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GENERALIZED QUASILINEAR EQUATIONS WITH CRITICAL
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LILIANE DE ALMEIDA MAIA, JOSE CARLOS OLIVEIRA JUNIOR,
RICARDO RUVIARO

ABSTRACT. We study the quasilinear problem
—div(h?(u)Vu) + h(u)h' (u)|Vu|? + v = =X|u|?2u + |u|2‘2*72u in

0

U pg(z,u) on O9,

on
where Q@ C R? is a bounded domain with regular boundary 99Q, A, u > 0,
1<qg<4,2-2* =12, % is the outer normal derivative and g has a subcritical
growth in the sense of the trace Sobolev embedding. We prove a regularity
result for all weak solutions for a modified, and introducing a new type of
constraint, we obtain a multiplicity of solutions, including the existence of a
ground state.

1. INTRODUCTION

We study the quasilinear Schrédinger equation

0pp = = Ay + V(@) — n([Y )¢ — s[Ap(|0 )]’ (141, (1.1)

where ¢:R x RV — C, V:RY — R is a given potential, N > 1, s is a positive
constant and p,7:R™ — R are suitable functions. This equation arises in various
branches of mathematical physics, see for example [2§]. When « # 0, models
phenomena in plasma physics and fluid mechanics [15], 16, [I8] 2], laser theory
[2, 29], and in condensed matter theory [24]. The case p(s) = s occurs in theory of
superfluids (see [I5, [16}, [19] and the references in [I7]), whereas p(s) = (1 4 s)'/?
appears in the self-channeling of a high-power ultra short laser in matter (see [3,[4]).

Looking for standing wave solutions for (L.1)), one takes 1(t, z) := exp(—iEt)u(x)
with E € R and w:RY — R a function, which leads to consider the elliptic equation

— Au+V(2)u — kA(p(u?))p’ (u®)u = g(u), in QCRY, (1.2)

where we have replaced V(z) — E by V(z) and g(u) = n(u?)u.
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In this article, we are interested in the quasilinear problem
—div(h?(u)Vu) + h(u)h (u)|Vu)® + u = =Mu|?2u + [u|*? "2u inQ,
1.3
g—z = pg(x,u) on 09, (13)

where Q2 C R3 is a bounded domain with regular boundary 9Q, A\, > 0,1 < ¢ < 4,
2.2* =12, and 8% is the outer normal derivative. Note that if we take

1/d 2
200y < 2
n(s) =14 5 (S p(s)
then equation (1.3 becomes (1.2)), see [31].

We consider nonlinearities h, satisfying the following:
(A1) h € C*(R,(0,+00)) is even, non-decreasing in [0, +-00) and

.. h(t)
(A2) Tt holds that
th'(t)
= <1 1.5
TSR = o

(A3) The mapping t — h'(t)h(t)/t is non-increasing for ¢ > 0.
Remark 1.1. Hypotheses (A1) and (A3) together imply that, for all ¢ > 0,
t2n"(t) A (1)) - th'(t)
h(t) h2(t) T h(t)

Since h is an even function, we have that h’' is an odd function and A" is an even
function. Therefore, the above inequality still holds for ¢ < 0.

We refer the reader to [26] and references therein, for a review of the semilinear
case, i.e., problem when x = 0, in bounded domains Q C RY. Whether
Q0 = RY and again x = 0, there are [22] and its references. The literature on
the subcritical case of problem with x # 0 is extensive for Q = RV (see
[8, 20l 23 25]), as well as a bounded domain  C R (see [7, [10]). Furthermore,
recent results concerning the case of the critical power in RV, g(u) = u? for p =
2-2* = 4N/(N — 2) are found in publications such as Deng et al. [9]. In their
introduction they present a complete review for this class of problems.

We highlight the seminal papers [8,[19] in which the particular case p(s) = s, that
is, h(s) = (14 2s52)1/2, was cleverly studied. Since the energy functional associated
to the problem is not well defined in the whole Sobolev space, the authors considered
the change of variables u = f(v), where f is defined by

1
"(t) ;= ———— in = —f(— in (— 1.

P0)= e W 040) (0=~ (w0l (19
and for some adequate growth for function g, they applied variational methods to
establish the existence of a nontrivial solution for . We point out that this
change of variables has become a powerful tool for solving problem when

p(s) = s. For more details, see [T}, 23, 0] and references therein.
Note that problem in a bounded domain 2 is also relevant, for example, in
physical models that describe electrons on lattices and applications to nanotubes
[14). Semilinear and quasilinear problems of this type in bounded domains, on
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either Dirichlet or Neumann boundary conditions, appear in [6, 20, 27] and its
references.

