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OSCILLATORY SOLUTIONS AND CRITICAL EXPONENTS FOR

FULLY NONLINEAR EQUATIONS

FILOMENA PACELLA, DAVID STOLNICKI

Abstract. We study existence and nonexistence of radial positive solutions

for a class of fully nonlinear equations involving Pucci’s extremal operators.
By analyzing the periodic orbits of an associated dynamical system we are

able to give estimates on the range of the exponents for which entire oscillating

solutions exist. This, in turn, allows to improve previous bounds on the critical
exponents defined in [2].

1. Introduction

In this article we study positive radial solutions of the fully nonlinear Lane
Emden equation

−M±λ,Λ(D2u) = up in Ω ⊆ RN , N ≥ 3 (1.1)

where Ω is either the whole RN or the ball BR of radius R > 0, centered at the
origin. In the last case, we assume homogeneous Dirichlet boundary condition. We
recall that for a C2 function in RN , N ≥ 2, the Pucci’s operators are defined by

M+
λ,Λ(D2u) = Λ

∑
µi>0

µi + λ
∑
µi<0

µi

M−λ,Λ(D2u) = λ
∑
µi>0

µi + Λ
∑
µi<0

µi

where 0 < λ ≤ Λ are the ellipticity constants and µi = µi(D
2u), i = 1, . . . , N are

the eigenvalues of the hessian matrix D2u. Associated with M±λ,Λ are dimension

like numbers Ñ+ and Ñ− defined as

Ñ+ =
λ

Λ
(N − 1) + 1, Ñ− =

Λ

λ
(N − 1) + 1 (1.2)

These numbers allow us to give estimates for the exponent p for which existence
or nonexistence of radial solutions of (1.1) in BR or RN holds when N ≥ 3 and

Ñ+ > 2, (note that Ñ− is always larger than two if N ≥ 3).

Indeed a first result obtained in [1] shows that if N ≥ 3 and p ≤ Ñ±
Ñ±−2

, then no

nontrivial positive viscosity supersolutions of (1.1) exist in RN . Using this result,
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the existence of positive solutions in bounded domains, not necessarily radial, was
proved in [6] for the same range of exponents.

In the radial setting Felmer and Quaas [2] (see also [3]) provided, for N ≥ 3, the
existence of critical exponents p∗+ forM+

λ,Λ and p∗− forM−λ,Λ satisfying, for λ < Λ,

max
{ Ñ+

Ñ+ − 2
,
N + 2

N − 2

}
< p∗+ <

Ñ+ + 2

Ñ+ − 2
,

Ñ− + 2

Ñ− − 2
< p∗− <

N + 2

N − 2

(1.3)

which are thresholds for the existence of radial positive solutions of (1.1) in the ball
or in RN . To state precisely their result, let us recall some definitions.

Definition 1.1. Let u be a radial solution of (1.1) in RN and α = 2
p−1 . Then u is

said to be:

(i) fast decaying if there exists c > 0 such that limr→∞ rÑ−−2u(r) = c

(or limr→∞ rÑ+−2u(r) = c),
(ii) slow decaying if there exists c > 0 such that limr→∞ rαu(r) = c.
(iii) pseudo slow decaying if there exist constants 0 < c1 < c2 such that

c1 = lim inf
r→∞

rαu(r) < lim sup
r→∞

rαu(r) = c2 .

The definitions (i) and (ii) are standard in the theory of classical semilinear Lane
Emden equations. Instead (iii) was introduced in [2] and corresponds to solutions
oscillating at +∞ by changing concavity infinitely many times.

Theorem 1.2 ([2]). Assume tildeN+ > 2 and λ < Λ, then

(1) if p ∈ (1, p∗±) there is no positive solution of (1.1) in RN ;
(2) if p = p∗± there exists a unique positive fast decaying solution of (1.1) in

RN ;
(3) if p > p∗± there exists a unique positive solution of (1.1) in RN , which is

either slow decaying or pseudo-slow decaying;
(4) a positive solution in BR exists (and is unique) if and only if p ∈ (1, p∗±).

In (2) and (3) uniqueness is meant up to scaling.

In addition, in the case of M+
λ,Λ, the precise range of exponents p for which

oscillating pseudo-slow decaying solutions exist, is provided in [2].
The proof of Theorem 1.2 given in [2] is quite long and technically complicated.

It is a combination of the Emden-Fowler phase plane analysis and the Coffman
Kolodner technique. An alternative simpler proof, which also extends to weighted
equations and singular solutions is given in [4]. It is entirely based on the study
of the orbits of an associated quadratic dynamical system. The same approach
has been used in [5] to define and give bounds for a critical exponent that can be
defined for the operator M−λ,Λ in dimension N = 2.

