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ABSTRACT. We consider the boundary value problem
—Au+ c(@)u = am(@)ut — Bml@)u” + f(z,u), @€ Q,
ou
on
where (o, 8) € R2, ¢,m € L™(Q), o,p € L>®(99Q), and the nonlinearities f
and g are bounded continuous functions. We study the asymmetric (Fuéik)
spectrum with weights, and prove existence theorems for nonlinear perturba-
tions of this spectrum for both the resonance and non-resonance cases. For
the resonance case, we provide a sufficient condition, the so-called generalized
Landesman-Lazer condition, for the solvability. The proofs are based on vari-
ational methods and rely strongly on the variational characterization of the
spectrum.

+ o(2)u = ap(@)ut - Bp(a)u™ +glz,u), @€ OQ,

1. INTRODUCTION
We consider the partial differential equation

—Au+c(x)u = m(x)[aut — pu”], = €Q,

U 1.1
Gu + o(x)u = p(z)[au™ — Bu”], =€ I, (1)

where Az :=V -Vz, 8% is the outward normal derivative, (a, 3) € R? are parame-
ters, and ¢,m € L>®(Q), o,p € L>(0N) with ¢(z), m(x) > 0 almost everywhere in
Q, o(x), p(x) > 0 almost everywhere in 992,

/c(w) dx + ]{a(x) dx >0 and /m(x) dx +%p(x) dx > 0,

where [ denotes the (volume) integral on Q and ¢ denotes the (surface) integral on
09). Throughout this paper we assume that  is a bounded domain in R (n > 2)
with smooth boundary 9f2.
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We are interested in the Fucik spectrum, namely,
Y= {(a, B) € R? : (I.1) has a non-trivial solution}

and our first main result provides a variational characterization of a curve in 3.
As an application of the variational characterization we consider
—Au + c(x)u = m(x)[au™ — Bu”] + f(z,u) in Q,

(1.2)

% +o(z)u = p(z)[au™ — pu~] + g(z,u) on 99,

i.e. anonlinear perturbation of (I.I)). We assume nonlinearities of the form f(z,u) :=
m(z)f(u) and g(z,u) = p(x)§(u), where f,§ : R — R are bounded continuous
functions. We prove existence theorems for the non-resonance case, (a, 8) ¢ X, and
the resonance case, (a,3) € X. For the resonance case we assume a generalized
Landesman-Lazer condition as in [4] and [§].

Our methods are built on the results in [7, 4] [8]. Section 2 provides a brief
summary of the function spaces and the variational setting. In Section 3, we prove
the variational characterization of a curve in ¥ using a Hilbert space reduction
method as in [2 4, B]. Section 4 contains the existence theorem for the non-
resonance case. Section 5 contains the existence theorem for the resonance case.

2. CHARACTERIZATION OF THE FUCIK SPECTRUM

2.1. Variational preliminaries. Define the (c, o)-inner product (-, ) o) : HY(Q)x

HY(Q) — R by
(U, V) (c,0) = /Vu -V + /c(x)uv + %a(m)uv,

with the associated norm denoted by |u[|(c,s). This norm is equivalent to the
standard H'(2)-norm. Set

(W 0) gy = [+ § oy, Nullyy = [mi)+ § o)

for u,v € H(Q).

Let Vi, = {u € HYQ) ¢ [[ull(m,) = O}, and let H =V, , be the
orthogonal complement with respect to the (c,o) inner product. Then H'() =
H( ) @ Vim,p) (see [7]) and it further follows that H( ) and Vi, ) are (m, p)
orthogonal We will also make use of the norm || - ||(c.o) on H*(Q2) and || - || ) on
)

m,p
We also provide an alternate characterization of V(,, ,) from [7]: taking Q(m) :=

{z € Q:m(z) > 0} and 9N(p) := {x € IN : p(x) > 0}, we have
Vim,py = {u€ H(Q) :u=0a.e in Q(m) and T'u = 0 a.e in 0Q(p)}, (2.1)

where I is the trace operator on 0f).
Consider the functional J : H(Q2) — R defined by

Jap(u) = %[HUII?C,G) —allu(I3, ) = Bllu 7, ) (2.2)
Then
J(/x,,[%(u) U= <7.L, U>(c,o) - a<u7 v>(m,p) + (6 - O‘) <u77 U>(m,p)' (2'3)
We note that critical points of J, g are weak solutions of .
We begin with a lemma on the nature of the Fucik eigenfunctions.



