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Abstract. We consider the boundary value problem

−∆u+ c(x)u = αm(x)u+ − βm(x)u− + f(x, u), x ∈ Ω,

∂u

∂η
+ σ(x)u = αρ(x)u+ − βρ(x)u− + g(x, u), x ∈ ∂Ω,

where (α, β) ∈ R2, c,m ∈ L∞(Ω), σ, ρ ∈ L∞(∂Ω), and the nonlinearities f

and g are bounded continuous functions. We study the asymmetric (Fuc̆ik)
spectrum with weights, and prove existence theorems for nonlinear perturba-

tions of this spectrum for both the resonance and non-resonance cases. For

the resonance case, we provide a sufficient condition, the so-called generalized
Landesman-Lazer condition, for the solvability. The proofs are based on vari-

ational methods and rely strongly on the variational characterization of the

spectrum.

1. Introduction

We consider the partial differential equation

−∆u+ c(x)u = m(x)[αu+ − βu−], x ∈ Ω,

∂u

∂η
+ σ(x)u = ρ(x)[αu+ − βu−], x ∈ ∂Ω,

(1.1)

where ∆z := ∇ ·∇z, ∂
∂η is the outward normal derivative, (α, β) ∈ R2 are parame-

ters, and c,m ∈ L∞(Ω), σ, ρ ∈ L∞(∂Ω) with c(x),m(x) ≥ 0 almost everywhere in
Ω, σ(x), ρ(x) ≥ 0 almost everywhere in ∂Ω,∫

c(x) dx+

∮
σ(x) dx > 0 and

∫
m(x) dx+

∮
ρ(x) dx > 0,

where
∫

denotes the (volume) integral on Ω and
∮

denotes the (surface) integral on
∂Ω. Throughout this paper we assume that Ω is a bounded domain in Rn (n ≥ 2)
with smooth boundary ∂Ω.
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We are interested in the Fuc̆ik spectrum, namely,

Σ := {(α, β) ∈ R2 : (1.1) has a non-trivial solution}
and our first main result provides a variational characterization of a curve in Σ.

As an application of the variational characterization we consider

−∆u+ c(x)u = m(x)[αu+ − βu−] + f(x, u) in Ω,

∂u

∂ν
+ σ(x)u = ρ(x)[αu+ − βu−] + g(x, u) on ∂Ω,

(1.2)

i.e. a nonlinear perturbation of (1.1). We assume nonlinearities of the form f(x, u) :=

m(x)f̃(u) and g(x, u) := ρ(x)g̃(u), where f̃ , g̃ : R → R are bounded continuous
functions. We prove existence theorems for the non-resonance case, (α, β) 6∈ Σ, and
the resonance case, (α, β) ∈ Σ. For the resonance case we assume a generalized
Landesman-Lazer condition as in [4] and [8].

Our methods are built on the results in [7, 4, 8]. Section 2 provides a brief
summary of the function spaces and the variational setting. In Section 3, we prove
the variational characterization of a curve in Σ using a Hilbert space reduction
method as in [2, 4, 8]. Section 4 contains the existence theorem for the non-
resonance case. Section 5 contains the existence theorem for the resonance case.

2. Characterization of the Fuc̆ik Spectrum

2.1. Variational preliminaries. Define the (c, σ)-inner product 〈·, ·〉(c,σ) : H1(Ω)×
H1(Ω)→ R by

〈u, v〉(c,σ) =

∫
∇u · ∇v +

∫
c(x)uv +

∮
σ(x)uv,

with the associated norm denoted by ‖u‖(c,σ). This norm is equivalent to the

standard H1(Ω)-norm. Set

〈u, v〉(m,ρ) =

∫
m(x)uv +

∮
ρ(x)uv, ‖u‖2(m,ρ) :=

∫
m(x)u2 +

∮
ρ(x)u2,

for u, v ∈ H1(Ω).
Let V(m,ρ) = {u ∈ H1(Ω) : ‖u‖(m,ρ) = 0}, and let H1

(m,ρ) = V ⊥(m,ρ) be the

orthogonal complement with respect to the (c, σ) inner product. Then H1(Ω) =
H1

(m,ρ) ⊕ V(m,ρ) (see [7]) and it further follows that H1
(m,ρ) and V(m,ρ) are (m, ρ)

orthogonal. We will also make use of the norm ‖ · ‖(c,σ) on H1(Ω) and ‖ · ‖(m,ρ) on

H1
(m,ρ).

We also provide an alternate characterization of V(m,ρ) from [7]: taking Ω(m) :=
{x ∈ Ω : m(x) > 0} and ∂Ω(ρ) := {x ∈ ∂Ω : ρ(x) > 0}, we have

V(m,ρ) = {u ∈ H1(Ω) : u = 0 a.e in Ω(m) and Γu = 0 a.e in ∂Ω(ρ)}, (2.1)

where Γ is the trace operator on ∂Ω.
Consider the functional J : H1(Ω)→ R defined by

Jα,β(u) =
1

2
[‖u‖2(c,σ) − α‖u

+‖2(m,ρ) − β‖u
−‖2(m,ρ)]. (2.2)

Then
J ′α,β(u) · v = 〈u, v〉(c,σ) − α〈u, v〉(m,ρ) + (β − α)〈u−, v〉(m,ρ). (2.3)

We note that critical points of Jα,β are weak solutions of (1.1).
We begin with a lemma on the nature of the Fuc̆ik eigenfunctions.
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Lemma 2.1. Every Fuc̆ik eigenfunction ψ is contained in H1
(m,ρ).

Proof. Assume to the contrary that ψ = u + v, where u ∈ H1
(m,ρ), v ∈ V(m,ρ), and

v is nonzero on a set of positive measure. Then

0 = J ′α,β(ψ) · v
= 〈u+ v, v〉(c,σ) − α〈u+ v, v〉(m,ρ) + (β − α)〈(u+ v)−, v〉(m,ρ)
= ‖v‖2(c,σ),

because of the alternate characterization of V(m,ρ) in (2.1). Hence, v = 0 a.e. which

contradicts our assumption. So all Fuc̆ik eigenfunctions are in H1
(m,ρ). �

2.2. Trivial curves. It is known (see [7]) that the problem

−∆u+ c(x)u = µm(x)u, x ∈ Ω,

∂u

∂η
+ σ(x)u = µρ(x)u, x ∈ ∂Ω,

has a simple first eigenvalue µ1 > 0 with associated eigenfunction φ1 which is of
one sign in Ω. Therefore φ+

1 = φ1 and φ−1 = 0, so that

−∆φ1 + c(x)φ1 = µ1m(x)φ1 = m(x)[µ1φ
+
1 − βφ

−
1 ]

for any β ∈ R, and similarly

∂φ1

∂η
+ σ(x)φ1 = ρ(x)[µ1φ

+
1 − βφ

−
1 ]

for any β ∈ R. Therefore

C0 := {(µ1, β) : β ∈ R} ⊂ Σ.

A similar argument will show that

C′0 := {(α, µ1) : α ∈ R} ⊂ Σ.

The curves C0 and C′0 are depicted in Figure 1.

α

β

C1

(µ2, µ2)

(µ1, µ1)
C′0

C0

Figure 1. Trivial and first Fuc̆ik curves
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Lemma 2.2.

Σ ∩ {(α, β) ∈ R2 : α < µ1 or β < µ1} ∩
(
C0 ∪ C′0

)C
= ∅

Proof. Let α < µ1 and β 6= µ1. Assume that (α, β) ∈ Σ and let ψ ∈ H1
(m,ρ) be a

Fuc̆ik eigenfunction associated to (α, β). Then

0 = J ′α,β(ψ) · ψ+ = ‖ψ+‖2(c,σ) − α‖ψ
+‖2(m,ρ) ≥ (µ1 − α)‖ψ+‖2(m,ρ).

So, since α < µ1, it follows that ‖ψ+‖2(m,ρ) = 0, which implies that ψ+ = 0 almost

everywhere. Hence, ψ = −ψ−, and hence ψ is a non-positive Steklov eigenfunction.
So ψ satisfies

−∆ψ + c(x)ψ = m(x)βψ; x ∈ Ω,

∂ψ

∂η
+ σ(x)ψ = ρ(x)βψ; x ∈ ∂Ω.

But if ψ is a non-sign-changing solution, then β = µ1, a contradiction. Hence
(α, β) 6∈ Σ.

If β < µ1 and α 6= µ1, the argument proceeds similarly by examining the expres-
sion J ′α,β(ψ) · ψ−. �

2.3. Higher curves. In what follows, we will consider the case µk < α < µk+1

and α < β. If (α, β) ∈ Σ, then (β, α) ∈ Σ, and therefore, it suffices to only consider
the case α < β. The first curve C1 is depicted in Figure 1.