While analyzing the dynamical system (defined in Section 2) it is important to
understand for which values of p periodic orbits exist. Indeed, this enters not only
in detecting the presence of pseudo-slow decaying solutions of (1.1) but also to
study the existence of fast decaying solutions. This idea was exploited in [5] to
estimate the critical exponent in dimension two.
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In this article we refine the results obtained in [2] and [4] by extending the
approach of [5] to higher dimensions. In this way, we obtain, on the one hand,
information on the exponents p for which oscillating pseudo-slow decaying solutions
do not exist; on the other hand, a better estimate of the critical exponents p∗±, as
compared with [2]. More precisely we prove the following theorems.

Theorem 1.3 (M+
λ,Λ case). Let

â+ =
( N
N−1 )

N−2
2 − 1

1− (Λ(Ñ+−2)
λ(N−1) )

Ñ+−2

2

. (1.4)

If

p ≤ â+(N + 2) + (Ñ+ + 2)

â+(N − 2) + (Ñ+ − 2)
= h(â+), (1.5)

then problem (1.1) for M+
λ,Λ does not have any pseudo-slow decaying solution.

Moreover

p∗+ ≥ h(â+) >
N + 2

N − 2
. (1.6)

Theorem 1.4 (M−λ,Λ case). Let

â− =
( N
N−1 )

N−2
2 − 1

1− (λ(Ñ−−2)
Λ(N−1) )

Ñ−−2

2

. (1.7)

If

p ≥ â−(N + 2) + (Ñ− + 2)

â−(N − 2) + (Ñ− − 2)
= h(â−) , (1.8)

then problem (1.1) for M−λ,Λ does not have any pseudo-slow decaying solution.
Moreover

p∗− ≤ h(â−) <
N + 2

N − 2
. (1.9)

Although not so simple to write, the numbers h(â+) and h(â−) give estimates
for the critical exponents substantially better than (1.3). This can be easily seen
by assigning values to N and to the ellipticity constant λ,Λ (see Section 5).

Even better estimates could be obtained with different choices of certain sets
related to the periodic orbits of the dynamical systems ( see Corollary 3.3, Corollary
3.6 and Section 5).

The article is organized as follows. In Section 2 we study the dynamical system
associated to (1.1), while in Section 3, we prove results about its periodic orbits.
In Section 4 we prove Theorem 1.3 and Theorem 1.4. In Section 5 we show some
comparisons between our estimates for the critical exponents and the one obtained
in [2] and [4].

2. Associated dynamical systems

Since we consider radial solutions to (1.1) we write u = u(r) = u(|x|) as an
expression of a function u in radial coordinates. Then, the eigenvalues of D2u are

the simple eigenvalue u′′(r) and, with multiplicity (N − 1), u′(r)
r (see [2]).
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Thus u satisfies a corresponding ODE from which it is easy to deduce that u
is decreasing as long as it is positive, concave in an interval (0, τ0) and changes
concavity at least once (see [2] or [4]):

u′′ = M(−λ(N − 1)r−1u′ − up), for M+
λ,Λ

u′′ = m(−Λ(N − 1)r−1u′ − up) for M−λ,Λ,
(2.1)

where

M(s) =

{
s/Λ if s ≤ 0

s/λ if s > 0,
(2.2)

and

m(s) =

{
s/λ if s ≤ 0

s/Λ if s > 0,
(2.3)

Next we introduce the auxiliary functions

X(t) = −ru
′(r)

u(r)
, Z(t) = −ru(r)p

u′(r)
for t = ln r (2.4)

whenever u(r) 6= 0, u′(r) 6= 0.
Since u > 0, and u′ < 0, the above quantities belong to the first quadrant of

the (X,Z) plane. In the new variables, the equations (2.1) become the following
autonomous dynamical system

(Ẋ, Ż) = F (X,Z) =
(
f(X,Z), g(X,Z)

)
, (2.5)

where the dot ˙ stands for derivation with respect to t, and f, g are given by for
M+

λ,Λ:

f(X,Z) =

{
X(X − (N − 2) + Z

λ ) if (X,Z) ∈ R+
λ

X(X − (Ñ+ − 2) + Z
Λ ) if (X,Z) ∈ R−λ ,

(2.6a)

g(X,Z) =

{
Z(N − pX − Z

λ ) if (X,Z) ∈ R+
λ

Z(Ñ+ − pX − Z
Λ ) if (X,Z) ∈ R−λ ,

(2.6b)

(2.6c)

and for M−λ,Λ:

f(X,Z) =

{
X(X − (N − 2) + Z

Λ ) if (X,Z) ∈ R+
Λ

X(X − (Ñ− − 2) + Z
λ ) if (X,Z) ∈ R−Λ ,

(2.6d)

g(X,Z) =

{
Z(N − pX − Z

Λ ) if (X,Z) ∈ R+
Λ

Z(Ñ− − pX − Z
λ ) if (X,Z) ∈ R−Λ

(2.6e)

where the regions R+
λ , R

−
λ , R+

Λ and R−Λ are:

R+
λ = {(X,Z) : Z > λ(N − 1)}, (2.7)

R−λ = {(X,Z) : 0 < Z < λ(N − 1)}, (2.8)

with R+
Λ and R−Λ defined analogously.

