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A SEMILINEAR WAVE EQUATION WITH NON-MONOTONE
NONLINEARITY

JOSE F. CAICEDO, ALFONSO CASTRO, RODRIGO DUQUE, ARTURO SANJUAN

ABSTRACT. We prove the existence of weak solutions to a semilinear wave with
non-monotone asymptotically linear nonlinearity when the forcing is domi-
nated by a trigonometric polynomial.

1. INTRODUCTION

Let Q = (0,7) x [0,27] and ¥ a trigonometric polynomial of the form

U(z,t)= > ax;sin(kz) cos(jt) + by; sin(k) cos(jt), (1.1)
i,j=1,N, i#£j
where N is a positive integer. We study the existence of weak solutions to the
Dirichlet-periodic problem
Ou+1u+ h(u) = f(z,t) := CU(z,t) + g(z,t),
u(0,t) = u(m,t) =0, (1.2)
u(z,t) = u(x,t + 27), (x,t) € [0,7] xR,

where [J denotes the D’Alembert operator 0y — 9y, 7 > 0 and 7 ¢ o(0) = {k?— ;2 :
k=1,2,...,,7=0,1,2,...}, C € R, g € L*(Q), and

//Q\I/(as,t)g(a:,t) da dt = 0, (1.3)

We assume that h is bounded and differentiable, that h'(u) < —7 for some u € R,
and that
lim A'(u) = 0. (1.4)
|u|—o00
That is, H(u) := 7u + h(u) is non-monotone and asymptotically linear. We denote
by | - [|2 the norm in L?(2). Our main result is the following theorem.

Theorem 1.1. For each g € L*() satisfying (L.3)), there exists Co(||g||2) such that
if |C] > Co(llgll2) then (L1.2) has a solution.
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This result is in the spirit of determining the range of semilinear wave operators
with non-monotone nonlinearities which goes back to the results in [9], [12] where the
range of such operators was proven to be dense in L?(2). The reader is referred to
[6] for a review in the subject and to [4] for a recent result on with ¥ replaced
by functions that may be flat on characteristics. For earlier results on semilinear
wave equations with monotone nonlinearities see [I], 10} I1].

A key piece in our arguments is the Nazarov-Turan lemma which we state next
for the sake of completeness in the presentation. For a role of the Nazarov-Turan
lemma in bifurcation at infinity, the reader is referred to [g].

Lemma 1.2 (Nazarov-Turan lemma). If ® is a trigonometric polynomial with
/ O (z,t) sin(kz) sin(kt) dx dt = / O (z,t) sin(kz) sin(kt) dz dt = 0, (1.5)
Q Q

for any positive integer k then there exists o > 0 such that for any 6 € (0,1),
m({(x,t) € Q;|®(x,t)] < d}) < §*. (1.6)
Moreover,
m(A,s) :=m{z € [0,7]: |®(x,r + )| <d}) <%, (1.7)
uniformly for v € [0, 27].

In the above lemma and in what follows m denotes the Lebesgue measure in one
or two dimensions as given by the context.

2. PRELIMINARIES
Let N denote the closure of the linear subspace of L?(£2) spanned by
{sin(kx) cos(kt), sin(kz)sin(kt), k =1,2,...}. (2.1)

That is, N is the kernel of the wave operator [ in (1.2)). If v € N, then there exists
2

a unique 2m-periodic function p : R — R such that p € L?([0,27]), o p(t)dt =0,
and
v(z,t) =p(t+ ) — p(t — x). (2.2)
We let H! denote the Sobolev space of functions u : [0,7] x R — R that are
2m-periodic in their second variable, with u and its first order partial derivatives in
L?(€), and vanishing on {0,7} x R. The norm in in H! by || - [l1.2. We also let
Y = N1t NH! Wesay that u=y+v €Y ®N is a weak solution to (1.2)) if

/ / (e — i) — (H(u) — £)(§ +0)} dwdt =0, (2.3)

forall y+0 € Y®N. Welet Ty : L2(Q) — N and Iy : L?(Q) — N+ denote the
corresponding orthogonal projections.