EJDE-2023/S1/02 FUCIK SPECTRUM WITH WEIGHTS 211

1

Lemma 2.1. Every Fucik eigenfunction i is contained in H(m o)

Proof. Assume to the contrary that ¢¥» = u + v, where u € H(lm’p)7 v € Vi p), and
v is nonzero on a set of positive measure. Then

0= &,5(770) v
= (U +1,0)(c,0) = U+ U, V) (m,p) + (B — @) {((u+0) 7, 1) (m,p)
= ||IU||%C,O')7
because of the alternate characterization of V{,, ,y in (2.1)). Hence, v = 0 a.e. which
contradicts our assumption. So all Fuéik eigenfunctions are in H} ([

(m.p)”

2.2. Trivial curves. It is known (see [7]) that the problem

—Au+ c(z)u = pm(z)u, x€Q,

0

=y o(z)u = pp(x)u, z €09,

an
has a simple first eigenvalue p; > 0 with associated eigenfunction ¢; which is of
one sign in Q. Therefore ¢ = ¢; and ¢ = 0, so that

A1 + c(x)¢1 = pm(a)r = m(x) [y — By ]
for any 8 € R, and similarly

901
on
for any 5 € R. Therefore

+o(z)gr = p() ey — By ]

Co:={(u1,B): BEeR} CX.
A similar argument will show that

Ch={(a,p1) :a €R}C X.
The curves Cy and C| are depicted in Figure

B

FIGURE 1. Trivial and first Fucik curves



212 N. MAVINGA, Q. A. MORRIS, S. B. ROBINSON EJDE/SI/02
Lemma 2.2.
c
YN {(a, B) eER?:a< iy 0r6<u1}ﬂ(COUC6) =

Proof. Let aw < py and 8 # pp. Assume that (o, 8) € 3 and let ¢ € H(lm’p) be a

Fudik eigenfunction associated to («, 3). Then
0= Jt/x,ﬁ(w) : ¢+ = ||w+H%c,0') - a||w+“%m,p) > (Ml - a)‘lw—i_"%m,p)

m

So, since a < puy, it follows that ||1/}+||% ) = 0, which implies that T =0 almost

everywhere. Hence, 1) = —~, and hence 1 is a non-positive Steklov eigenfunction.
So 1) satisfies

—AY +c(@)y = m(z)py; z e,

0
G+ @ = ) w00,
But if ¢ is a non-sign-changing solution, then S = p1, a contradiction. Hence
(o, B) € 3.
If B < pyp and a # 1, the argument proceeds similarly by examining the expres-
sion J, 5(¥) - ¢~ O

2.3. Higher curves. In what follows, we will consider the case pup < a < pri1
and a < . If (o, B) € 3, then (8, ) € X, and therefore, it suffices to only consider
the case a < . The first curve C; is depicted in Figure

We split the space H(,, = Xi @ Yj, where Xj, = span{¢1,¢s,..., ¢} and

Yy = span{¢p41, Pry2,...}. Wefurther define Y = Y, @V, ) so that H' = X, 0Y.
We begin with an estimate which will be crucial for several lemmas later.