We split the space H1
(m,ρ) = Xk ⊕ Yk where Xk = span{φ1, φ2, . . . , φk} and

Yk = span{φk+1, φk+2, . . .}. We further define Y = Yk⊕V(m,ρ) so thatH1 = Xk⊕Y .
We begin with an estimate which will be crucial for several lemmas later.

Lemma 2.3. Let (αi, βi) ∈ R2 for i = 1, 2 satisfy the previous hypotheses, and let
si = βi − αi. Let xi ∈ Xk and yi ∈ Y for i = 1, 2. Then(

J ′α2,β2
(x2 + y2)− J ′α1,β1

(x1 + y1)
)
· (x2 − x1)

≤ −δ‖x2 − x1‖2(c,σ) + s2

(
‖x2 − x1‖(m,ρ) + ‖y2 − y1‖(m,ρ)

)
‖y2 − y1‖(m,ρ)

+ |α2 − α1|‖x1‖(m,ρ)‖x2 − x1‖(m,ρ) + |s2 − s1|‖x1 + x2‖(m,ρ)‖x2 − x1‖(m,ρ),

where δ = α2

µk
− 1.

Proof. First we show that

J ′αi,βi(xi + yi)(x2 − x1)

= 〈xi + yi, x2 − x1〉(c,σ) − αi〈xi + yi, x2 − x1〉(m,ρ) + si〈(xi + yi)
−
, x2 − x1〉(m,ρ)

= 〈xi, x2 − x1〉(c,σ) − αi〈xi, x2 − x1〉(m,ρ)
+ si〈(xi + yi)

−
, x2 − x1〉(m,ρ),
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by the (c, σ)- and (m, ρ)-orthogonality of Xk and Y . Then utilizing the previous
expression, we have(

J ′α2,β2
(x2 + y2)− J ′α1,β1

(x1 + y1)
)
· (x2 − x1)

= ‖x2 − x1‖2(c,σ) − 〈α2x2 − α1x1, x2 − x1〉(m,ρ)
+ 〈s2(x2 + y2)− − s1(x1 + y1)−, x2 − x1〉(m,ρ)

= ‖x2 − x1‖2(c,σ) − α2‖x2 − x1‖2(m,ρ) − (α2 − α1)〈x1, x2 − x1〉(m,ρ)
+ s2〈(x2 + y2)− − (x1 + y1)−, x2 − x1〉(m,ρ)
+ (s2 − s1)〈(x1 + y1)−, x2 − x1〉(m,ρ)

(2.4)

By the variational characterization of µk and the definition of Xk, we have that

‖x2 − x1‖2(c,σ) − α2‖x2 − x1‖2(m,ρ) ≤
(

1− α2

µk

)
‖x2 − x1‖2(c,σ) = −δ‖x2 − x1‖2(c,σ).

Since f(t) = t− is non-increasing, we have that v−1 −v
−
2 and v1−v2 have opposite

sign for all v1, v2 ∈ H1. Furthermore, |f(t2)− f(t1)| ≤ |t2 − t1|. Hence,

s2〈(x2 + y2)− − (x1 + y1)−, x2 − x1〉(m,ρ)
= s2〈(x2 + y2)− − (x1 + y1)−, (x2 + y2)− (x1 + y1)〉(m,ρ)

+ s2〈(x2 + y2)− − (x1 + y1)−, y1 − y2〉(m,ρ)
≤ s2〈|(x2 + y2)− − (x1 + y1)−|, |y1 − y2|〉(m,ρ)
≤ s2〈|(x2 + y2)− (x1 + y1)|, |y1 − y2|〉(m,ρ)
= s2〈|(x2 − x1)− (y2 − y1)|, |y1 − y2|〉(m,ρ)
≤ s2

(
‖x2 − x1‖(m,ρ) + ‖y2 − y1‖(m,ρ)

)
‖y2 − y1‖(m,ρ).

Using Hölder’s inequality, we estimate the remaining two terms as∣∣(α2 − α1)〈x, x2 − x1〉(m,ρ)
∣∣ ≤ |α2 − α1|‖x1‖(m,ρ)‖x2 − x1‖(m,ρ)

and∣∣(s2 − s1)〈(x1 + y1)−, x2 − x1〉(m,ρ)
∣∣ ≤ |s2 − s1|‖x1 + x2‖(m,ρ)‖x2 − x1‖(m,ρ).

Combining the previous estimates into (2.4) yields the desired result. �

Lemma 2.4. For a fixed y ∈ Y , Jα,β(x + y) is concave on Xk and moreover, for
any x1, x2 ∈ Xk,(

J ′α,β(x2 + y)− J ′α,β(x1 + y)
)
· (x2 − x1) ≤ −δ‖x2 − x1‖2(c,σ).

Proof. Take y1 = y2 = y, α1 = α2 = α, and β1 = β2 = β in Lemma 2.3. Then
s1 = s2 = β − α, and the inequality reduces to(

J ′α,β(x2 + y)− J ′α,β(x1 + y)
)
· (x2 − x1) ≤ −δ‖x2 − x1‖2(c,σ),

as desired. If we further set x1 = 0 and x2 = x, we observe that(
J ′α,β(x+ y)− J ′α,β(y)

)
· x ≤ −δ‖x‖2(c,σ),

and hence Jα,β(x+ y) is concave on Xk. �
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Since Jα,β is concave on Xk, for any fixed y ∈ Y , we define rα,β(y) ∈ Xk to be
the unique maximizer of Jα,β restricted to Xk + y, namely

Jα,β(rα,β(y) + y) = max
x∈Xk

Jα,β(x+ y). (2.5)

We now establish several properties of the function rα,β(y) which will be helpful
later.

Lemma 2.5. The function rα,β(y) is homogeneous (i.e., rα,β(ty) = trα,β(y) for all
t ≥ 0.)

Proof. For any t > 0, we have that Jα,β(rα,β(ty)+ty) ≥ Jα,β(x+ty) for all x ∈ Xk.

By the homogeneity of Jα,β , we therefore have Jα,β

(
rα,β(ty)

t + y
)
≥ Jα,β

(
x
t + y

)
for all x ∈ Xk. But this implies that

rα,β(ty)
t = rα,β(y), and therefore rα,β is

homogeneous.
For t = 0, we need only to show rα,β(0) = 0. Clearly Jα,β(0) = 0. We will show

that Jα,β(x) < 0 for all x ∈ Xk\{0}, and therefore, 0 = maxx∈Xk Jα,β(x) = rα,β(0).
Since ‖x‖2(c,σ) ≤ µk‖x‖

2
(m,ρ) (see [7, Corollary 2.2]), we observe that

Jα,β(x) =
1

2

(
‖x‖2(c,σ) − α‖x

+‖2(m,ρ) − β‖x
−‖2(m,ρ)

)
≤ 1

2

(
µk‖x‖2(m,ρ) − α‖x

+‖2(m,ρ) − β‖x
−‖2(m,ρ)

)
≤ 1

2

(
µk‖x‖2(m,ρ) − α‖x

+‖2(m,ρ) − α‖x
−‖2(m,ρ)

)
≤ 1

2
(µk − α)‖x‖2(m,ρ) < 0,

for all x ∈ Xk\{0}. Hence, rα,β(0) = 0, and therefore rα,β(ty) = trα,β(y) for all
t ≥ 0 and y ∈ Y . �

Lemma 2.6. For each y 6= 0, rα,β(y) + y changes sign.

Proof. Suppose to the contrary that u = rα,β(y) + y is nonnegative and strictly
positive on some set of positive measure, say Ω1. Since u ∈ H1, u = v+ Σknφn for
kn = 〈u, φn〉(m,ρ) and some v ∈ V(m,ρ). We note that k1 = 〈u, φ1〉(m,ρ) > 0 since
φ1 > 0 on Ω1 and u 6∈ V(m,ρ).

Since φ1 ∈ Xk ∀k ≥ 1 and rα,β(y) maximizes Jα,β on Xk, we have

0 = J ′α,β(u) · φ1

= 〈u, φ1〉(c,σ) − α〈u, φ1〉(m,ρ) + (β − α)〈u−, φ1〉(m,ρ)
= 〈u, φ1〉(c,σ) − α〈u, φ1〉(m,ρ)
= k1‖φ1‖2(c,σ) − αk1‖φ1‖2(m,ρ)
= k1(µ1 − α)‖φ1‖2(m,ρ) < 0,

which is a contradiction. An identical contradiction can be reached in the case that
we assume u is nonpositive and strictly negative on some set of positive measure.
Hence, rα,β(y) + y must change sign for y 6= 0. �

To be precise about the result of the following lemma, let us consider the space
Ỹ , which is the set of points in Y endowed with the topology generated by ‖·‖(m,ρ).
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Lemma 2.7. rα,β(y) is locally Lipschitz continuous as a function of R2 × Ỹ into
Xk.