For each f € L%(Q), the equation Ju+7u = f has a unique weak solution v +y
which we denote as (0 + 71)~!(f). Moreover, there exists a real number x such
that

1O+ 7D~ Iy ()2 + 1O+ 7D 7 Iy (F))llorrz < KllF]l2,

IO +7D) 7 TN ()2 < sl f]2

where C/2 denotes the Holder space of continuous functions with exponent 1 /2.

(2.4)
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3. PROOF OF THEOREM [I.1]

By (1.4)), there exists K7 > % such that if |s| > K; then |b/(s)] < 7/128.
Let ¢ = (O+ 7I)~}(¥), a > 0 be as in Lemma[L.2] applied to ® = ¢, and

7'27'('2 1/
= .1
o ((128(1 T \h/|oo))2) ! (3.1)
_ (K1 +2K7 + 6(v27[|hloc + |1 [oc] + llgll2 + 1) (7 + 1)
Co = . . (3.2)
sin(9)
Since 0% < 1, we have
T

«

< .

128(1 + 7+ |h/|o0)
From [9] and [12], there exist sequences {¢y, }, {u,} C L? with u,, = zp,+w, € N&Y
such that

Own +7(2n +wn) +h(zn +w,) = CV(z,t) +g(x,t) + dn(x,t), [|@nll2 — 0. (3.3)

Without loss of generality we may assume that [|¢,]2 < 1 for n = 1,2,.... Let
v, € N and y, € Y be such that
Oyn +7(vn +yn) = 9(@,1) + dn(z,t),  [[¢nll2 = 0. (3.4)

Subtracting from (3.4), we obtain
O(wrn —Yn) +7(Wpn — Yn + 20 — V) + h(zn +wy,) = C¥(z,t) = C(O+71) (). (3.5)
Letting W,, = w,, —yn, — C¢ and V,, = 2z, — v,,
OW, +7(Wy 4+ Vo) + (Vi + vy + Wi + y + Cp(z, ) = 0. (3.6)
Equation , in turn, is equivalent to the equations
W, = —(O+71) "y (h (Vi + vn + Wy + yn + CY)), (3.7)

7V, = Iy (h(Vn F0n + W+ yn + %W(I,t))) (3.8)

Since h is assumed to be bounded, by the continuity of (0 + 71)~*: L? — Y and
Arzela-Ascoli’s theorem we may assume that {W,,} converges uniformly in .
By (2.2)), there exists g1, pn, P, € L?(0,27) such that

In(g)(x,t) = g1(t + ) = g1(t — @), vn(2,t) = pn(z,t) — pu(t — z),
Vn(xa t) - PN(xv t)'
By (3.4), the sequence {rp,} converges to g; in L*([0,27]). From (3.8) and [2],
2n7 Py (r) = —I1n(r) + Ian(r), a.e. in [0, 27], (3.10)

(3.9)

where

Lin(r) = /7r h((Wy + yn)(x,r — ) + gn (1) — ¢u(r — 22) + C(z,t)) dz
0 (3.11)

Lon(r) = / "R (W 4 yn) (@7 + 2) + gulr +22) — g (r) + Oz, 1)) da,

and
Gn(8) = pn(s) + P,(s) for all s € R. (3.12)

Since h is bounded, from (3.10) and (3.11]) we see that the sequence { P, } is bounded
in L*.
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Let us show that the sequence {P,} converges en L?([0,27]). Indeed, let us show
that {P,} is a Cauchy sequence in L?([0,2n]). Let Y;(r,z) = (W; + y;)(x,r — ),
Q;(r, ) = q;(r) = ¢;(r — 22), Fpn(s,7,2) = C¢(xﬂ"— )+ (Qn+5(Yn—Y))(r, z),
and G (s, 2) = C(z,r — ) + (Yin + $(Qn — Q) (r, ). Hence

}Iln(r) — Iim(r)| < e |W (Fpn(s,7,2)) | ds - | (Y, — Yo ) (r, )| d2
! o

+ / / W (Gonn(5,7,2)) | d | (@ — Qun) (r, )