To tackle problem , we use a new type of constraint for the energy functional
related to a modified problem. Alternative to the usual method of Nehari (for
example, [20]), we define, in Section 3, the constraint based on the change of variable
that we will apply. One of the advantages of this definition is that we can consider
values of ¢ in the interval (1,4) that may not be considered when applying the
usual Nehari manifold as a constraint. In exchange, we restrict the approach to
three dimensions because of technical issues related to the Sobolev embeddings, as
explained in Remark The lack of compactness issues, which naturally appear
due to the critical exponent, are circumvent by proving that, for y sufficiently large,
there exists a (PS) sequence in the range (O, M) where compactness
holds (see Proposition below). Here, S is the best constant to the Sobolev
embedding D*?(RY) < L2 (RY) and heo > 0 is defined in (T.4).

Next we give some examples of functions that appear in physics models satisfy
conditions (A1)-(A3).

Lemma 1.2. The following functions h : R — (0,400) satisfy (A1)-(A3).
(a) h(t) =1+ 2t2;

(b) h(t) = ,/1+2(1+t2) + 2
(¢) h(t) = \/1+ B2 4 In(1 4 et?);
(d) h(t) = \/1— e + 2 In(1 + ).

In this article, we will use either the notations 2-2* = 4N/(N —2) and 2-2, =
4(N —1)/(N — 2), or respectively, 12 and 8 in dimension N = 3.
We assume that the function g : 92 x R — R, satisfies the following hypotheses:
(A4) ge C* 9(89 x R ]R) for some 6 € (0,1);
(A5) Let G(z,s) fo x,t)dt. There exists a constant o satisfying 53— < o <
such that

1
1

og(z,s)s > G(z,s) >0
for all s # 0 and almost every x € 99;
(A6) lims_o g(x $) = 0 and lim| g4 o0 \‘gs(lile = goo(z) uniformly for x € 99, for
some oo E L>(09),and 4 <p < 2-2,;
(A7) The function defined by s — g(z,s)/s> for s € (—00,0) U (0, 4+00) is non-
decreasing for almost every z € 9€);
(A8) There exist ¢, co > 0 such that

' (2, 8)] < el P72 + o

Remark 1.3. We note that hypothesis (A5) includes the 3-asymptotically linear
case, that is, it may occurs that

g(|z’|738)| (@)

lim
|s]—+o0

uniformly on z € 0f.
If we consider the functions g(z,s) = goo(x)|s[P72s or g(x,s) = goo(as)lj_%,

where go, € L*(02) such that 0 < go < goo(z) < goo almost everywhere z € 99
and 4 < p < 2-2,, then g satisfies all conditions (g1) — (g5)-
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The first difficulty in directly applying variational methods to solve problem (|1.3))
is that the energy functional associated with this problem may not be well defined
in the whole space H'({2). Precisely, the functional T, : H' () — R associated

with equation (L.3]), given by
1 A
Ty (1) = f/(hQ(u)|Vu|2 +u?)da + f/ luf9da
2 Jo qJa

1 »
~ / |u|*? dx—u/ G(z,u)doy,
: Q 0

for u € HY(Q), where do, is the measure on the boundary, is not well defined,
because the term [, h?(u)|Vu|?dz is not finite for all u € H'(Q) and for all h that
we are considering. Indeed, without loss of generality, assume B3(0) C © and let
h(t) = V1 +2t? (item a) from Lemma , and ¢ € C§°(,[0,1]) be such that
p=1in B1(0) = {x € Q; |z| <1} and ¢ =0in 2\ B2(0) = {z € O |z| > 2}.
Now taking u(z) = |z| 7 ¢(z) for @ # 0, it is easy to see that u € H (), however

/ h? (u)|Vul?dx > 2/ u?|Vul|?dr = +o0.

To overcome this difficulty, the main idea is to take the primitive H (s fo
and consider the change of variable w = H(u), then look for crltlcal pomt of the
functional I ,, : H'(2) — R defined by

I)\7M(u) = T)u M(H_l(w))

for w € H'(2). It can be proved that w € H*(Q) is a critical point of I , if, and
only if, u = H~!(w) is a weak solution of problem (L.3).

We list below the main properties of the change of variable which will be used
throughout this work.

(1.7)

Lemma 1.4. The function H—! : R — R satisfies the following properties:

(1) H ' e CYR,R);

(2) 0< dt( _1(t)> = m < ﬁo) forallt € R;

(3) [H1(t)| < hl(t(‘)) for allt € R;

(4) A tl(t) — h(O) ast — 0;

(5) 1< HWMIT®) < 9 for gll t 0.

(6) ‘ﬁ) < 7 for allt € R;

(7) H\/l{(t) is non-decreasing in (0,+00) and [H™(t)] < (2/hoo)/?:\/|t] for all
i

(8) NG —>,/l as t — +00;

9) |[H-1(t)|>H! \/>f07“all|t|>1
(10) 3(H!(t))? <H Y)Y (HYY ()t < (HY(t))? for all t € R.