Note that whenever (X(t), Z(t)) belongs to the lines

`+ = {(X,Z) : Z = λ(N − 1)} for M+
λ,Λ (2.9)

`− = {(X,Z) : Z = Λ(N − 1)} for M−λ,Λ. (2.10)
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Then the corresponding solution u of (2.1) satisfies u′′(r) = 0, r = et. Hence
R+
λ , R

+
Λ and R−λ , R

−
Λ represent, in terms of the new variables (X,Z), the regions of

concavity and convexity of u, respectively.
The dynamical system (2.5) was studied in [4] with full details. We recall here

the main proprieties which are needed in the sequel, referring the reader to [4,
Section 2] for the proofs and further results.

Other important sets which are relevant to study the dynamics induced by (2.5)
are:

`+1 = {(X,Z) : Z = Λ(Ñ+ − 2−X)} for M+
λ,Λ, (2.11)

`−1 = {(X,Z) : Z = λ(Ñ− − 2−X)} for M−λ,Λ, (2.12)

which is the set where Ẋ = 0. Notice that `+1 (analogously `−1 ) is a segment entirely
contained in R−λ (or R−Λ in the case of `−1 ), since there are no other points in 1Q,

where Ẋ = 0 in the interior of the region R+
λ (R+

Λ for `−1 ).
We also introduce

`+2 = {(X,Z) ∈ R+
λ : Z = λ(N − pX)} ∪ {(X,Z) ∈ R−λ : Z = Λ(Ñ+ − pX)}

for M+
λ,Λ , and

`−2 = {(X,Z) ∈ R+
Λ : Z = Λ(N − pX)} ∪ {(X,Z) ∈ R−Λ : Z = λ(Ñ− − pX)}

for M−λ,Λ , which is the set where Ż = 0.

Since our aim is to improve the bounds for the critical exponents obtained in [2]

we restrict our attention to p greater than Ñ+

Ñ+−2
or Ñ−

Ñ−−2
.

Proposition 2.1. The ODE system (2.5) admits the following stationary points.
For M+

λ,Λ:

(i) N0 = (0, Nλ) which is a saddle point,

(ii) A0 = (Ñ+ − 2, 0) which is a saddle point for p > Ñ+

Ñ+−2
,

(iii) M0 =
(

2
p−1 ,Λ(Ñ+ − 2− 2

p−1 )
)

which is a source for Ñ+

Ñ+−2
< p < Ñ++2

Ñ+−2
, a

center for p = Ñ++2

Ñ+−2
, a sink for p > Ñ++2

Ñ+−2
,

(iv) O = (0, 0) which is a saddle point.

For M−λ,Λ:

(i) N0 = (0, NΛ) which is a saddle point,

(ii) A0 = (Ñ− − 2, 0) which is a saddle point for p > Ñ−
Ñ−−2

,

(iii) M0 =
(

2
p−1 , λ(Ñ− − 2− 2

p−1 )
)

which is a source for Ñ−
Ñ−−2

< p < Ñ−+2

Ñ−−2
, a

center for p = Ñ−+2

Ñ−−2
, a sink for p > Ñ−+2

Ñ−−2
,

(iv) O = (0, 0) which is a saddle point.

The stationary points and the direction of the vector field F on the relevant sets
for (2.5) are displayed in Figure 1.

The set of limit points of a trajectory τ(t) of the system (2.5), as t → −∞, is
usually called its α-limit and denoted by α(τ). Analogously it is defined the ω-limit
ω(τ) at +∞. The precise correspondence between the solutions of (2.1) and the
trajectories of (2.5) has been analyzed in [4, Section 3]. We recall here what is
relevant to study the entire positive solutions or the ones in a ball of (2.1).
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Figure 1. Vector field F and the stationary points.

Proposition 2.2. For every p > 1, any regular solution up of (2.1) satisfying the
initial conditions: up(0) = γ > 0 , u′p(0) = 0, corresponds to the unique trajectory
Γp of (2.5) whose α-limit is the stationary point N0. Moreover:

(i) if up = up(r) is positive ∀r ∈ (0,+∞) then Γp is bounded and remains in

the rectangle (0, Ñ+ − 2)× (0, Nλ), for all time. ((0, Ñ− − 2)× (0, NΛ) in
case of M−λ,Λ)

(ii) if there exists Rp such that up(Rp) = 0 and up > 0 in (0, Rp), then the
corresponding trajectory Γp = (Xp, Zp) blows up in finite time T , in partic-
ular,

lim
t→T

Xp(t) = +∞ lim
t→T

Zp(t) = 0

and there exists t1 < T such that Xp(t1) = Ñ+ − 2. (Xp(t1) = Ñ− − 2 in
the case of M−λ,Λ)

Concerning the entire positive solution of (2.1), the classification, recalled in
Definition 1.1, induces an analogous classification for the orbits of (2.5), which is
the following one, (see [4, Section 3] for details and proofs).