Lemma 2.3. Let (o, 8;) € R? for i = 1,2 satisfy the previous hypotheses, and let
si=0i—a;. Let x; € X, andy; €Y fori=1,2. Then

(o2 +y2) — T4, 5, (@1 + 1)) - (w2 — 71)
< _6”552 - xl”%c,g) + 52 (Hl‘z - xl”(m,p) + ||y2 - yl”(m,p)) Hy2 - yl”(m,p)

+ oz — arll|z1lgm,p) 122 = 21 ll(m,p) + 52 = s1lllz1 + 22| (m,p) |22 — 21 [, p)

where 6 = 42 — 1,
1223

Proof. First we show that

Jos g (@i +yi) (22 — 21)
— <33i + Yiy Lo — 331>(c,¢7) - Oli<fEi + Yi, Lo — $1>(m7p) + S’L<(xz + yi)i Ty — ',I/‘1>(m7p)
= (T, T2 — 1) (c,0) — Qi(Tis T2 — T1) (m,p)

+si{(xi +yi) T2 — 1) (mp)s
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by the (¢,0)- and (m, p)-orthogonality of X; and Y. Then utilizing the previous
expression, we have

(Jtllz,ﬁz (1‘2 + y2) - Jl/)él,ﬂl (131 + yl)) : (IQ - 1‘1)

= |lwg — 21[[{. o) — (@22 — Q121,22 — 1) (1 p)
+(s2(z2 +y2)” —s1(@1 + Y1), T2 — 1) (m,p)

= [lzz = 217, 5) — 2llze — 21|}, ,) — (@2 — @1)(@1, 22 — 1) (m )
+sa((z2 +y2)” — (1 + Y1), 2 — T1) (m.p)

+ (52 = s1)((x1 + Y1) T2 — T1) (m,p)

(2.4)

By the variational characterization of pj and the definition of X}, we have that
Qs
Iz = 210y = allez = 1l ) < (1= 22 )22 = 21y = =022 = 21

Since f(t) = ¢t~ is non-increasing, we have that v —v; and v, —v2 have opposite
sign for all v1,vy € H'. Furthermore, |f(t2) — f(t1)| < |ta — t1]. Hence,
sa((w2 +y2)” — (T1 + Y1) 7, T2 — T1) (m,p)
=so((x2+y2)” — (@1 + 1), (@2 +¥2) = (@1 +91)) (m.p)
+s2((x2 +92)” — (@1 + Y1) 7 Y1 — Y2) (mop)
so(|(z2 +y2)” — (@1 +y1)" | [y1 — 920) (m.p)
so(|(z2 +y2) — (@1 +y1)|, (Y1 — Y2]) (m.p)
so([(x2 — 1) — (Y2 — yo)ls [y1 — v2]) (mop)
< so(llz2 — 21l mp) + 192 = Y1l o)) 1Y2 = Y1 Lm0 -

IN A

Using Holder’s inequality, we estimate the remaining two terms as
[(2 — 1) (@, 22 — 21) (m,p) | < laz — arlll@1llm.p) 122 — 21 ()
and
(52 = s1){(m1 + y1) 7, 22 — T1) ()| < 152 = s1lll@1 + 22l (mop) 122 — T1 [l ()

Combining the previous estimates into (2.4)) yields the desired result. (Il

Lemma 2.4. For a fitedy €Y, Jyg(x +y) is concave on Xj and moreover, for
any x1, Tz € X,

(Jhp(e+y) = T gler +y)) - (w2 — 1) < =bllwg — 21 [[{e -

Proof. Take y1 = y2 = y, a1 = a2 = @, and 81 = B2 = f in Lemma [2.3] Then
s1 = S92 = B — a, and the inequality reduces to

(Jap(@2 +y) = Jo g(x1 +9)) - (22 — 1) < =8||z2 — 217, ),
as desired. If we further set ;1 = 0 and x5 = x, we observe that
(Jop@+y) = Jo5(v) - & < =6||z|F 0y,

and hence J, g(z +y) is concave on Xj. ]
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Since J, g is concave on Xy, for any fixed y € Y, we define 7, 3(y) € Xi to be
the unique maximizer of J, g restricted to X}, + y, namely

Jo,8(Ta,p(y) +y) = max Jo gz +y). (2.5)
reXy

We now establish several properties of the function 4 g(y) which will be helpful
later.