Proof. Properties (1)—(9) can be found in [I2, Lemma 2.1]. Property (10) follows
from property (5) and the fact that h is even, H is odd and so H~! as well. ([

After the change of variable v = H~!(w) in , we obtain

1
I u(w) == /(|Vw|2+|H Hdx + = /|H w)|?dx
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1 .
/ ()22 dac—u/ G, H (w))dos,
2-2% Jo 00
and the functional I , is associated with the problem

—Aw + H Y w)(H Y (w) = p(w), inQ,

— = pg(z, H Y (w))(H 1) (w), on o0 (18)

for w € HY(Q), where
p(w) = —AlH ™ (w)|"2H " (w)(H ) (w) + [H~ (w)** 72H " (w) (H ) (w).
To show that I, is well defined and belongs to C*(H' (), R), we use that, for
every € > 0, by conditions (¢g1) — (g3), there exists C. := C(e,q,0) > 0 such that
lg(z,5)| <els]® +C|s|P™! and |G(z,s)| < els|* + Cc|s|? (1.9)

for all s € R and = € 9. Here, we may choose 4 < p=1/0 < 22, (see Lemma
below). Then, it is enough to use (|1.9)), properties (1) and (7) and the Sobolev
embeddings to conclude that I , is continuous and is well defined in H'(2). The
C" regularity of I ,, follows from Lemma the properties of the functions H !
and (H~1)".

In this article, let || - || denote the norm u \/fQ(|Vu|2 +u?)dr in HY(Q) and

| - |- denote the usual norm in the Lebesgue space L"(2) for » > 1. The main
contributions of this article are the following.

Theorem 1.5. Under assumptions (A1)—(A8), for A > 0, there exists uy > 0 such
that, for every u > uy, one of the following cases occurs:

1. Problem has two solutions, one of which is nonnegative and ground
state solution and the other is non-positive;

2. Problem has two solutions, one of which is non-positive and ground
state solution and the other is nonnegative.

Corollary 1.6. Let uy, > 0 and vy, <0 be the solutions given in Theorem [1.5
It holds that Iy ,(ux,) = 0 and Iy ,(vxu) = 0 as p — 400 uniformly on X in a
bounded set.

Theorem 1.7. Under assumptions (A1)~(A8), every weak solution w € H'()
for problem (1.8)) is a classical solution in the sense that w € C%7(Q), for some
v €(0,1), and w satisfies pointwisely equation (|L.8]).

2. A COMPACTNESS RESULT

The next lemma is a direct consequence of hypothesis (A6) and Remark

Lemma 2.1. Let p < 7 < 2-2,. For all € > 0, there exists a positive constant
C. > 0 such that

lg(z,5)| < els]® + Cels|",
|Gz, s)| <els|" + Ccls|”
for all s € R and x € 0N2.
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In what follows, we show that H~! has an appropriate behavior at the origin
and at infinity in order to use a general theorem due to Brezis-Lieb, involving the
change of variable H !, result that will be essential to demonstrate the Palais-Smale
condition ((PS) condition) for functional I ,,.

Lemma 2.2. For each ¢ > 0, there exists C. = C(e) > 0 such that |[H™'(t)| <
e|t|V/2 4+ C.|t|Y/? for all t € R. Moreover, (C.) is uniformly bounded for ¢ in a
bounded set.

Proof. Let e > 0 be any positive real number. By property (3), we have ‘Pft]ll/(f LN

as t — 0 and then there exists 6 = §(g) > 0 such that
|[H=Y(t)| < e|t|? for all |t] < 6. (2.1)

Property (8) ensures that there exists v = y(¢) > 0 such that

2
H @) < (= + ,/h—) 1t1/2 for all [¢] > 7. (2.2)

Since from property (7) we have
HY(0)] < (2/hoo) 2 H1Y2 for all 6 < Jt] <,
it follows from (2.1]) and (2.2)) that, for all ¢t € R,
[H™H O] < eft]? + (e + (2/hoo) V) H2 + (2/ hoo) /2|22,
that is,
[H(t)] < elt'/? + Cot] /2

for all t € R, where C. = & + 2(2/hso)/? > 0. Clearly (C.) is uniformly bounded
for € in a bounded set, and the lemma follows. O

Lemma 2.3. Let j : R — R be defined as j(t) = |H ' (t)|*?". Given e > 0,
there exist two nonnegative continuous functions pc, 1. : R — R such that, for all
a,b € R, it holds

lj(a+b) = j(b)| < epe(a) +pe(b).