Proposition 2.3. If up is a regular solution of (2.1), positive in (0,∞), then for
the corresponding trajectory Γp of (2.5) it holds:

(i) up is fast decaying ⇐⇒ ω(Γp) = A0

(ii) up is slow decaying ⇐⇒ ω(Γp) = M0

(iii) up is pseudo-slow decaying ⇐⇒ ω(Γp) is a periodic orbit around M0.

Considering also the positive solutions of the Dirichlet problem in a ball, given
by Proposition 2.2(ii), we define the sets:

C =
{
p > 1 : for Γp = (Xp, Zp) it holds that lim

t→T
Xp(t) = +∞

and lim
t→T

Zp(t) = 0 for some T > 0
} (2.13)

F = {p > 1 : ω(Γp) = A0} (2.14)

P = {p > 1 : ω(Γp) is a periodic orbit around M0} (2.15)
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S = {p > 1 : ω(Γp) = M0} (2.16)

3. Nonexistence of periodic orbits

3.1. M+
λ,Λ case. Here we analyze the dynamical system (2.5) in the case of the

operator M+
λ,Λ, with the aim of providing estimates on the values of p for which

periodic orbits do not exist. We follow the approach of [4] which was used in [5] in
the bi-dimensional case.

By [4, Proposition 2.10], we already know that there are no periodic orbits for

1 < p ≤ N+2
N−2 or p > Ñ++2

Ñ+−2
. Moreover for p = Ñ++2

Ñ+−2
we know that M0 is a center

which means that there exist infinitely many periodic orbits around M0. Therefore
we assume that

N + 2

N − 2
< p <

Ñ+ + 2

Ñ+ − 2
. (3.1)

Moreover, again by [4, Proposition 2.10], we know that for p 6= Ñ++2

Ñ+−2
any periodic

orbit O must intersect both R+
λ and R−λ and cannot be tangent to the line `+. For

a given periodic orbit O we denote by

P1 = (x1, λ(N − 1)) and P2 = (x2, λ(N − 1)), x1 < x2, (3.2)

the two points in the intersection O ∩ `+ and by D the bounded region inside the
orbit O.

Both sets D1 = D ∩ R+
λ and D2 = D ∩ R−λ have positive measure, and by the

direction of the flow induced by (2.5), it is easy to see that

D1 ⊂ Q1 and D2 ⊃ Q2 , (3.3)

where Q1 = (x1, x2)× (λ(N − 1), λN), Q2 = (x1, x2)× (Λ(Ñ+ − 2), λ(N − 1)) (see
Figure 2).

Then we define the function

ϕ(X,Z) = XαZβ , with α =
2

p− 1
, β =

3− p
p− 1

, (3.4)

and denote

a′ =

∫
D1
ϕdX dZ∫

D2
ϕdX dZ

, a′′ =

∫
Q1
ϕdX dZ∫

Q2
ϕdX dZ

. (3.5)

Finally we consider the families of subsets

Σ1 = {S ⊂ R2 : |S| > 0, D1 ⊂ S̄ ⊆ Q1},
Σ2 = {S ⊂ R2 : |S| > 0, Q2 ⊆ S̄ ⊂ D2} .

Obviously, for any couple of sets (S1, S2) ∈ Σ1 × Σ2 we have that the number

a = a(S1, S2) =

∫
S1
ϕdX dZ∫

S2
ϕdX dZ

(3.6)

belongs to the interval (a′, a′′].
We have the following condition for the existence of a periodic orbit.
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Figure 2. Periodic orbit and the sets Q1, Q2

Proposition 3.1. Let p ∈
(
N+2
N−2 ,

Ñ++2

Ñ+−2

)
and assume a periodic orbit Op for (2.5)

exists. Then, for every a = a(S1, S2) as in (3.6) it holds

p > h(a), h(a) =
a(N + 2) + (Ñ+ + 2)

a(N − 2) + (Ñ+ − 2)
, h(a) ∈

(N + 2

N − 2
,
Ñ+ + 2

Ñ+ − 2

)
. (3.7)

Proof. Since p satisfies (3.1), it follows that

− p(Ñ+ − 2) > −Ñ+ − 2 and − p(N − 2) < −N − 2 (3.8)

We consider the function ϕ as in (3.5) and define

Φ(X,Z) = ∂X(ϕf) + ∂Z(ϕg) (3.9)

with f and g as in (2.6a),(2.6b). By computations we obtain

Φ(X,Z) =

{
XαZβ −p(N−2)+(N+2)

p−1 if (X,Z) ∈ R+
λ

XαZβ −p(Ñ+−2)+(Ñ++2)
p−1 if (X,Z) ∈ R−λ .