Proof. Take xi = rαi,βi(yi). By the definition of rαi,βi(yi), we have that(
J ′α2,β2

(rα2,β2
(y2) + y2)− J ′α1,β1

(rα1,β1
(y1)

)
· (rα2,β2

(y2)− rα1,β1
(y1)) = 0,

and hence by Lemma 2.3, we have that

δ‖rα2,β2(y2)− rα1,β1(y1)‖2(c,σ)

≤ s2

(
‖rα2,β2

(y2)− rα1,β1
(y1)‖(m,ρ) + ‖y2 − y1‖(m,ρ)

)
‖y2 − y1‖(m,ρ)

+ |α2 − α1|‖rα1,β1
(y1)‖(m,ρ)‖rα2,β2

(y2)− rα1,β1
(y1)‖(m,ρ)

+ |s2 − s1|‖rα1,β1
(y1) + rα2,β2

(y2)‖(m,ρ)‖rα2,β2
(y2)− rα1,β1

(y1)‖(m,ρ),

Applying a Poincare-type inequality (see Corollary 2.2 in [7]), we obtain

δ‖rα2,β2
(y2)− rα1,β1

(y1)‖2(c,σ)

≤ s2

( 1

µ1
‖rα2,β2

(y2)− rα1,β1
(y1)‖(c,σ) + ‖y2 − y1‖(m,ρ)

)
‖y2 − y1‖(m,ρ)

+ |α2 − α1|‖rα1,β1(y1)‖(m,ρ)
1

µ1
‖rα2,β2(y2)− rα1,β1(y1)‖(c,σ)

+ |s2 − s1|‖rα1,β1
(y1) + rα2,β2

(y2)‖(m,ρ)
1

µ1
‖rα2,β2

(y2)− rα1,β1
(y1)‖(c,σ),

(2.6)

Now, for a given y1, let c1 = ‖rα1,β1
(y1)‖(m,ρ), c2 = ‖rα1,β1

(y1) + y1‖(m,ρ), and
z = ‖rα2,β2

(y2)− rα1,β1
(y1)‖(c,σ). It follows from (2.6) that

δz2 ≤
(
‖y2 − y1‖(m,ρ) + c1|α2 − α1|+ c2|s2 − s1|

) 1

µ1
z + ‖y2 − y1‖2(m,ρ)

Taking γ :=
(
‖y2 − y1‖(m,ρ) + c1|α2 − α1|+ c2|s2 − s1|

)
, we observe that ‖y2 −

y1‖(m,ρ) ≤ γ, and therefore,

δz2 ≤ γ

µ1
z + γ2.

Therefore, z ≤ C(δ)γ, and the lemma is proven. �

Note that in the case α1 = α2 = α and β1 = β2 = β, γ is independent of c1 and
c2. Therefore, since C(δ) is also independent of y1 and y2, we have the following
corollary.

Corollary 2.8. For a given α and β, rα,β : Ỹ → Xk is globally Lipschitz continu-
ous.

Lemma 2.9. There exists a C > 0 such that ‖rα,β(y)‖(c,σ) ≤ C‖y‖(m,ρ).

Proof. Suppose y2 = y and y1 = 0 are fixed and further suppose that α1 = α2 = α
and β1 = β2 = β. Then x2 = rα2,β2

(y2) = rα,β(y) and x1 = rα1,β1
(y1) = rα,β(0) =

0. Then (2.6) reduces to

δ‖rα,β(y)‖2c,σ ≤
( 1

µ1
‖rα,β(y)‖(c,σ) + ‖y‖(m,ρ)

)
‖y‖(m,ρ).

We may solve this inequality to observe that δ‖rα,β(y)‖c,σ ≤ C(δ)‖y‖(m,ρ) where

C(δ) = 1
2µ1δ

+
√

1
δ + 1

4µ2
1δ

2 > 0. Note that C is a decreasing function of δ, and
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therefore, if α− µk = ε > 0, then we can choose δ = ε
µk

< α
µk
− 1 = δ such that

δ‖rα,β(y)‖c,σ ≤ δ‖rα,β(y)‖c,σ ≤ C(δ)‖y‖(m,ρ) ≤ C(δ)‖y‖(m,ρ) .

�

The function rα,β(y) also satisfies a compactness condition, namely:

Lemma 2.10. Let {(αn, βn)} be a bounded sequence in R2 satisfying µk < αn <
µk+1 and αn < βn and let {yn} be a bounded sequence in Y . Then there exist
subsequences, again called, {(αn, βn)} and {yn} such that (αn, βn)→ (α, β) in R2,

yn ⇀ y in Y , yn → y in Ỹ , and rαn,βn(yn)→ rα,β(y) in Xk.

Proof. There exists a subsequence of {(αn, βn)} converging to (α, β) in R2 by the
Bolzano-Weierstrauss Theorem, call it again {(αn, βn)}. Then there exists a subse-
quence of {yn} converging weakly to y in Y by the fact that H1(Ω) is reflexive. We
again call that subsequence {yn}. Finally, by the Rellich-Kondrachov Theorem and
the compactness of the trace operator given m ∈ L∞(Ω) and ρ ∈ L∞(∂Ω), there ex-

ists a subsequence of {yn} converging strongly to y in Ỹ , called again {yn}. Hence,
by the continuity of rα,β established in Lemma 2.7, we have rαn,βn(yn) → rα,β(y)
in X. �

Finally, we observe the following property of rα,β .

Lemma 2.11. If u ∈ H1(Ω) is a critical point of Jα,β, then u = rα,β(y) + y for
some y ∈ Y .

Proof. Since u is a critical point of Jα,β , J ′α,β(u) · v = 0 for all v ∈ H1(Ω). Since

H1(Ω) = Xk ⊕ Y , we may write u = x + y where x ∈ Xk and y ∈ Y . We observe
that 0 = J ′α,β(u) · x = J ′α,β(x) · x, showing that x is a critical point of Jα,β on the
set y+X. But Jα,β is strictly concave on y+X and its unique maximizer is defined
as rα,β(y). So x = rα,β(y) and hence u = rα,β(y) + y. �

3. Reducing the functional

Motivated by Lemma 2.11, we now define the restricted functional J̃α,β : Y → R
by J̃α,β(y) := Jα,β(rα,β(y) + y). We begin by establishing some properties of this
new functional.

Lemma 3.1. The functional J̃α,β ∈ C1(Y,R) and J̃ ′α,β(y) = J ′α,β(rα,β(y) + y) for
all y ∈ Y .

Proof. We will establish this claim by showing that

J̃α,β(y2)− J̃α,β(y1) = J ′α,β(rα,β(y1) + y1) · (y2 − y1) + o
(
‖y2 − y1‖(m,ρ)

)
.
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In addition to showing that J̃α,β ∈ C1(Y,R), this will also establish that J̃ ′α,β(y) =

J ′α,β(rα,β(y) + y). First, note that

J̃α,β(y2)− J̃α,β(y1)

= Jα,β(rα,β(y2) + y2)− Jα,β(rα,β(y1) + y1)

≤ Jα,β(rα,β(y2) + y2)− Jα,β(rα,β(y2) + y1)

= J ′α,β(rα,β(y2) + y1) · (y2 − y1) + o
(
‖y2 − y1‖(m,ρ)

)
= J ′α,β(rα,β(y1) + y1) · (y2 − y1) +

(
J ′α,β(rα,β(y2) + y1)

− J ′α,β(rα,β(y1) + y1)
)
· (y2 − y1) + o

(
‖y2 − y1‖(m,ρ)

)
(3.1)

by the maximizing property of rα,β , the Lipschitz continuity of rα,β , and the dif-
ferentiability of Jα,β . By the continuity of rα,β and J ′α,β , we note that(

J ′α,β(rα,β(y2) + y1)− J ′α,β(rα,β(y1) + y1)
)
· (y2 − y1) = o

(
‖y2 − y1‖(m,ρ)

)
,

and hence (3.1) reduces to

J̃α,β(y2)− J̃α,β(y1) ≤ J ′α,β(rα,β(y1) + y1) · (y2 − y1) + o
(
‖y2 − y1‖(m,ρ)

)
.