Proof. We apply the same arguments as in [I1, Lemma 3.2], replacing f for H 1,
using property (6),the Mean Value Theorem, Young inequality, and Lemma
Then, for alle > 0 and a,b € R, we obtain the existence of some constants C, B, > 0
such that

j(a+b) = j(b)] < epe(a) + ¢e(b),

where C. = & + 2(2/hoo)/? > 0 is given in Lemma and ¢.(a) = Ce?? ~2(1 +
C)la* and 1. (b) = (€22 =2 + C. + B.)|b|*" are the two nonnegative continuous
functions required. The lemma is proved. O

Lemma 2.4. Given ¢ > 0, let (w,) C H' () be a sequence that converges weakly
to w in HY() and let j, pc, 1. : R — R be as in Lemma . Then
(1) j(w) € LY(Q);
(ii) [o@e(wn —w)dz < C < +oo for some constant C' > 0, which does not
depend on 0 < e <1 andn € N;
(iii) [o, ¥e(w)dz < 400 for alle > 0.
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Proof. Ttems (i) and (iii) follow directly from Sobolev embedding. To prove (ii), we
have from Lemma [2.2|that C. = € +2(2/hoo)/? < 142(2/hog)/2 for all 0 < & < 1,
whence

e (wn —w) = Ce¥? 72(1 4+ Co)wy, — w|? < C2+ 2(2/hoo)Y?)|wpn — w]?.
Thus, item (i) is proved since (w,,) is also bounded in L?"(Q) by hypothesis. [
Proposition 2.5. Let (w,) C H'(Q) be a sequence that converges weakly to w in
HY(Q). Then

/ [ )22 — [H ()22 4 [H (@) | dz 0 asn— +oc.

Q

In particular,
[H ™ (w, — w330 + [H (w)[550 = [H ™ (wa) 550 + oa(1),
with 0,(1) = 0 as n — +o0.

The proof of the above propsition is a direct consequence of Lemma [2.4] with the
general Brezis-Lieb Lemma (see Theorem 2 in [5]).

1. (PS) condition in the correct range. In the sequel, we will show that I ,
satisfies (P.S) condition in a particular range for bounded sequences.

Proposition 2.6. Let (w,) C HY(Q) be a bounded (PS). sequence for the func-
—N/2 N/2

tional Iy . If ¢ < %, then (wy,) possesses a strongly convergent subse-

quence.

Proof. Let (wy,) be a bounded (PS). sequence for functional I ,. So, up to a

subsequence, we may suppose that
wy, —w in HY(Q), w, —w in L*(Q),

wy, = w  in LY(Q), wp(z) = w(z) a.e. in Q. (2:3)
By the Sobolev compact embeddings, we obtain
I (w)o = / VwVovdz —|—/ H Y (w)(H™YY (w)vdz
2 / 7 )2 ) (Y (o)
(2.4)
= [ )P R ) (Y ()
- M/ g(x, H (w))(H ) (w)vdo, = 0
o0
for all v € H'(Q2). Thus, from (A5),
Ivu(w) = I u(w) = oIy |, (w )H_l(w)h(H_l(w))
/ (; —o(1+B) )|Vw|2dx+ = -0) / \H Y (w)[2dz
1 (2.5)

)| _ 2.2*
/|H w)|%dz + (o 5 2* /\H (w)|7= dx

+/ (og(z, HH(w))H " (w) — G(z, H ' (w))) do, > 0.
o)
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Let us denote v,, := w,, — u and prove that v,, — 0 in H(Q). From (2.3), we have
vp, — 0 in L2(Q) and L(Q). So,

au(w) + IA,u(vn)

1 _ A
§|Vw|2 *IH 1(w)|3+5\H Hw)lg -

1 A
—p [ Gz, H M (w))dz + =|Vuva|3 + *|H_1(Un)|% + = |H ™ (vp)|
aQ 2 2 q

@RS —u [ Gl H (),
2 2 89

1 A
2 1 2 1
wn + —|H W, + H W, g

sy ()8 + 11 0)B3) e [ Gl w,))dos + 0,1,

where we used ([2.3) and Lemma to ensure the following convergences:

G(vail(Un))do'x = On(l)a ‘Hﬁl(vn)‘q = On(l)a
o0

|H_1(Un)|2 = o, (1), ‘H_1<wn)|q = |H_1(w)|q + on(1),

Gz, H Y (wy))do, = Gz, H Y (w))do, + 0, (1).
o9 a0

Therefore, by Proposition and ([2.5)), it holds

1 1 AL 9%
Tnnlon) < 519walf o 51H wn) B+ S1H ! (w,)lg = 5o [ (w35

—u | Gla, H  (wp))dow + 0n(1) (2.6)

o0
=1 ,(wn) +op(1) =c

Now, applying Proposition and definition of (PS). sequence one more time, we
obtain from convergences in (2.3) and from (2.4]) that

on(1) =1 ,,(wp)wn — Q/Qande:v +2|Vwl|3 - I}, (w)w
= |Vwy,|3 — 2/ Vw, Vwdz + Vw3 + 0,(1)
= U ) B R )
[ ) 2 ) (1 () @1
—u /8 gl H ) (Y (e

o /8 e B ) (B (w)wd,
= |an|% - Ay + On(1>7
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where