(3.10)

Then, using the above notation we have

0 =

∫
∂D

ϕ{fdZ − gdX} =

∫
D

Φ dX dZ =

∫
D1

Φ dX dZ +

∫
D2

Φ dX dZ ,

where the first equality holds because dX = fdt and dZ = gdt. Hence, by (3.10),

0 =
−p(N − 2) + (N + 2)

p− 1

∫
D1

XαZβ dX dZ
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+
−p(Ñ+ − 2) + (Ñ+ + 2)

p− 1

∫
D2

XαZβ dX dZ.

By (3.8) the coefficient of the first term is negative, while the second one is positive.
Hence, since ϕ > 0, we obtain that for every (S1, S2) ∈ Σ1 × Σ2:

0 >
−p(N − 2) + (N + 2)

p− 1

∫
S1

ϕdX dZ +
−p(Ñ+ − 2) + (Ñ+ + 2)

p− 1

∫
S2

ϕdX dZ .

Thus for any a = a(S1, S2) defined as in (3.6) we have

0 >
−p(N − 2)a− p(Ñ+ − 2) + (N + 2)a+ (Ñ+ + 2)

p− 1

∫
S2

ϕdX dZ .

Since ϕ > 0, the above inequality implies

−p(N − 2)a− p(Ñ+ − 2) + (N + 2)a+ (Ñ+ + 2)

p− 1
< 0

which is equivalent to (3.7). Finally a straightforward computation gives that h(a)

belongs to the interval (N+2
N−2 ,

Ñ++2

Ñ+−2
). �

Note that the function h(a) in (3.7) is decreasing with respect to a.
The above result will be used to obtain a bound for the values of p for which

the corresponding dynamical system (2.5) cannot admit periodic orbits. This can
be achieved by taking a couple of sets (S1, S2) ∈ Σ1 × Σ2 such that the number
a = a(S1, S2) can be estimated by a constant which depends only on the dimension
N and the ellipticity constants λ and Λ. This is the content of the next two
corollaries in which we choose particular sets (S1, S2).

Corollary 3.2. Let

â+ =
( N
N−1 )

N−2
2 − 1

1− (Λ(Ñ+−2)
λ(N−1) )

Ñ+−2

2

. (3.11)

Then for

p ≤ h(â+) =
â+(N + 2) + (Ñ+ + 2)

â+(N − 2) + (Ñ+ − 2)
(3.12)

system (2.5) does not admit periodic orbits.

Proof. Let us assume that (3.12) holds and that there exists a periodic orbit for
(2.5). Then we choose the couple of rectangles (Q1, Q2) defined as in (3.3) to
compute and estimate a′′ = a(Q1, Q2) (see (3.6)). Integrating we obtain∫

Q1

ϕdX dZ =

∫
Q1

XαZβ dX dZ

=
(λ(N))β+1 − (λ(N − 1))β+1

β + 1

∫ x2

x1

XαdX

(3.13)

and analogously for Q2,∫
Q2

ϕdX dZ =

∫
Q2

XαZβ dX dZ

=
(λ(N − 1))β+1 − (Λ(Ñ+ − 2))β+1

β + 1

∫ x2

x1

XαdX.

(3.14)
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Thus we obtain

a′′ = a(Q1, Q2) =
( N
N−1 )β+1 − 1

1− (Λ(Ñ+−2)
λ(N−1) )β+1

<
( N
N−1 )

N−2
2 − 1

1− (Λ(Ñ+−2)
λ(N−1) )

Ñ+−2

2

= â+

Since the function h(a) is decreasing, by Proposition 3.1 we deduce that

p > h(a′′) > h(â+)

which contradicts assumption (3.12). �

To improve the estimate (3.12) it would be better to take a couple (S1, S2) with
S1 contained in Q1 and S2 containing Q2. For the next result we consider the
couple (Q1, Q2 ∪ T ) where

T = co(A1, A2,M0)

which is the convex hull of the points

A1 = (x1,Λ(Ñ+ − 2)), A2 = (x2,Λ(Ñ+ − 2)), M0 ,

where M0 is the stationary point of Proposition 2.1 (see Figure 3).
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X = Ñ+ − 2
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Q2

D

T

L1

L2

Figure 3. Periodic orbit and relevant sets

Corollary 3.3. Let

ã+ = ã+(p)

=

(λ(N))β+1−(λ(N−1))β+1

β+1

(λ(N−1))β+1−(Λ(Ñ+−2))β+1

β+1 + Λ
p−1 min{(Λ(Ñ+ − 2− 2

p−1 )β , (Λ(Ñ+ − 2)β}
.

(3.15)
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Then for

p ≤ h(ã+) =
ã+(N + 2) + (Ñ+ + 2)

ã+(N − 2) + (Ñ+ − 2)
(3.16)

system (2.5) does not admit any periodic orbit.

Proof. Integrating the function ϕ(X,Z) = XαZβ on the triangle T we obtain∫
T

XαZβ dX dZ ≥ inf
T
Zβ
∫
T

Xα dX dZ

=
1

2

∫
Q3

Xα dX dZ inf
T
Zβ

=

∫ x2

x1

XαdX
Λ

p− 1
inf
T
Zβ

since
∫
T
Xα dX dZ is half of the integral on the rectangle

Q3 = (x1, x2)×
(

Λ(Ñ+ − 2− 2

p− 1
),Λ(Ñ+ − 2)

)
.