A similar argument will show that

J̃α,β(y2)− J̃α,β(y1) ≥ J ′α,β(rα,β(y1) + y1) · (y2 − y1) + o
(
‖y2 − y1‖(m,ρ)

)
,

and hence the claim is proven. �

Remark 3.2. If we knew rα,β to be differentiable, this result would be a simple
consequence of the chain rule. However, in general, this is not the case.

Given that we have now established that J̃α,β ∈ C1(Y,R), we may improve upon
Lemma 2.11.

Lemma 3.3. The element y ∈ Y is a critical point of J̃α,β if and only if rα,β(y)+y
is a critical point of Jα,β.

Proof. First, assume that rα,β(y)+y is a critical point of Jα,β . Then J ′α,β(rα,β(y)+

y) · v = 0 for all v ∈ H1(Ω) (and in particular, for all v ∈ Y ). By Lemma 3.1, this

implies that J̃ ′α,β(y) · v = 0 for all v ∈ Y , and y is a critical point of J̃α,β .

Now, assume that y is a critical point of J̃α,β . As before, we then have that
J ′α,β(rα,β(y)+y) ·v = 0 for all v ∈ Y . However, since rα,β(y) maximizes Jα,β(x+y)

for all x ∈ Xk, we also have that J ′α,β(rα,β(y) + y) · x = 0 for all x ∈ Xk. Hence,

since H1(Ω) = Xk ⊕ Y , we have J ′α,β(rα,β(y) + y) · w = 0 for all w ∈ H1(Ω). �

Now, we observe a homogeneity property of J̃α,β .

Lemma 3.4. The functional J̃α,β(ty) = t2J̃α,β(y) for all t ≥ 0 and y ∈ Y .

The result follows immediately from the homogeneity of Jα,β and the homo-
geneity of rα,β from Lemma 2.5. An important consequence of this lemma easily
follows.

Lemma 3.5. If y ∈ Y is a critical point of J̃α,β, then J̃α,β(y) = 0.

Proof. Differentiating the identity J̃α,β(ty) = t2J̃α,β(y) with respect to t, we find

that J̃ ′α,β(ty) · y = 2tJ̃α,β(y). Setting t = 1, the result immediately follows. �
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As with Jα,β , it will occasionally be helpful to think of J̃α,β as a function on

R2 × Y , which we denote J̃(α, β, y).

Lemma 3.6. For each fixed y 6= 0, the functional J̃(α, β, y) := J̃α,β(y) is strictly
decreasing in α and β.

Proof. Assume that α1 ≤ α2 and β1 ≤ β2, with at least one of these inequalities
strict. Then

J̃(α2, β2, y) = J(α2, β2, r(α2, β2, y) + y)

=
1

2

[
‖r(α2, β2, y) + y‖2(c,σ) − α2‖

(
r(α2, β2, y) + y

)+‖2(m,ρ)
− β2‖

(
r(α2, β2, y) + y

)−‖2(m,ρ)].
(3.2)

Since r(α2, β2, y) + y is sign-changing for y 6= 0 by Lemma 2.6, it follows that

‖ (r(α2, β2, y) + y)
+ ‖(m,ρ)‖ (r(α2, β2, y) + y)

− ‖(m,ρ) > 0,

and hence, since at least one of the inequalities α1 ≤ α2 and β1 ≤ β2 is strict, we
have from (3.2) that

J̃(α2, β2, y) <
1

2

[
‖r(α2, β2, y) + y‖2(c,σ) − α1‖ (r(α2, β2, y) + y)

+ ‖2(m,ρ)

− β1‖ (r(α2, β2, y) + y)
− ‖2(m,ρ)

]
= J(α1, β1, r(α2, β2, y) + y).

(3.3)

But recalling the maximizing property of rα,β (see (2.5)), we must have that

J(α1, β1, r(α2, β2, y) + y) ≤ J(α1, β1, r(α1, β1, y) + y) = J̃(α1, β1, y). (3.4)

Combining (3.3) and (3.4) gives the desired result, that J̃(α2, β2, y) < J̃(α1, β1, y)
for each y 6= 0. �

Lemma 3.7. Given any K > 0, there exists C > 0 such that∣∣J̃(α2, β2, x)− J̃(α1, β1, x)
∣∣ ≤ C (|α2 − α1|+ |β2 − β1|)

on R(K) := {(α1, α2, β1, β2, y) ∈ R4 ×H1(Ω) : max{|α1|, |α2|, |β1|, |β2|, ‖y‖(c,σ)} ≤
K}.

Proof. First, we establish that the functional J is uniformly Lipschitz in α, β, and
x. Note that

|J(α2, β2, x)− J(α1, β1, x)| = 1

2

∣∣∣(α2 − α1)‖x+‖2(m,ρ) + (β2 − β1)‖x−‖2(m,ρ)
∣∣∣

≤ 1

2µ1
‖x‖2(c,σ) (|α2 − α1|+ |β2 − β1|)

≤ 1

2µ1
K (|α2 − α1|+ |β2 − β1|) .

Hence J is uniformly Lipschitz in α, β on R(K). Since J ∈ C1(H1(Ω);R), it is also
uniformly Lipschitz in x on R(K)

Recall from Lemma 2.7 that rα,β is locally Lipschitz in α, β. Therefore, we

have that rα,β is uniformly Lipschitz in α, β on R(K). Therefore, J̃(α, β, x) =
J(α, β, r(α, β, x) + x) is a composition of uniformly Lipschitz functions, and hence
the claim follows. �
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3.1. Minimizing in Y . By Lemma 3.3, we know that searching for critical points
of Jα,β on H is equivalent to searching for critical points of J̃α,β on Y . Further, since

J̃α,β is homogeneous, it is sufficient to search for critical points on the (m, ρ)-unit
sphere in Y , namely SY := {y ∈ Y : ‖y‖(m,ρ) = 1}.

Since we assume m, ρ ∈ L∞(Ω), SY is weakly closed in H1(Ω); that is, for any
sequence {yn} ⊂ SY with yn ⇀ y in H1(Ω), we have yn → y in Y and y ∈ SY .

First we note several properties of J̃α,β when restricted to SY .

Lemma 3.8. J̃α,β attains a global minimum on SY .

Proof. First, note that

2J̃α,β(y) = 2Jα,β(rα,β(y) + y)

= ‖rα,β(y) + y‖2(c,σ) − α‖(rα,β(y) + y)+‖2(m,ρ) − β‖(rα,β(y) + y)−‖2(m,ρ)
> −α‖rα,β(y) + y‖2(m,ρ) − β‖rα,β(y) + y‖2(m,ρ)
> −2β‖rα,β(y) + y‖2(m,ρ).

Since rα,β(y) ∈ X and y ∈ Y , 〈rα,β(y), y〉(m,ρ) = 0 and hence

2J̃α,β(y) > −2β‖rα,β(y) + y‖2(m,ρ)
= −2β(‖r(y)‖2(m,ρ) + ‖y‖2(m,ρ))

> −2β(
1

µ1
‖r(y)‖2(c,σ) + ‖y‖2(m,ρ))

> −2β(
C2

µ1
‖y‖2(m,ρ) + ‖y‖2(m,ρ))

≥ −k(‖y‖2(m,ρ))

where k = 2β(C
2

µ1
+ 1) by Corollary 2.2 (a) in [7] and Lemma 2.9.

Now, take M = infSY J̃α,β(y) > −∞ (since ‖y‖(m,ρ) = 1 on SY ) and choose

{yn} ⊂ SY to be a minimizing sequence, that is, J̃α,β(yn) → M . So J̃α,β(yn) is
bounded. We wish to show that ‖yn‖(c,σ) is also bounded. Note first that since

J̃α,β(yn) is bounded and

2J̃α,β(yn) = 2Jα,β(rα,β(yn) + yn)

= ‖rα,β(yn) + yn‖2(c,σ) − α‖(rα,β(yn) + yn)+‖2(m,ρ)
− β‖(rα,β(yn) + yn)−‖2(m,ρ)

= ‖rα,β(yn)‖2(c,σ) + ‖yn‖2(c,σ) − α‖(rα,β(yn) + yn)+‖2(m,ρ)
− β‖(rα,β(yn) + yn)−‖2(m,ρ).

(3.5)

We wish to show that all terms other than ‖yn‖2(c,σ) in (3.5) are bounded, and hence

‖yn‖(c,σ) must also be bounded.

