Theorem 3.1. Let (H0)–(H3) hold. Let u ∈ C4(Ω̄) be
the positive solution of (3.3), (3.4) with u(x0) = ‖u‖C(Ω̄) = s0 for some s0 > 0,

and λ ∈ [0,max{M1, λ1(a(·))/f0 + 1}]. Then

1

C
‖u‖C(B̄δ/2(x0)) ≤ u(x) ≤ ‖u‖C(B̄δ/2(x0)), x ∈ Bδ/2(x0) (6.1)

where C is the constant in (3.2).

Proof. Lemma 2.6 yields x0 ∈ Ωδ. Thus the desired results is an immediate conse-
quence of (4.13). �

Lemma 6.2. Let Ω be as in Theorem 3.1. Assume that (H0)–(H4) hold. Let u be
a positive solution of (3.3),(3.4) with ‖u‖C(Ω̄) = s0. Then

λ < λ1(a(·))/f0, or λ > λ1(a(·))/f0 + 1.

Proof. Let u be a positive solution of (3.3), (3.4). Then from Lemma 6.1 we have

1

C
s0 ≤ u(x) ≤ s0, x ∈ Bδ/2(x∗),

where u(x∗) = ‖u‖C(Ω̄).

Assume on the contrary that λ ≥ λ1(a(·))/f0. Then from Lemma 2.6 and (H4),
it follows that

s0 = u(x∗)

= λ

∫
Ω

G2,2,Ω(x∗, y)a(y)f(u(y))dy

≥ λ
∫

Ωδ/2

G2,2,Ω(x∗, y)a(y)f(u(y))dy

≥ λ
∫
Bδ/2(x∗)

G2,2,Ω(x∗, y)a(y)f(u(y))dy
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≥ λ
∫
Bδ/2(x∗)

G2,2,Ω(x∗, y)a(y)
f(u(y))

u(y)
(u(y))dy

≥ λ1(a(·))
f0

min
Ωδ/2

G2,2,Ω(x, y)a0 measBδ/2 min
s0
C ≤s≤s0

f(s)

s

s0

C

> s0.

This is a contradiction. Therefore, λ < λ1(a(·))
f0

. �

7. Second turn and proof of Theorem 3.1

In this section, we give a block for a parameter and a priori estimate and finally
a proof of Theorem 3.1.

Lemma 7.1. Let Ω be as in Theorem 3.1. Assume that (H0)—(H4) hold. Let
(λ, u) be a positive solution of (3.3),(3.4). Then there exists C1 > 0 independent of
u such that λf(‖u‖C(Ω̄)) < C1, where

f(s) := min
s
C≤t≤s

f(t)/t. (7.1)

Proof. Let u(xu) = ‖u‖C(Ω̄). Then

u(xu) = λ

∫
Ω

G2,2,Ω(xu, y)a(y)f(u(y))dy

≥ λ
∫
Bδ(xu)

G2,2,Ω(xu, y)a(y)f(u(y))dy

≥ λmin
Ωδ/2

G2,2,Ω(x, y)|Bδ|a0f(‖u‖C(Ω̄))
1

C
‖u‖C(Ω̄),

which implies λf(‖u‖C(Ω̄)) < C1 for some C1 > 0. �

Proof of Theorem 3.1. By Lemma 5.2, C is bifurcating from (λ1(a(·))/f0, 0) and
goes rightward.

We claim that there exists a sequence {(βj , uj)} ⊂ C satisfying

βj → +∞, ‖uj‖C(Ω̄) →∞. (7.2)

Assume on the contrary that there exists β∗ > 0, such that

‖u‖C(Ω̄) ≤M11 for all (λ, u) ∈ C with λ > β∗. (7.3)

Then 0 ≤ ‖u‖C(Ω̄) ≤ M11 implies f(‖u‖C(Ω̄)) ≥ δ0 for some constant δ0 > 0, and
consequently

λf(‖u‖C(Ω̄))→∞ as λ→∞. (7.4)

However, this contradicts Lemma 7.1. Therefore, (7.2) holds.
Thus, there exists (β0, u0) ∈ C such that ‖u0‖C(Ω̄) = s0. Lemma 6.2 implies

that β0 < λ1(a(·))/f0. By Lemmas 5.2, 6.2 and 4.3, C passes through some points
(λ1(a(·))/f0, v1) and (λ1(a(·))/f0, v2) with ‖v1‖C(Ω̄) < s0 < ‖v2‖C(Ω̄). By Lemmas

5.2 and 6.2 and the fact C ∩ ({0} × P ) = {(0, 0)}, there exist λ̄ and λ which satisfy
0 < λ < λ1(a(·))/f0 < λ̄ and both (i) and (ii):

(i) if λ ∈ (λ1(a(·))/f0, λ̄], then there exists u and v such that (λ, u), (λ, v) ∈ C
and ‖u‖C(Ω̄) < ‖v‖C(Ω̄) < s0;
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(ii) if λ ∈ (λ, λ1(a(·))/f0], then there exists u and v such that (λ, u), (λ, v) ∈ C
and ‖u‖C(Ω̄) < s0 < ‖v‖C(Ω̄).

Define λ∗ = sup{λ̄ : λ̄ satisfies (i)} and λ∗ = inf{λ : λ satisfies (ii)}. Then by
the standard argument, (3.3), (3.4) has a positive solution at λ = λ∗ and λ = λ∗,
respectively. Since C passes through (λ1(a(·))/f0, v2) and (βj , uj), Lemma 6.2 and
2.7 imply that, for each λ > λ1(a(·))/f0, there exists w such that (λ,w) ∈ C and
‖w‖C(Ω̄) > s0. This completes the proof. �
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