Using (3.13) and (3.14) we obtain

a(Q1, Q2 ∪ T ) ≤ ã+

=

(λ(N))β+1−(λ(N−1))β+1

β+1

(λ(N−1))β+1−(Λ(Ñ+−2))β+1

β+1 + Λ
p−1 min{(Λ(Ñ+ − 2− 2

p−1 )β , (Λ(Ñ+ − 2)β}

Since the function h is decreasing, we deduce from Proposition 3.1 that if a
periodic orbit exists then

p > h(a(Q1, Q2 ∪ T )) ≥ h(ã+).

Hence we obtain the assertion by the assumption (3.16). �

Note that while the right hand side of (3.12) does not depend on p, in the
estimate (3.16) we have that ã+ depends on p, so that inequality (3.16) is more
difficult to use to have explicit bounds on p. Nevertheless we will use it in Section
5 in some particular cases to show sharper estimates.

3.2. M−λ,Λ case. Here we analyze the dynamical system (2.5) in the case of the

operator M−λ,Λ. Though the statements and proofs are similar to those for M+
λ,Λ,

we repeat the main steps for the reader’s convenience. Based on the result of [4,
Proposition 2.10], we restrict our attention only to a certain interval of values of p
in order to obtain better estimates for the critical exponent, hence we assume

Ñ− + 2

Ñ− − 2
< p <

N + 2

N − 2
. (3.17)

Moreover, again by [4, Proposition 2.10], we know that for p 6= N+2
N−2 any periodic

orbit O must intersect both R+
Λ and R−Λ and cannot be tangent to the line `−. For

a given periodic orbit O we denote by:

P1 = (x1,Λ(N − 1)) and P2 = (x2,Λ(N − 1)) , x1 < x2 (3.18)

the two points in the intersection O ∩ `− and by D the bounded region inside the
orbit O.
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The sets D1 = D ∩ R+
Λ and D2 = D ∩ R−Λ have both positive measure and, by

the direction of the flow induced by (2.5), it is easy to see that

D1 ⊂ Q1 and D2 ⊃ Q2 , (3.19)

where Q1 = (x1, x2)× (Λ(N − 1),ΛN), Q2 = (x1, x2)× (λ(Ñ−− 2),Λ(N − 1)) (see
Figure 4).
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←←←←←←←←

L1

L2

D

Q1

Q2

Figure 4. Periodic orbit and auxiliary sets

Now we recall the definition of the function ϕ defined in (3.5)

ϕ(X,Z) = XαZβ , with α =
2

p− 1
, β =

3− p
p− 1

(3.20)

and as done in the M+
λ,Λ case, we denote

a′ =

∫
D1
ϕdX dZ∫

D2
ϕdX dZ

, a′′ =

∫
Q1
ϕdX dZ∫

Q2
ϕdX dZ

, (3.21)

and the families of subsets:

Σ1 = {S ⊂ R2 : |S| > 0 , D1 ⊂ S̄ ⊆ Q1},
Σ2 = {S ⊂ R2 : |S| > 0 , Q2 ⊆ S̄ ⊂ D2}

Obviously, for any couple of sets (S1, S2) ∈ Σ1 × Σ2 we have that the number

a = a(S1, S2) =

∫
S1
ϕdX dZ∫

S2
ϕdX dZ

(3.22)

belongs to the interval (a′, a′′].
We have the following condition for the existence of a periodic orbit.
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Proposition 3.4. Let p ∈
( Ñ−+2

Ñ−−2
, N+2
N−2

)
and assume a periodic orbit Op for (2.5)

exists. Then, for every a = a(S1, S2) as in (3.22) it holds

p < h(a), h(a) =
a(N + 2) + (Ñ− + 2)

a(N − 2) + (Ñ− − 2)
, h(a) ∈

(Ñ− + 2

Ñ− − 2
,
N + 2

N − 2

)
. (3.23)

Proof. The proof is similar to the one for the operator M+
λ,Λ, given in Proposition

3.1. We write the computations for the reader’s convenience. Since p satisfies
(3.17),

− p(Ñ− − 2) < −Ñ− − 2 and − p(N − 2) > −N − 2 . (3.24)

Again as done in the M+
λ,Λ case we define

Φ(X,Z) = ∂X(ϕf) + ∂Z(ϕg) , (3.25)

with ϕ as in (3.5), f and g as in (2.6a),(2.6b). By computations we obtain

Φ(X,Z) =

{
XαZβ −p(N−2)+(N+2)

p−1 if (X,Z) ∈ R+

XαZβ −p(Ñ+−2)+(Ñ++2)
p−1 if (X,Z) ∈ R− .