A= [V ) P22 ) (Y

/ ) 222 H (w) (H Y (w)wdo,.
It follows from Proposition [2.5|and property (5) that we can also prove the equality
/ (0,22 2H (1) (H Y (0n)vndie + 0n(1).
Thus, (2.7)) yields
0u(1) = [Vouf3 = [ 1 @) 2 0) () ()0

Since both sequence (|Vv,|3) and ( [ [H " (v,)** ~2H " (v,)(H ) (vy)vndz)
are bounded, let us suppose that

|Vu,|? — d and / |H ™ (0,)?% 2H Y (0,) (H™YY (vn)vpda — d
Q

as n — +o0o. By property (7),
[H™ (00)[32- < (2/h0)
and from Sobolev embedding and property (10),
. 2/2* .
/ |H Y (v,)]*? 2H (v )(H_l)’(vn)vnda? / |H ™ (v,)]*2 dm)
“Hvn) 200
< (2/h )[vnl3

n |

*

— Sh |an|2

Then, taking n — 400, one obtains
Sheed”?" < 4d.

Now, suppose by contradiction that d # 0. This implies 4= V/2(Shyo )% <d. On
the other hand, since I ,(vn) = 3|Vn|3 — 55 |[H (vy,) 220 4+ on(1), it follows
from property (10) that

1

SV - / (N )22 =2 () (Y (v

L Vol = s 0B
= I)\,u(vn) + On(l)7

which, passing to a subsequence if necessary, by (2.6, produces
1 1
(-2 =
2 2%

47N/2(ShOO)N/2 1 1 47N/2(Shoo)N/2
2T W) L (i S <og o W) T
N sdg-g)ses N ’
what is clearly an absurd. Necessarily, d = 0 and, then, w,, — w strongly in H'(),
as we wished to prove. [

Hence,
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3. EXISTENCE OF TWO SOLUTIONS
Consider If : HY(Q) — R the C'-functional defined by
1 A
I5,) = / (Vul? + [ ) P)da + 5 [ (7 (w))ds

Q

5 L @ e = [ Gl ) o
S 2.2 20

where «™ = max{u,0} and «~ = max{—u,0}. Suppose that w € H'(Q) satisfies
(Iiﬂ)’(w) = 0. Since H!(s) has the same sign of s, we have

0= (I{,) (w)H Y (w¥)h(H " (wF))

B H (0¥ (B (wF)) B
_/Q {(1 + h(H - (w¥)) >|Vw:F|2 + |[H ™ (wT)?) |dz,

that is, wF = 0. This shows that every critical point of Ij\L“ is non-negative and

every critical point of I ., 18 non-positive. Therefore, they both are critical points
of I, as well.
To find solutions, we will consider a type of Nehari set defined by

= {we HY@)\ {0} : (I£,)/(w) H ™ (w)h(H " (w)) = 0},

Every nontrivial critical point of I A ls contained in N'E.
For simplicity, we prove all results taking in account the functional I , instead
of I NP and I, W because all the calculations are exactly the same in the three cases:

I ., ILL and I;)#. We mean that, in the sequel, finding a critical point of I ,, we

prove simultaneously that also I)J\r u and I ., Dossess critical points.
Henceforth,

N ={we H (@) \{0}; I} ,(w)H™ (w)h(H ™ (w)) = 0}

and
I (w)H ™ (w)h(H ™ (w))

— /Q (1 + H‘l}(lwzjh’gl(q_);(w)))vadx n /Q | (w)|2dz

(
3.1
[ E w)|qda:—/|H W)Y dz (3.1)
Q

b [ gl B w)H (w)don
o0
Lemma 3.1. If w € H'(Q) \ {0}, with w > 0, there exists t, = ty (w) > 0 such
that tyw € N. In particular, N # (.
Proof. Consider the continuous function &(t) := I ,(tw)H ' (tw)h(H ' (tw)), t >
0. From (3.1) we have
1 "
£(t) > tQ[/ |Vw|2dxf—2/ |H ! (tw)|*2 d:zzft%/ g(x, H  (tw))H (tw)do, | .
o9

Property (4) ensures that 75 fQ |H='(tw)[** dz — 0 as t — 0" and hypothesis
(A6) guarantees that 4 fBQ g(z, H™ ( w))H Y (tw)do, — 0 as t — 0. Therefore,

&(t) >0 for ¢t > 0 small enough. (3.2)
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On the other hand, from (A5) and (A2),
§(t)7t2{/ (1+H* (tw)h' (H~ (tw)))‘v 24

K (tw))
|H~!
/|H (tw)]? dx+t2 q/2/ tq/2
)22
2 72/ |H t2* w)| _tﬁ?/ g(x,Hfl(tw))H’l(tw)dax} (3.3)
a0