We recall that ‖rα,β(yn)‖2(c,σ) < C2‖yn‖2(m,ρ) = C2 by Lemma 2.9 and by the

fact that {yn} ⊂ SY . We also note that

‖(rα,β(yn) + yn)+‖2(m,ρ) ≤ ‖rα,β(yn) + yn‖2(m,ρ)
≤ ‖rα,β(yn)‖2(m,ρ) + ‖yn‖2(m,ρ)
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≤ 1

µ1
‖rα,β(yn)‖2(c,σ) + ‖yn‖2(m,ρ)

≤ C2

µ1
‖yn‖2(m,ρ) + ‖yn‖2(m,ρ)

=
C2

µ1
+ 1,

by [7, Corollary 2.2(a)], Lemma 2.9, and the fact that {yn} ⊂ SY . An identical

argument will show that ‖(rα,β(yn) + yn)−‖2(m,ρ) ≤
C2

µ1
+ 1. Hence, we have shown

via equation (3.5) that ‖yn‖(c,σ) is also bounded.
Hence, by Lemma 2.10, we may choose a subsequence, call it again {yn}, with

yn
(c,σ)−−−⇀ y0, yn

(m,ρ)−−−→ y0 with ‖y0‖(m,ρ) = 1, and rα,β(yn)
(c,σ)−−−→ rα,β(y0). So taking

the limit inferior of both sides of (3.5) as n→∞, we see that

2M = lim inf
n→∞

2J̃α,β(yn)

= ‖rα,β(y0)‖2(c,σ) + lim inf
n→∞

‖yn‖2(c,σ)

− α‖(rα,β(y0) + y0)+‖2(m,ρ) − β‖(rα,β(y0) + y0)−‖2(m,ρ)
≥ ‖rα,β(y0)‖2(c,σ) + ‖y0‖2(c,σ) − α‖(rα,β(y0) + y0)+‖2(m,ρ)
− β‖(rα,β(y0) + y0)−‖2(m,ρ)

= 2J̃α,β(y0),

by the weak lower semicontinuity of the (c, σ) norm. But then M ≥ J̃α,β(y0) with

y0 ∈ SY and hence we must have J̃α,β(y0) = M as desired. �

Lemma 3.9. y0 is a nontrivial critical point of J̃α,β if and only if y0
‖y0‖(m,ρ)

is a

critical point of J̃α,β restricted to SY and J̃α,β(y0) = 0.

Proof. If y0 is a nontrivial critical point of J̃α,β , then by Lemma 3.5, J̃α,β(y0) = 0.

Furthermore, since y0 is a critical point of J̃α,β , we may differentiate both sides of
the equation in Lemma 3.4 with respect to y and set t = 1/‖y0‖(m,ρ) to see that

0 =
1

‖y0‖(m,ρ)
J̃ ′α,β(y0) · y = J̃ ′α,β

( y0

‖y0‖(m,ρ)

)
· y

holds for all y ∈ Y . So in particular, it holds for y ∈ SY and the forward direction
is established.

Now, let y0/‖y0‖(m,ρ) be a critical point of J̃α,β restricted to SY and let J̃α,β(y0) =
0. Then as in the previous case, we have

0 = J̃ ′α,β

( y0

‖y0‖(m,ρ)

)
· y =

1

‖y0‖(m,ρ)
J̃ ′α,β(y0) · y

for all y ∈ SY . But note that, for any ŷ ∈ Y , we may write ŷ = ty for some y ∈ SY .
So,

J̃ ′α,β(y0) · ŷ = J̃ ′α,β(y0) · (ty) = tJ̃ ′α,β(y0) · y = 0.

So y0 is a critical point of J̃α,β as desired. �

Lemma 3.10. A function u ∈ H1(Ω) is a nontrivial critical point of Jα,β if and

only if u = rα,β(y0) + y0 where y0/‖y0‖(m,ρ) is a critical point of J̃α,β restricted to

SY and J̃α,β(y0) = 0.
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The above lemma follows from combining Lemma 3.3 and Lemma 3.9. We now
define M(α, β) = miny∈SY Jα,β(y).

Lemma 3.11. The function M(α, β) is Lipschitz continuous and is strictly de-
creasing as a function of both α and β. Moreover, M(α, α) > 0.

Proof. Let (α1, β1) and (α2, β2) be points in the plane, and let y1 and y2 be the

corresponding minimizers on SY (i.e. M(αk, βk) = J̃αk,βk(yk) for k = 1, 2). Let
uij = rαi,βi(yj) + yj for i, j = 1, 2. Then

M(αi, βi)

= J̃αi,βi(yi)

≤ J̃αi,βi(yj)
= Jαi,βi(rαi,βi(yj) + yj)

= Jαj ,βj (rαi,βi(yj) + yj) +
1

2
(αj − αi)‖u+

ij‖
2
(m,ρ) +

1

2
(βj − βi)‖u−ij‖

2
(m,ρ)

≤ Jαj ,βj (rαj ,βj (yj) + yj) +
1

2
(αj − αi)‖u+

ij‖
2
(m,ρ) +

1

2
(βj − βi)‖u−ij‖

2
(m,ρ)

= M(αj , βj) +
1

2
(αj − αi)‖u+

ij‖
2
(m,ρ) +

1

2
(βj − βi)‖u−ij‖

2
(m,ρ)

(3.6)

by the minimizing property of yi and the maximizing property of rαj ,βj . This
inequality holds in the case i = 1 and j = 2, as well as the case i = 2 and j = 1.
Hence

|M(α2, β2)−M(α1, β1)| ≤ c(|α2 − α1|+ |β2 − β1|)
where c = 1

2 max{‖u12‖2(m,ρ), ‖u21‖2(m,ρ)}. Note that if α2 ≥ α1 and β2 ≥ β1 with

at least one of the inequalities strict, then M(α2, β2) < M(α1, β1) by taking i = 2
and j = 1 in (3.6). This follows from the fact that uij must be sign-changing by
Lemma 2.6.

In the case α = β, for every w ∈ H1(Ω), we may write w = u + v where
u ∈ H1

(m,ρ) and v ∈ V(m,ρ) have

2Jα,β(w) = 2Jα,α(w)

= ‖u+ v‖2(c,σ) − α‖u+ v‖2(m,ρ)
= ‖u‖2(c,σ) + ‖v‖2(c,σ) − α‖u‖

2
(m,ρ) + ‖v‖2(m,ρ)

= ‖u‖2(c,σ) − α‖u‖
2
(m,ρ) + ‖v‖2(c,σ)

=

∞∑
i=1

(µi − α)|ci|2 + ‖v‖2(c,σ)

by [7, Theorem 2.1(iii)] where

ci =
1

µi
〈u, φi〉(c,σ) = 〈u, φi〉(m,ρ).

Since µk < α < µk+1, we note that the coefficients (µi − α) are negative for i ≤ k,
positive for i ≥ k + 1, and are increasing in i. Writing u = x + y where x ∈ Xk

and y ∈ Yk, we note that, if we maximize in the Xk direction, the maximum occurs
when ci = 0 for all i ≤ k since (µi − α) are negative for i ≤ k. In other words,
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rα,α(y) ≡ 0. Therefore,

2J̃α,α(y) = 2Jα,α(y) =

∞∑
i=k+1

(µi − α)|ci|2 for all y ∈ Yk. (3.7)

We now wish to show that M(α, α) = infy∈SY J̃α,α(y) > 0. Taking

f(ck+1, ck+2, . . .) =

∞∑
i=k+1

(µi − α)|ci|2, g(ck+1, ck+2, . . .) =

∞∑
i=k+1

|ci|2,

we apply the method of Lagrange multipliers to find the critical points of f subject
to the constraint g(ck+1, ck+2, . . .) = 1. Setting ∇f = λ∇g, we obtain 2(µi−α)ci =
2λci for i ≥ k+1. Hence, critical points occur when cj = ±1 for some j ≥ k+1 and
ci = 0 for all i 6= j (corresponding to the Lagrange multiplier λ = µj − α). Since
the coefficients (µi − α) are positive for i ≥ k + 1 and increasing, the minimizing
choice occurs when ck+1 = ±1 and ci = 0 for all i > k+ 1. Hence, the minimizer is

y = ±φk+1 and M(α, α) = J̃α,α(φk+1) + ‖v‖2(c,σ) = 1
2 (µk+1−α) + ‖v‖2(c,σ) > 0. �

Not only M(α, α) > 0, we can also make an additional estimate which will later
help in establishing bounds for the Fuc̆ik spectrum.

Lemma 3.12. M(α, µk+1) > 0.