(3.26)

It follows from the above computation that

0 =

∫
∂D

ϕ{fdZ − gdX} =

∫
D

Φ dX dZ =

∫
D1

Φ dX dZ +

∫
D2

Φ dX dZ ,

where the first equality holds because dX = fdt and dZ = gdt. Hence, by (3.26),

0 =
−p(N − 2) + (N + 2)

p− 1

∫
D1

XαZβ dX dZ

+
−p(Ñ− − 2) + (Ñ− + 2)

p− 1

∫
D2

XαZβ dX dZ.

By (3.24) the first right term coefficient is positive, while the second one is negative.
Hence, since ϕ > 0, we obtain that for every (S1, S2) ∈ Σ1 × Σ2,

0 <
−p(N − 2) + (N + 2)

p− 1

∫
S1

ϕdX dZ +
−p(Ñ− − 2) + (Ñ− + 2)

p− 1

∫
S2

ϕdX dZ .

Thus for any a = a(S1, S2) defined as in (3.6) we have

0 <
−p(N − 2)a− p(Ñ− − 2) + (N + 2)a+ (Ñ− + 2)

p− 1

∫
S2

ϕdX dZ .

Since ϕ > 0, the above inequality implies

−p(N − 2)a− p(Ñ− − 2) + (N + 2)a+ (Ñ− + 2)

p− 1
> 0

which is equivalent to (3.23). Finally a straightforward computation gives that h(a)

belongs to the interval ( Ñ−+2

Ñ−−2
, N+2
N−2 ). �

Note that the function h(a) in (3.23) is increasing with respect to a. Taking
particular couples of sets in Σ1 × Σ2, as in the case of M+

λ,Λ , we obtain the
following results.
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Corollary 3.5. Let

â− =
( N
N−1 )

N−2
2 − 1

1− (λ(Ñ−−2)
Λ(N−1) )

Ñ+−2

2

. (3.27)

Then for

p ≥ h(â−) =
â−(N + 2) + (Ñ− + 2)

â−(N − 2) + (Ñ− − 2)
(3.28)

system (2.5) does not admit periodic orbits.

Proof. It is similar to the one of Corollary 3.2 choosing the couple of rectangles
(Q1, Q2) defined in (3.19) to compute and estimatea′′ = a(Q1, Q2). �

To improve the estimate (3.23) we consider the couple (Q1, Q2 ∪ T ) where

T = co(A1, A2,M0)

which is the convex hull of the points

A1 = (x1, λ(Ñ− − 2)), A2 = (x2, λ(Ñ− − 2)), M0,

where M0 is the stationary point of Proposition 2.1 (see Figure 5).
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Figure 5. Auxiliary sets

Analogously to Corollary 3.3 and with a similar proof obtain the following result.
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Corollary 3.6. Let

ã− = ã−(p)

=

(Λ(N))β+1−(Λ(N−1))β+1

β+1

(Λ(N−1))β+1−(λ(Ñ−−2))β+1

β+1 + λ
p−1 min{(λ(Ñ− − 2− 2

p−1 )β , (λ(Ñ− − 2)β}
.

(3.29)
Then for

p ≥ h(ã−) =
ã−(N + 2) + (Ñ− + 2)

ã−(N − 2) + (Ñ− − 2)
(3.30)

system (2.5) does not admit any periodic orbit.

4. Pseudo-slow decaying solutions and critical exponents

We first consider the operatorM+
λ,Λ . To prove Theorem 1.3, we start by showing

the connection between the critical exponent p∗+ and the existence of periodic orbits.
As recalled in the introduction the critical exponent p∗+ is defined by the propriety

of being the only exponent p for which (1.1) admits an entire fast decaying solution.
In [4] it is proved that this is equivalent to define

p∗+ = sup C , (4.1)

where the set C is defined in (2.13). The following result is important for deriving
the estimate for p∗+.

Proposition 4.1. Let p ∈ (N+2
N−2 ,

Ñ++2

Ñ+−2
) and assume that no periodic orbits exist

for the system (2.5) (corresponding to such p). Then p ∈ C.

Proof. Considering the classification of the sets C, F , P, S, given in (2.13)-(2.16),

we have that obviously p /∈ P. Moreover, since M0 is a source for p < Ñ++2

Ñ+−2
, then

p /∈ S.
Finally if p would belong to F , then the regular trajectory Γp, together with the

X and Z axis, would enclose an invariant set for the flow which would not allow
any ω-limit for the trajectories starting from M0. Thus, p ∈ C (see Figure 6). �

Proof of Theorem 1.3. The first assertion follows by Corollary 3.2 because if there
are no periodic orbits for the dynamical system (2.5) there cannot be pseudo-slow
decaying solutions for (1.1).