Let |C| > Cy with Cy given by (3.2). If v € A5 and [(Qn — Q) (r, )| > 2KE,
then m[{s € [0,1]; |[Yin(r,z) + Co(z,7 — ) + s(Qn — Qm)(r,2)| < K1)} < 1/K;.
Hence

W ]ow 7T
T
< —.
~ 64

‘/ W (Yo (r,z) + Co(z,r — ) 4+ s(Qn — Qum)(r, ) ds| <

On the other hand, if |(Q, — Qm)(r,x)| < 2K?%, then |Y,,(r,2) + Ctp(x,r — z) +
$(Qn — Q) (r,x))| > Kq. Thus |h/ (Y, (r, 3:)+C’1/)(a: t) +5(Qn — Qm)(r,2))| < 135-
Hence

T

|/ B (Yo (r,x) + Cp(z,r — ) + 5(Qn — Q) (1, )) dS’*128<674 (3.15)

From (3.13]), (3.14)), and (3.15|),

‘Iln(r) — L ()]

< / W oe | (Ve — Yin) (. ) d
0
T

(Qn — Qm)(r,x)|dx
64 Jio,70\A,s

[ elQulr ) ~ @l o)lda
Ane (3.16)
S/o |h/|m‘(Yn*Ym)(Tvx)‘dx+674( (|(Pnfpm+pn*pm)(7")‘
n+ Py — Dm — P —2z)|d
L nt P = P20 )
+m(Ar,6)|h,|0<>|(Pn_Pm+pn_pm)(7")‘

+/ |h/|00‘(Pn_Pm +Pn — Pm) (1 — 22)|d.
Av‘,&
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Similarly,
Ton(r) — Ton(r)] < / W ocl (Vi — Yo (1 2)|
0

+ %(W(Kpn — P+ D — D) (7))

+/ |(Pn + Pn — Pm me)(T+2:1:)|dz> (3.17)
0,7\ Ay,
+ m(Ar,6)|h,|oo |(Pn — Py +pn — pm)(r)\

+/ |h/|oo|(Pn_Pm +pn—pm)(r+2$)|dx.

8
Since
/ P — 20) — Po(r — 20)|dz < 6°72| Py — Ponlla,
Ars

by (3.10), (3.16) y (3.17]) we have

27| Py (1) — P (1)] < 2/07r |7 oo | (Y, = Vi) (r, )| da

+E / |(Pn + Pr = pm — P)(r — 22)| dz
32 [Ovﬂ]\Ar,é (3 18)
F 7P = Pal)] + [0 = )0 )
+ 26N oo (| P = P + P — pm) (1))
+ 2‘”‘005@/2 (1Pn = Prll2 + lpn — pmll2) -
By the definition of §,
647 — 772 — 1286|100 > 6477 — T2 — T > 5977
Therefore,
8971w
372|Pn(7“) = P (r)]
4 5t
<2 [ eV = Vo) 0 da + S = p)0)
0 S (3.19)
TV 2T /2| B B
+ (T 26721 o5 ) (lpn = Pnll2 + [P = Pa2)
+ 27 (o
64 Dn Pml|2-
Hence,
5971
35 10 (r) = Prn(r)ll2
27 T 1/2
< 2(/ / 1ol (Yo = Yo (r, )] da )
o Jo (3.20)

TTV 27
+ (T + W10267/2) Var(lpn = pnlla + 1P = Prnll2)

LT ||
64 Pn — Pml|2-



86 J. F. CAICEDO, A. CASTRO, R. DUQUE, A. SANJUAN EJDE/SI/02

Since {p,} converges in L2([0,2n]), {Y;,} converges uniformly and

TN 2T , a/2) Tn 597w
( S+ W 1w20°?) Var < T < 22T (3.21)

Thus {P,} is a Cauchy sequence in L?([0,27]), which proves the theorem.

Obituary. With great sadness, the last three authors report the passing of Pro-
fessor José Francisco Caicedo on February 23, 2022. He was our friend, teacher,
and mentor. The results in this paper were proven prior to his death. He was a
leading force in the understanding the solvability of semilinear wave equations.
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