Proof. Let y ∈ SY and let y = z + v where z ∈ Yk and v ∈ V(m,ρ). Then, by the
maximizing property

J̃α,µk+1
= Jα,µk+1

(rα,µk+1
(y) + y)

≥ Jα,µk+1
(y)

=
1

2

(
‖y‖2(c,σ) − α‖y

+‖2(m,ρ) − µk+1‖y−‖2(m,ρ)
)

≥ 1

2

(
‖y‖2(c,σ) − µk+1‖y‖2(m,ρ)

)
=

1

2

(
‖z‖2(c,σ) − µk+1‖z‖2(m,ρ) + ‖v‖2(c,σ)

)
=

1

2

∞∑
i=k+1

(µi − µk+1)|ci|2 + ‖v‖2(c,σ) ≥ 0.

We note that, of the last two inequalities above, at least one must be strict. If the
last inequality is in fact an equality, then ck+1 = 1 and ci = 0 for all i > k+ 1. But
this would imply that y = ±φk+1, in which case y+ is nontrivial, and the previous
inequality was strict. So M(α, µk+1) > 0. �

3.2. Variational characterization of the Fuc̆ik spectrum. All of the previous
lemmas lead to the following theorem.

Theorem 3.13. Let µk < α < µk+1. Then one of the following is true:

(1) M(α, β) > 0 for all β ≥ α, which implies that (α, β) 6∈ Σ.
(2) There is a unique β(α) > µk+1 such that M(α, β(α)) = 0, which implies

that (α, β(α)) ∈ Σ but (α, β) 6∈ Σ for all α ≤ β < β(α).

Lemma 3.14. The curve (α, β(α)) is Lipschitz continuous, strictly decreasing, and
contains the point (µk+1, µk+1).
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Proof. Consider two points (α1, β1), (α2, β2) ∈ Σ with α2 > α1. Let yi ∈ SY be

a minimizer of J̃αi,βi(y). Then J̃αi,βi(yi) = 0 and J̃αi,βi(y) ≥ 0 for all y ∈ SY ,

and therefore by the homogeneity of J̃αi,βi , J̃αi,βi(y) ≥ 0 for all y ∈ Y . Let
ui = rαi,βi(yi) + yi. Since (α1, β1) ∈ Σ, we have

0 = M(α1, β1)

= 2J̃α1,β1(y1)

= 2Jα1,β1
(u1)

= ‖u1‖2(c,σ) − α1‖u+
1 ‖2(m,ρ) − β1‖u−1 ‖2(m,ρ)

> ‖u1‖2(c,σ) − α2‖u+
1 ‖2(m,ρ) − β1‖u−1 ‖2(m,ρ)

= 2Jα2,β1

(
rα1,β1(y1)

)
≤M(α2, β1)

where we note that the last inequality is strict since α2 > α1 and u−1 is nontrivial
by Lemma 2.6. Since M(α, β) is strictly decreasing in β by Lemma 3.11 and
M(α2, β2) = 0, we must have β2 < β1, which shows that β(α) is strictly decreasing
as desired.

Now, we consider

M(α2, β1) ≤ Jα2,β1(u2) = Jα2,β1(u2)− Jα2,β2(u2) =
1

2
(β2 − β1)‖u−2 ‖2(m,ρ),

since Jα2,β2
(u2) = 0. Hence M(α2, β1) ≤ 1

2 (β2 − β1)‖u−2 ‖2(m,ρ) < 0 since β1 > β2.

Thus, we may rearrange the inequality to observe that

|β2 − β1| = β1 − β2

≤ 2
1

‖u−2 ‖2(m,ρ)
(−M(α2, β1))

= 2
1

‖u−2 ‖2(m,ρ)
|M(α2, β1)|

= 2
1

‖u−2 ‖2(m,ρ)
|M(α2, β1)−M(α1, β1)|

≤ 2c
1

‖u−2 ‖2(m,ρ)
|α2 − α1|,

by the fact that M(α1, β1) = 0 and the Lipschitz estimate for M(α, β) from Lemma
3.11. Hence, β(α) is Lipschitz continuous as desired. �

4. Nonresonance problem

We are interested in the existence of weak solutions of (1.2) where (α, β) ∈ R2

is such that µk < α < µk+1 and α ≤ β < β(α). Since we consider a fixed k in this
section, we set X = Xk for notational convenience. By the characterization of the
Fuc̆ik Spectrum, we know that (α, β) 6∈ Σ. All properties of f, g,m, ρ, c, and σ are
as outlined in Section 1.

Consider the functional associated with (1.2) defined by Iα,β := I : H1(Ω)→ R;
with

I(u) = Jα,β(u)−
[ ∫

F (x, u) +

∮
G(x, u)

]
, (4.1)
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where
∫

denotes the (volume) integral on Ω,
∮

denotes the (surface) integral on

∂Ω, and F (x, u) =
∫ u

0
m(x)f̃(ξ)dξ, G(x, u) =

∫ u
0
ρ(x)g̃(ξ)dξ, and Jα,β(u) is defined

in (2.2). Then

I ′(u) · v = J ′α,β(u)v −
[ ∫

f(x, u)v +

∮
g(x, u)v

]
for all v ∈ H1(Ω).

So, a critical point of I is a weak solution of (1.2).

Theorem 4.1. Assume that µk < α < µk+1, α ≤ β < β(α), the nonlinearities f
and g are bounded continuous functions, and m ∈ L∞(Ω) and ρ ∈ L∞(∂Ω), then
problem (1.2) has at least one weak solution.

We will use a variational argument to prove Theorem 4.1. To do so, we first
prove some lemmas which will be needed in the sequel. The first lemma shows the
last two terms in I have at most linear growth.

Lemma 4.2. There is a positive constant κ such that∣∣ ∫ F (x, u) +

∮
G(x, u)

∣∣ ≤ κ‖u‖(m,ρ) for all u ∈ H1(Ω), (4.2)

where κ is independent of u.

Proof. Since f̃ and g̃ are bounded then there exist constant C1 and C2 such that
|f̃(u)| ≤ C1 and |g̃(u)| ≤ C2. Therefore, |F (x, u)| ≤ C1m(x)|u| and |G(x, u)| ≤
C2ρ(x)|u|. Using these estimates, Hölder inequality, and the fact that m is bounded,
we obtain that∣∣ ∫ F (x, u)

∣∣ ≤ ∫ C1m(x)|u| ≤ C̃1

(∫
(m(x)|u|)2

)1/2

≤ κ1

∫
m(x)u2 ≤ κ1‖u‖(m,ρ),

where κ1 = C̃1‖m‖∞. Similarly,
∣∣ ∮ G(x, u)

∣∣ ≤ κ2‖u‖(m,ρ). Thus,∣∣∣ ∫ F (x, u) +

∮
G(x, u)

∣∣∣ ≤ κ‖u‖(m,ρ) for all u ∈ H1(Ω). �

The next lemma shows the geometry of I.

Lemma 4.3. The functional I is such that

(1) I(u)→ −∞ as ‖u‖(c,σ) →∞, for u ∈ X; that is, I is anti-coercive on X.
(2) I is bounded below when restricted to Y, where Y := {rα,β(y) + y : y ∈ Y }.

Proof. We shall first prove that I is anti-coercive when restricted to X. Using the
fact that ‖x‖2(c,σ) ≤ µk‖x‖

2
(m,ρ) for all x ∈ X, and α ≤ β < β(α), it follows that

Jα,β(x) =
1

2
[‖x‖2(c,σ) − α‖x

+‖2(m,ρ) − β‖x
−‖2(m,ρ)]

≤ 1

2
[‖x‖2(c,σ) − α‖x‖

2
(m,ρ)]

≤ 1

2
[‖x‖2(c,σ) −

α

µk
‖x‖2(c,σ)]

=
1

2
(1− α

µk
)‖x‖2(c,σ)

Then using Lemma 4.2, we obtain

I(x) ≤ −η‖x‖2(c,σ) + κ‖x‖(m,ρ) + C,
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where η = 1
2 ( αλk − 1) > 0. Since µ1‖x‖(m,ρ) ≤ ‖x‖(c,σ) (see [7, Corrolary 2.18]),

then I(x) ≤ −η‖x‖2(c,σ) + κ
µ1
‖x‖(c,σ) + C. So, I(u) → −∞ as ‖u‖(c,σ) →∞ for

u ∈ X. Thus I is anti-coercive on X.
Now, we shall prove that I is bounded below when restricted to Y. By the

assumption β < β(α) and Theorem 3.13 , it follows that miny∈SY J̃α,β(y) = M(α, β)
and M(α, β) > 0. Then for y 6= 0 and y ∈ Y , we have that

Jα,β(rα,β(y) + y) = J̃α,β(y) = ‖y‖2(m,ρ)J̃α,β
( y

‖y‖(m,ρ)
)
≥ ε‖y‖2(m,ρ)

where ε = M(α, β). Since rα,β is Lipschitz continuous, as in Lemma 2.7, we have
that ‖rα,β(y)‖(c,σ) ≤ C‖y‖(m,ρ) for some C > 0, and we see that

I(u) ≥ ε‖y‖2(m,ρ) − κ‖u‖(m,ρ)
= ε‖y‖2(m,ρ) − κ‖rα,β(y) + y‖(m,ρ)
≥ ε‖y‖2(m,ρ) − κ

(
‖rα,β(y)‖(m,ρ) + ‖y‖(m,ρ)

)
≥ ε‖y‖2(m,ρ) − κ (C + 1) ‖y‖(m,ρ)

(4.3)

Thus, I is bounded below when restricted to Y. �

As a consequence of the results above, there exists some R > 0 sufficiently large
such that

sup
{x∈X:‖x‖(c,σ)=R}

I(x) < inf
u∈Y

I(u).