§t2 2/ |Vw|2dm+f2/ |H ! (tw)|?dx

|H=(tw |q oo [ [H ™ (tw)** 2
—t
t2 q/2 tq/2 t2* }

By property (8), we obtaln the following three convergences:

|H (tw) |q 0
$2— q/2 tq/2 T
H- 22*
/‘ tg*‘ dr — (2/hso) /|w|2d:17>0

—2/ |H ™ (tw)|?dz — 0
t= Ja

as t — +oo since g < 4. These convergences applied in (3.3]) yield
&) <0 (3.4)

for values of ¢ > 0 large enough. Since & is a continuous function, from (3.2)) and

(3.4]), there exists at least one t,, > 0 such that £(t,,) = 0, that is, t,w € N, and
the lemma is proved. ([l

Remark 3.2. In the case of I, L in the previous lemma, we consider w < 0 instead
of w>0.

Lemma 3.3. The set N is a C' manifold.

Proof. Define Jy ,(w) = If\’u(w)h(H’l(w))Hfl(w) and let w € N. A direct
calculation gives us

d H~'(s)h'(H™1(s))
o (1 W(H-1(5)) )
1 ! -1 s -1 Y -1 s _
= gy )+ B ) (7 6)) M)
and then, by (A8),
Ty u(w )h(H‘l(w))H‘l(w)

- ) ooy [ H |2h"( W) o
/ >> vuds+ | Hiwy v
H (W' (H ,
_/Q| hz(Hwa D G

(w)
+2/Q (1+ H_liil(”;[h_lgiu_);(w)))2|vw|2dx+2/Q|H—1(w)|2dx
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+/\q/|H w)|%dz — 2 - 2*/|H w)[*? dz

— / (¢ (& H (w)) H (w)? + g, H (w)) H ™ (w))dor,
o0

= 2/ (1 + H- f(:(ljj){h/giu_))(w))NVdex

B ) H (w)h () ()
”/ Sy Ve [ (T

>|2h"<H Hw)) | [H )P0 (H (w))?
h<H—1<w>> ey Vel

+2/|H |2da:+)\q/|H w)|%dz — 2 - 2*/|H w)|*? dx
/8 B @) () + gl H () H )

Applying firstly hypothesis (A3) (see Remark and after using (A2), we obtain
T u(w)h(H ™ (w) H™ (w)

(w
<4/ (1+ ;L‘(”I;hgf );( )))|Vw|2dx—|-2/ | (w)|2dz
)

+/\q/|H (w)]%dz — 2 2*/\H W) da

—u/ (¢'(xz, H  (w))H  (w)? + g(z, H ' (w))H ! (w))do,.
o0

Since w € N, it follows that

4/ (1+ a- f(i"g]’liiu_))(w”)|vw|2dx

:_4/ |H ™ (w)] d:v—4>\/ |H ! (w)|?da +4/ |H " (w)]*? da,
[ gl ) )i,

and, once ¢ — 4 < 0, one obtains from assumption (A7) that

T (W)h(H ™ (w) H™ (w)

- 2/'H w)lde + Mg = 4) /|H >lqdw+(4—2-2*)/|H—1(w>|2'2*dx
Q

/ (o (o B (@) ) = gl B (w) B (w)do,
4-2.2%) /\H w)|*? dx < 0.

Hence, J} (w) # 0 for all w € N, what proves that A is a C* manifold and completes
the proof. 0O

Lemma 3.4. Let (w,) be a sequence such that w, € N and Iy ,(w,) — ¢, as
n — +o0o. Then (w,) is bounded.
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Proof. Firstly, we claim that the sequence (H ~!(w,,)) € H() is bounded. Indeed,
consider the sequence (¢,,) defined by ¢,, = H =1 (w,)h(H ! (w,)), observe that by
(5), we have |p,|3 < 4|w,|3 for all n > 1.

Since by property (2), < (H~1(t))h(H(t)) =1 for all t € R, we obtain

Ve, — %[H‘l(t)h(H‘l(t ]L:wnvu}n (1+ L (;‘E’}}h;(fu;))(“’")))v%.
Therefore,
H~ wy)W (H (wn))
Veal = (1+ =3y ) IVenl < (14 8)[Vwal,

where we used (1.5)), choosing t = H~!(w,). Thus, ¢, € H(Q) with |¢,| <
C||wy]| for some C > 0.
Recalling that (w,) C N, ie., I} ,(wn)p, =0, we have

c+o,(1)
Z I)\ M(wn) - O-I; u(wn)(p’ﬂ

2/ (%—0(1+ﬁ))|an| dz + ( f—a /|H (wy,)|?dx

+)\f—a /|H

+ / (og(z, H M (wy,))H " (wy) — Gz, H_l(wn))) do,
o0
where (|1.5) was used. By hypothesis (A5), it follows that