The estimate (1.5) on the critical exponent p∗+ is a consequence of (4.1), Propo-
sition 4.1, and Corollary 3.2. �

One could get a sharper bound for the critical exponent by considering the
number

h(ã+) =
ã+(N + 2) + (Ñ+ + 2)

ã+(N − 2) + (Ñ+ − 2)
(4.2)

for ã+ = ã+(p) defined in (3.16) and applying Corollary 3.3
Now we study the case of the operatorM−λ,Λ . To prove Theorem 1.4 we use the

following result, where h(â−) is defined as in (3.27).

Proposition 4.2. If p ≥ h(â−), then p /∈ C.
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Figure 6. The case when there are no periodic orbits

Proof. Since p ≥ h(â−) > Ñ−+2

Ñ−−2
, M0 is a sink while N0 and A0 are saddle points.

Moreover there are no periodic orbits by Corollary 3.5.
Suppose p ∈ C, then the trajectory Γp starting from N0 blows up forwardly

in finite time after crossing the line L1 = {(X,Z) : X = Ñ− − 2}. This implies
that the domain bounded by the X and Z axes, the orbit Γp and the line L1 is
such that any orbit inside it can only exit in forward time (through L1), but not
in backward time. Thus, the unique trajectory τp whose ω-limit is A0 cannot go
anywhere backward in time and this provides a contradiction (see Figure 7). �

Proof of Theorem 1.4. It is similar to that of Theorem 1.3 using Corollary 3.5,
Proposition 4.2 and the fact that

p∗− = sup C
as shown in [4]. �

As in the case for M+
λ,Λ , we can obtain a sharper estimate by considering the

number

h(ã−) =
ã−(N + 2) + (Ñ− + 2)

ã−(N − 2) + (Ñ− − 2)
(4.3)

for ã− defined in (3.30) and applying Corollary 3.6.

5. Concluding remarks

To better appreciate the newer bound for both operators we would like to present
a few examples of how they compare to the one previously known. To this aim let
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Figure 7. Contradiction arising in Proposition 4.2

us define

p̃+ = sup{p solutions of (3.16)}, (5.1)

p̃− = inf {p solutions of (3.30)}. (5.2)

Note that ã+ and ã− depend on p. Then, based on what was shown in Section 4
we obtain the following ordering.

For M+
λ,Λ :

Ñ+ + 2

Ñ+ − 2
> p∗+ > p̃+ > h(â+) >

N + 2

N − 2
,

where p̃+ and h(â+) are defined in (5.1) and (3.12) respectively, while the other
bounds are from [2] and Proposition 3.1.

For M−λ,Λ :

Ñ+ + 2

Ñ+ − 2
< p∗− < p̃− < h(â−) <

N + 2

N − 2
,

where p̃− and h(â−) are defined in (5.2) and (3.28) respectively.
In the case of M+

λ,Λ we can appreciate the difference by computing each one of
the bounds in low dimensions. For that we will fix λ = 1,Λ = 2 and vary N from 4
to 8. Then we can observe the values of p̃+,h(â+) and N+2

N−2 on the following table
Another interesting case is when we consider a class of problems driven by

M+
λ,N−1 (i.e. Λ = N − 1) in RN for λ > 1. It follows from [2] that for every

dimension N greater than 2, the critical exponent p∗+ is bounded uniformly from

above by the constant Ñ++2

Ñ+−2
= λ+3

λ−1 .

On the other hand, as we may observe from the graph in Figure 8, while the
classical lower bound presented in [2], i.e. N+2

N−2 converges to 1 as N goes to +∞,
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Table 1.

N N+2
N−2 h(â+) p̃+

Ñ++2

Ñ+−2

4 3 3.92 6.47 9
5 2.3 2.85 3.93 5
6 2 2.36 3 3.67
7 1.8 2.07 2.44 3
8 1.67 1.88 2.11 2.6

Figure 8. Graphs of p̃+, h(â+) and N+2
N−2 , for λ = 2,Λ = N − 1

the bound obtained in this paper by considering more refined set, namely the one
obtained in Corollary 3.3, converges to λ+3

λ−1 by (4.2), since by (3.15):

lim
N→+∞

ã+ = 0

Hence this proves that asymptotically the critical exponent of the problem driven

by M+
λ,N−1 in RN converges to λ+3

λ−1 = Ñ++2

Ñ+−2
.
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[3] P. L. Felmer, A. Quaas; Positive radial solutions to a semilinear equation involving the

Pucci’s operator, J. Differential Equations, vol. 199, 2004.



EJDE-2021/SI/01 OSCILLATORY SOLUTIONS 167

[4] L. Maia, G. Nornberg, F. Pacella; A dynamical system approach to a class of radial weighted

fully nonlinear equations, Comm. Partial Differential Equations, vol. 46, 2021.

[5] F. Pacella, D. Stolnicki; On a class of fully nonlinear elliptic equation in dimension two, J.
Differential Equations (to appear),

[6] A. Quaas, B. Sirakov; Existence results for nonproper elliptic equations involving the Pucci

operator, Comm. Partial Differential Equations, vol. 31, 2006. 23

Filomena Pacella
Dipartimento di Matematica, Universityà di Roma Sapienza, Italy
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