The next lemma shows the linking property of I. Let BR = {x ∈ X : ‖x‖(c,σ) ≤ R}
and ∂BR = {x ∈ X : ‖x‖(c,σ) = R}.

Lemma 4.4. Let γ : BR ⊂ X → H1(Ω) be a continuous function such that
γ|∂BR(x) = x. Then γ(BR) ∩ Y 6= ∅.

Proof. Let x ∈ BR and let write γ(x) = γX(x) + γY (x), where γX(x) ∈ X and
γY (x) ∈ Y . One can see that for all x ∈ ∂BR, γX(x) = x and γY (x) = 0. To
show that γ(BR) ∩ Y 6= ∅, it suffices to show that there is an x ∈ BR such that
γX(x) = rα,β(γY (x)).

Let H : BR → X defined by H(x) = γX(x) − rα,β(γY (x)). We shall show that
there is x ∈ BR such that H(x) = 0. Notice that H is continuous and for all x ∈
∂BR, H(x) = x 6= 0. Therefore, the Brouwer degree deg(H,BR, 0) is well defined.
Now, consider the homotopy h(x, t) = tH(x) + (1− t)x. Note that for x ∈ ∂BR we
have h(x, t) = tx + (1 − t)x = x 6= 0. Hence, deg(H,BR, 0) = deg(Id,BR, 0) = 1,
where Id represents the identity map. Thus H(x) = 0 has a solution in BR. �

To prove Theorem 4.1 using the saddle point theorem of Rabinowitz, it suf-
fices first to show I satisfies the Palais-Smale condition (PS) which builds some
compactness into the functional I.

Lemma 4.5. I satisfies the Palais-Smale condition (PS).

Proof. Let {un} be a sequence in H1(Ω) such that {I(un)} is bounded and I ′(un)→
0 as n→∞. We will show that {un} has a convergent subsequence. In view of the
assumptions on the nonlinearities f and g, it suffices to first show that the sequence
{un} is bounded with respect to ‖ · ‖(m,ρ), that is, there exists a constant K such
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that ‖u‖(m,ρ) < K. Suppose by contradiction that ‖un‖(m,ρ) →∞ as n→∞. Let
vn = un/‖un‖(m,ρ). Then

I(un)

‖un‖2(m,ρ)
= Jα,β(vn)− 1

‖un‖2(m,ρ)

[ ∫
F (x, un) +

∮
G(x, un)

]
.

Taking the limit, we have that I(un)/‖un‖2(m,ρ) → 0 since {I(un)} is bounded,

and 1
‖un‖2(m,ρ)

[
∫
F (x, un) +

∮
G(x, un)] → 0 because of the estimate (4.2). Hence,

I(un)/‖un‖2(m,ρ) and [
∫
F (x, un) +

∮
G(x, un)]/‖un‖2(m,ρ) are bounded. Also note

that ‖v±n ‖(m,ρ) ≤ 1. From the definition of Jα,β it follows that ‖vn‖(c,σ) is bounded.

Using the fact that H1(Ω) is reflexive, the Sobolev compact embedding, and the
continuity of the trace operator, we obtain that there exists a subsequence vn that
converges weakly to v0 in H1(Ω) and that converges strongly to v0 in L2(Ω) (also
in L2(∂Ω)). Since m and ρ are bounded functions and using the continuity of the
norm ‖ · ‖(m,ρ), we obtain that ‖vn‖(m,ρ) → ‖v0‖(m,ρ). Thus, ‖v0‖(m,ρ) = 1 since
‖vn‖(m,ρ) = 1.

Now, for any w ∈ H1(Ω),

I ′(un)

‖un‖(m,ρ)
· w = 〈vn, w〉(c,σ) − α〈v+

n , w〉(m,ρ) + β〈v−n , w〉(m,ρ)

− 1

‖un‖(m,ρ)
[

∫
m(x)f̃(un)w +

∮
ρ(x)g̃(un)w]

Using the boundedness of the nonlinearities f and g, and of the weights m and ρ,
we have that

1

‖un‖(m,ρ)
[

∫
m(x)f̃(un)w +

∮
ρ(x)g̃(un)w]→ 0.

Since vn → v0 strongly in L2(Ω) and L2(∂Ω), 〈v+
n , w〉(m,ρ) → 〈v+

0 , w〉(m,ρ) and

〈v−n , w〉(m,ρ) → 〈v−0 , w〉(m,ρ). By the weak convergence of vn in H1(Ω), we see that

〈vn, w〉(c,σ) → 〈v0, w〉(c,σ). We also note that I′(un)
‖un‖(m,ρ)

· w → 0 as n→∞. Hence,

0 = 〈v0, w〉(c,σ) − α〈v+
0 , 〉(m,ρ) − β〈v

−
0 , w〉(m,ρ) for all w ∈ H1(Ω).

Thus v0 is a nontrivial weak solution of (1.1). This leads to a contradiction since
(α, β) 6∈ Σ. Thus, {un} are bounded with respect to ‖ · ‖(m,ρ).

Let us analyze carefully the functional I.

I(un) =
1

2
[‖un‖2(c,σ) − α‖u

+
n ‖2(m,ρ) − β‖u

−
n ‖2(m,ρ)]−

[ ∫
F (x, un) +

∮
G(x, un)

]
Since I(un) is bounded and using the fact that {un} is bounded with respect to ‖·

‖(m,ρ) and the estimate (4.2), we have that ‖u+
n ‖(m,ρ), ‖u−n ‖(m,ρ), and [

∫
F (x, un)+∮

G(x, un)] are all bounded. Thus, ‖un‖(c,σ) must be bounded. Therefore there

exists a subsequence un that converges weakly to u in H1(Ω) and converges strongly
to u in L2(Ω) (also in L2(∂Ω)). Since m and ρ are bounded functions and using
the continuity of the norm ‖ · ‖(m,ρ), we obtain that ‖un‖(m,ρ) → ‖u‖(m,ρ).

Now, consider

I ′(un).(un − u) = 〈un, (un − u)〉(c,σ) − α〈u+
n , (un − u)〉(m,ρ) + β〈u−n , (un − u)〉(m,ρ)

−
[ ∫

m(x)f̃(un)(un − u) +

∮
ρ(x)g̃(un)(un − u)

]
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By the assumption I ′(un) → 0 in
(
H1(Ω)

)∗
it follows that I ′(un).(un − u) → 0.

Since ‖u+
n ‖(m,ρ), ‖u−n ‖(m,ρ), f̃ , and g̃ are all bounded, and ‖un‖(m,ρ) → ‖u‖(m,ρ),

we have that

− α〈u+
n , (un − u)〉(m,ρ) + β〈u−n , (un − u)〉(m,ρ)

−
[ ∫

m(x)f(un)(un − u) +

∮
ρ(x)g(un)(un − u)

]
→ 0.

Therefore 〈un, (un − u)〉(c,σ) → 0. Thus ‖un‖2(c,σ) − 〈un, u〉(c,σ) → 0.

Since un converges weakly to u in H1(Ω), we have that 〈un, u〉(c,σ) → ‖u‖2(c,σ).

Hence, ‖un‖(c,σ) → ‖u‖(c,σ). Thus, un
(c,σ)−→ u in H1(Ω). �

Proof of Theorem 4.1. The functional I satisfies the Palais-Smale condition due to
Lemma 4.5, and by Lemma 4.4, I satisfies the linking property. Set

c = inf
γ∈Γ

sup
u∈BR∩X

I(γ(u)),

where R is a sufficiently large constant, and Γ = {γ ∈ C
(
BR ∩ X;H1(Ω)

)
:

γ|∂BR∩X(x) = x}. Then by the Saddle Point Theorem [9], it follows that c is
a critical value of I. Thus problem (1.2) has a weak solution. �

5. Resonance Problem

In this section, we again assume (α, β) ∈ R2 with µk < α < µk+1. However we
now assume that β = β(α) so that (α, β) ∈ Σ by the characterization in Theorem
3.13. Again for notational convenience we take X = Xk. Most arguments from the
previous section still apply, with the exception of Lemmas 4.3 part 2 and 4.5; namely
that I is bounded from below and that I satisfies (PS). This is not surprising, as the
case that (α, β) ∈ Σ corresponds to the case µ = µk+1 in the Fredholm alternative.
We expect in such cases that solutions only exist when a generalized orthogonality
condition is met.