1—0 wh|2da 1—0 “Hwy)|Pdr < c+o
/9(2 (1+8) [V dz + (5 )/Q|H (wn)Pde < ¢ +o0,(1).  (3.6)

(3.5)

Ywn)|?? da

Suppose by contradiction that, up to a subsequence, |w,| — 400 as n — +oo and
consider v, = H . Since an” =1, by the Sobolev embedding, v,, — v strongly

in L?(Q). From and hypothesis (A2), we have

|V, |?dz < o,(1).
Q

Since 1 = an”2 = Jo |VvnPdz+ [, v2dx, one has [, v®*dz =1 and therefore v # 0.
Dividing (3.6) by ||w,||, and using (A5) and (A2), one obtains

H w2, [ H wallwal) 2
vz | ||wn|| o= |, Gorafwnire) 1okt

By property (8) and noting that v # 0 and ||w,| — 400 as n — 400 in a subset
Qo of € of positive measure, we obtain

H-! n||Wn 2 2
0> liminf/ (M) |V |dz > / —Jv|dx > 0.
Qo h’OO

=400 Jo \[vn| M2 |wn|'/2
This contradiction shows that (w,,) is bounded in H'(Q). O

Let us define
m,, = ijr\lff I u(w). (3.7)

The next result will provide a positive lower bound for the function defined by
U(w) = |Vw|3 + [H Y (w)]3 for w € N, and consequently a positive lower bound
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for my ,. Its proof depends on the essential role played by the linear term u in
problem (1.3), which is responsible for the term |H ~!(w)|3 in the definition of the
functional I ,.

Lemma 3.5. There exists a positive constant cy > 0, which does not depend on A
but does on p, such that [Vw|3 + |H= (w)|3 > co for all w € N'. Furthermore, it
holds that my,, > c1 > 0 for some ¢y > 0.

Proof. We have

H ' (w)h' (H (w)) 2 - )|da
/(1+ ) )\vw| dx+/Q|H \dm—&—A/ \H(w)|7d
/|H w2 dx—i—,u/ﬂ (2, H (w)) = (w)dors
that yields (since sh/(s) > 0 for all s € R)
/ |H= Y (w))*% dx+p/69 g(z, H Y (w))H Y (w)do,. (3.8)

From Lemma 2.1 with p = 2 - 2, for all £ > 0, there is a positive constant C. > 0
such that

U(w) < [H(w)22: + pe / [ (w)[*do, + uC- / B () do,. (3.9)
o0 o0

By the trace Sobolev embeddings H'(Q) — L*(99), for 2 < 4 < 2, = 4, and it
follows from property (2) that

[t < o [ (VT @) + 1 )

_c| /Q (hQ(Hll(w))|Vw|2+|H_1(w)|2)dxr o
< C(/Q(|Vw|2+|H‘1(w)|2)dx>2
= CU(w)?.

Finally, the trace Sobolev embeddings one more time, now applied to (H~!(w))?,
together with property (Ha2), produce

| o, < o [ (V0T )R + 1 )l

W W) o N2
O | agrpayy Ve + 1H ) )de)

c(/ﬂ(ww|2+|H—1(w)|4)da:)2*/2 (3.11)

2./2

2,/2

IA

IN

< CU(w)>/2 + c(/Q [ ) )
< CU(w)*/? + CU(w)*

where, in the last inequality, we used the same calculations as in (3.10)), and applied
the Sobolev embedding H'(Q2) — L*(Q2) for 2 < 4 < 2* = 6. The same arguments
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also show that

/ \H ()22 dz < CU(w)2 /2 + CU(w)? . (3.12)
Q

Now, using (3.10)), (3.11)) and (3.12) in (3.9)), it follows that

U(w) < C(\I/(w)Q*/Q + U (w)? + U(w)? + U(w)>/? + \I/(w)Z*).

Since ¥(w) > 0 and 2*/2, 2,/2, 2* and 2, are bigger than 1, necessarily, there
exists a positive constant ¢y > 0 such that

U(w) > c¢o >0

and we prove the first part of this result. The second part may be obtained following
the calculation in (3.5) of Lemma [3.4] and by using the first part of this lemma. [

Remark 3.6. Here is the point that we highlight the reason for having fixed the
dimension of the Euclidean space in N = 3. In the previous result, we need to
relate the term |H ~!(w)|} with the gradient norm |Vw|3, for w € H(Q), to get the
positive lower bound for ¥(w). However, since 2 is a bounded domain in RY and the
space H'(Q) contains functions that are not zero on 952, every embedding theorem
brings up the norm of w in L?(2), which does not compare with the gradient norm.
Thus, we use the trace Sobolev embedding to deal with f(,m |H =1 (w)|*do, and then
we need that 2 <4 < 2-2,, what implies N = 3.