In establishing existence of solutions in the non-resonance cases, we will need a
generalized Landesman-Lazer condition, namely

Definition 5.1. If for any sequence {un} ⊂ H1(Ω) such that ‖un‖(m,ρ) →∞ and

un
‖un‖(m,ρ)

(m,ρ)−−−→ ψ, where ψ is a Fuc̆ik eigenfunction associated with (α, β), we have

lim
n→∞

∫
Ω

F (x, un) +

∫
∂Ω

G(x, un) = −∞. (5.1)

Theorem 5.2. Assume that µk < α < µk+1, β = β(α), the nonlinearities f and g
are bounded continuous functions, and m ∈ L∞(Ω) and ρ ∈ L∞(∂Ω), then problem
(1.2) has at least one weak solution provided that condition (5.1) holds.

Lemma 5.3. If (5.1) is satisfied, then I is bounded below on Y.

Proof. Suppose to the contrary that there exists a sequence {un} ⊂ Y with I(un)→
−∞. Since {un} ⊂ Y, we may write un = rα,β(yn) + yn. Taking inequality
(4.3) with ε = M(α, β) = 0, we observe that since I(un) → −∞, we must have
‖un‖(m,ρ) →∞. But since

‖un‖2(m,ρ) = ‖rα,β(yn) + yn‖2(m,ρ)
= ‖rα,β(yn)‖2(m,ρ) + ‖yn‖2(m,ρ)
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≤ 1

µ1
‖rα,β(yn)‖2(c,σ) + ‖yn‖2(m,ρ)

≤ C2

µ1
‖yn‖2(m,ρ) + ‖yn‖2(m,ρ)

=
(C2

µ1
+ 1
)
‖yn‖2(m,ρ),

we observe that ‖yn‖(m,ρ) →∞. Thus, no subsequence of {un} lies in a set of the

form {u ∈ Y : u = rα,β(y) + y, J̃α,β(y) ≥ c‖y‖} for some c > 0, since if such a

subsequence existed, this would imply I(u) → ∞ by (4.3). Therefore, J̃α,β(yn) →
0 and by the homogeneity of J̃α,β , J̃α,β

(
yn

‖yn‖(m,ρ)

)
→ 0. Since M(α, β) = 0,

{yn/‖yn‖(m,ρ)} ⊂ SY is a minimizing sequence of J̃α,β . As in the proof of Lemma
3.8, this implies that ‖yn/‖yn‖(m,ρ)‖(c,σ) is bounded. Therefore, there exists y ∈

SY such that yn/‖yn‖(m,ρ)
(c,σ)−−−⇀ y and yn/‖yn‖(m,ρ)

(m,ρ)−−−→ y. Using the the
homogeneity of rα,β , we have that

un = ‖yn‖(m,ρ)
(
rα,β

( yn
‖yn‖(m,ρ)

)
+

yn
‖yn‖(m,ρ)

)
,

and

‖un‖(m,ρ) = ‖yn‖(m,ρ)‖rα,β
( yn
‖yn‖(m,ρ)

)
+

yn
‖yn‖(m,ρ)

‖(m,ρ).

Therefore,

un
‖un‖(m,ρ)

=
rα,β

(
yn

‖yn‖(m,ρ)

)
+ yn
‖yn‖(m,ρ)

‖rα,β
(

yn
‖yn‖(m,ρ)

)
+ yn
‖yn‖(m,ρ)

‖(m,ρ)
.

Therefore,

un
‖un‖(m,ρ)

(c,σ)−−−⇀ rα,β(y) + y

‖rα,β(y) + y‖(m,ρ)
,

un
‖un‖(m,ρ)

(m,ρ)−−−→ rα,β(y) + y

‖rα,β(y) + y‖(m,ρ)
.

Setting
rα,β(y) + y

‖rα,β(y) + y‖(m,ρ)
= φ .

we notice that ‖φ‖(m,ρ) = 1 and J̃α,β(φ) = 0 = M(α, β(α)). Therefore φ is a

nontrivial eigenfunction associated to (α, β(α)). Since un
‖un‖(m,ρ)

(m,ρ)−−−→ φ and (5.1)

is satisfied, we have that limn→∞
(∫
F (x, un) +

∮
G(x, un)

)
= −∞. It follows that

I(un)→∞, a contradiction. The lemma is proved. �

Lemma 5.4. If (5.1) is satisfied, then I satisfies (PS).

Proof. The first part of the proof is identical to the proof in Lemma 4.5. Sup-
pose {un} ⊂ H1(Ω) is a sequence such that I(un) is bounded, I ′(un) → 0, and
‖un‖(m,ρ) → ∞. As before, we take vn = un

‖un‖(m,ρ)
and by an identical argument

we show that vn
(c,σ)−−−⇀ v and vn

(m,ρ)−−−→ v with ‖v‖(m,ρ) = 1 and v a Fuc̆ik eigen-
function associated with (α, β). In the previous case this was a contradiction, but
since (α, β) ∈ Σ in this case, we have not yet reached a contradiction, and further
argument is needed.
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Write un = xn + yn = x̃n + rα,β(yn) + yn. Then

I ′(un) · x̃n = J ′α,β(un) · x̃n −
∫
f(x, un)x̃n +

∮
g(x, un)x̃n

= J ′α,β(x̃n + rα,β(yn) + yn) · x̃n −
∫
f(x, un)x̃n +

∮
g(x, un)x̃n

=
(
J ′α,β(x̃n + rα,β(yn) + yn)− J ′α,β(rα,β(yn) + yn)

)
· x̃n

−
∫
f(x, un)x̃n +

∮
g(x, un)x̃n

≤ −δ‖x̃n‖2(c,σ) −
∫
f(x, un)x̃n +

∮
g(x, un)x̃n

≤ −δµ1‖x̃n‖2(m,ρ) −
∫
f(x, un)x̃n +

∮
g(x, un)x̃n

by the fact that J ′α,β(rα,β(y) + y) · x = 0 for all x ∈ X and Lemma 2.3. Dividing

the inequality through by ‖x̃n‖(m,ρ) gives

I ′(un) · x̃n
‖x̃n‖(m,ρ)

≤ −δµ1‖x̃n‖(m,ρ) −
∫
f(x, un)x̃n +

∮
g(x, un)

x̃n
‖x̃n‖(m,ρ)

,

but since I ′(un) → 0 and f, g are bounded, we obtain that ‖x̃n‖(m,ρ) is also
bounded. It now follows that

J ′α,β(un) · x̃n = I ′(un) · x̃n +

∫
f(x, un)x̃n +

∮
g(x, un)x̃n

must also be bounded.
Now, let h(t) = Jα,β(rα,β(yn) + yn + tx̃n). Then h′(t) = J ′α,β(rα,β(yn) + yn +

tx̃n) · x̃, and we observe that h′(0) = 0 (by the definition of rα,β) and h′(t) is
decreasing by the strict concavity of Jα,β on yn+X. By the Mean Value Theorem,
h(1) − h(0) = h′(c) for some c ∈ (0, 1), and hence h(1) − h(0) ≥ h′(1) since h′ is
decreasing. So,

Jα,β(rα,β(yn) + yn + x̃n)− Jα,β(rα,β(yn) + yn) ≥ J ′α,β(rα,β(yn) + yn + x̃) · x̃n.

Since Jα,β(rα,β(yn) + yn) ≥ ‖yn‖m,ρM(α, β) = 0, we then have that Jα,β(un) ≥
J ′α,β(un) · x̃n. Therefore,

I(un) = Jα,β(un)−
[ ∫

F (x, un) +

∮
G(x, un)

]
≥ J ′α,β(un) · x̃n −

[ ∫
F (x, un) +

∮
G(x, un)

]
.

However, J ′α,β(un) · x̃n is bounded and [
∫
F (x, un) +

∮
G(x, un)] → −∞ by (5.1),

which contradicts the boundedness of I(un). Hence ‖un‖(m,ρ) is bounded, and the
proof proceeds as in Lemma 4.5. �

By a straightforward application of the Saddle Point Theorem, we now conclude
that there exists a solution to the resonance problem.
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