Lemma 3.7. Let (wy,) be a (PS). sequence for I ,|n restrict to the set N'. Then
I ,(wn) = 0 as n — +00 in the dual space (Hl(Q))*

Proof. Let ¢, = H ' (w,)h(H Y(w,)) as in (3.5). We claim that the sequence
(Jo |H=Y(w,)|*? dz) does not converge to zero as n — +oc. Otherwise, once we
have I} u (wn)pn = 0 and the growth of g is subcritical, by Hélder inequality and
since 2] < oo, one obtains

H=Y(wy)h' (H Y (w,)) 2 _ w22 de = o

Therefore, by Lemma 3.5
0<co<U(wy)

= / |Vw, |2dx + 0,(1)
Q

which is a contradiction. Hence, there exists C' > 0 such that

/ \H ()22 dz > C > 0.
Q

This and Lemma imply that the sequence (J3, pu(wy)pr) does not converge to
zero as n — +o0o. The next arguments are standard and the lemma follows. [

Despite being a minimizing sequence in N for functional Iy ,, it may not be a
sequence that converges weakly to a solution of problem (1.8). In the next result,
we will show the existence of an appropriate minimizing sequence for our purpose.
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Proposition 3.8. Let my , as in (3.7). There exists a bounded (PS),, , sequence
(wn) CN for functional I ,,.

Proof. Note that the functional Jy ,(w) := Iy ,(w)H ' (w)h(H~"(w)) belongs to
the space C(H'(Q),R), whence A is a complete metric subspace. By Lemma
I, is bounded from below on A and I, ,, is a C'-functional, hence we may apply
Ekeland’s Principle to ensure the existence of a (PS)y, , sequence (wy,) C N for
functional Iy ,|x. Finally, by Lemma it is bounded and, by Lemma it is a
(PS)m,.,. sequence in the whole space H'(€). O

Lemma 3.9. There exists p* > 0 such that, for all p € [u*,+00) and for \ in a
bounded set, it holds that my_, < 4~N/?(Sh)N/?/N.

Proof. Let w € H*(Q) \ {0}, w > 0 (in the case of I ,,» we choose w < 0), and
consider ¢, > 0 given by Lemma which shows that ¢y ,w € N. Then, from
hypothesis (A2), we have

2t§7u/ |Vw|2dx+/ |H’1(tk,,uw)|2dx+/\/ \H (1 )| *dee

@ @ @ (3.13)

Z/ |H*1(tx,uw)\2'2*dfc+“/ g(z, H ' (tr yw))H ™ (tr pw)dos,
Q o0

which implies from property (3), and by assumption (A5) that
2 _ 0¥
CB+ 8 = [ 1 )P do

for some C' > 0 which does not depend on p and A in a bounded set. We claim
that (tx,.)u>1 is bounded as p — +o0o0. Otherwise, it follows that

1 1 _ 2
C(]. + W) > / tT|H 1(t)\)#’LU)|2 2 dx
P QX

H= Yty ,w)|* .
_ | ( At w)| |H—1(t/\,uw)|2-2 _4d$.

3
Q 159

But this is an absurd in view of properties (Hs) — (Hyg) and ¢/2 < 2. So, let tyg > 0
be such that ¢y, — to as 4 — 400 uniformly on X in a bounded set. This implies
the following boundedness

263, /Q |Vw|*dz + /Q |H™ (¢ w)|Pde + )\/Q |H™ (5, w)|%dz < C
for all y > 0 and for some constant C > 0, whence by (3.13))
p [ ot B b ) H b w)do < C.
o

for all > 0 and A in a bounded set. By assumptions (A4) and (A5), this implies,
necessarily, that tg = 0. Therefore

t3 1 A
M < Iyt w) < S Vwl3 + 5[ H ! (b, p)3 + g|Jar*1(m,#w)|g =0 (3.14)

as 4 — +o0o and A is in a bounded set. The lemma follows choosing p sufficiently
large. [
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Proof of Theorem . By Lemma [3.9] we take p > 0 sufficiently large such that
My < 47N/2(Jsvh°°)N ~ and from Proposition there is a (PS),, , sequence (wy,)
for functional I ,, which converges strongly to wy , € H*(Q) in view of Lemma
2.6l By Lemma I u(w) = limy, oo I u(wy) > my, > 0 and, consequently,
wx,, # 0. Since I}, p(wx, ) = 0, then wy, € N is a nontrivial ground state

solution of problem ([1.8)). O

Remark 3.10. We observe that any ground state solution wy, u obtained in Theo-
rem as a minimum on this new natural constraint N is always a signed solution
since wj\ru and w, , belong to N.

Proof of Corollary[1.6 This is a direct consequence of the (3.14) and the fact that
both solutions are ground state (for the respective functional). O

Proof of Theorem[1.7. It is an application of [I3, Theorem 6.31] and of the remark
there subsequent to the theorem. ([l
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