Lemma 2.5. The function r4,(y) is homogeneous (i.e., ro g(ty) = trq g(y) for all
t>0.)
Proof. For any t > 0, we have that J g(rq,g(ty) +ty) > Ja g(z+ty) for all z € X.
By the homogeneity of J, g, we therefore have J, g (Tﬁf“y) + y) > Jas (£+y)
for all x € Xj. But this implies that T“%(ty) = rqo8(y), and therefore rq g is
homogeneous.

For t = 0, we need only to show 7, 3(0) = 0. Clearly J, (0) = 0. We will show

that J, g(x) < 0 for all z € X, \{0}, and therefore, 0 = max,ex, Jo,g(x) = rq 5(0).

Since [[z[|?, ) < pllzlf,, ) (see [T, Corollary 2.2]), we observe that

1 _
Jas (@) = 5 (2l 0y = alle® 1) = Bl )
1 _
< 5 (mellalny = alla® 12, ) = Bl 3 )
1 —
< 3 (ullzlit ) = alla* I ) = allz” I )

1
< 5l = )l <0,

for all z € X3 \{0}. Hence, r4,5(0) = 0, and therefore r, g(ty) = trq g(y) for all
t>0andyeY. O

Lemma 2.6. For each y # 0, ro.5(y) +y changes sign.

Proof. Suppose to the contrary that u = r, g(y) + vy is nonnegative and strictly
positive on some set of positive measure, say Q5. Since v € H', u = v + Xk, ¢,, for
kn = (U, dn) (m,p) and some v € Vi, . We note that k1 = (u, ¢1)(m,,) > 0 since
¢1>0o0n Q and u & Vim,p)-
Since ¢1 € Xj, Vk > 1 and r, g(y) maximizes J, g on Xy, we have
0=J,, 5(u) - ¢1

= <u7 ¢1>(c,0) - a<ua ¢1>(m,p) + (ﬁ - Oé)<’LL_, ¢1>(m,p)

= <u7 ¢1>(c,0) - a(u, ¢1>(m,p)

=k ||¢1 ||%c,cr) —aky Hd)l ||%m,p)

= kl(ﬂl - a)H(blH%m,p) < 07
which is a contradiction. An identical contradiction can be reached in the case that

we assume wu is nonpositive and strictly negative on some set of positive measure.
Hence, 74,3(y) + y must change sign for y # 0. O

_ To be precise about the result of the following lemma, let us consider the space
Y, which is the set of points in ¥ endowed with the topology generated by || - || (m,p)-
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Lemma 2.7. r,5(y) is locally Lipschitz continuous as a function of R? x Y into
X

Proof. Take x; = 74,,3,(yi). By the definition of rq, g, (y:), we have that

(']t;zﬁz (Tazaﬁz (?JQ) + yQ) - lexl,ﬂl (Ta1731 (yl)) : (Taz,ﬁz (y2) — Tay,p1 (yl)) =0,
and hence by Lemma [2.3] we have that

017 az,82 (Y2) = Tas,: (1)
< 52 (702,82 (92) = Tas,: (Y1) |y + 12 = Y1llmop)) 192 = Y1l om0
+ a2 — aalllray 8, Yl m,p) 170,82 (¥2) = Tas,8: (Y1) 0m.p)
+[s2 = s1lllray,8, (Y1) + Tas,82 (U2) l(m.p) Taz,82 (42) = Ta 8 (41) | (s
Applying a Poincare-type inequality (see Corollary 2.2 in [7]), we obtain

5HTOL2,52 (y2) — Tay,p (yl) H%c,o)

1
< 92 (s 5092) = s ) i)+ 192 = 1l ) 2 = 3l

(2.6)

1
+ |a2 - a1|||7‘a1”31 (yl)H(m,p)I”razﬁz (yQ) —Tay,8 (yl)”(c,o)

1
+ |82 - 81|||Ta1,ﬁ1 (yl) + Tay,B, (yQ)”(m,p)EHTa‘z-ﬂz (y2) —Tay,B1 (yl)H(c,a)a

Now, for a given yi, let ¢; = Hral,ﬁl(yl)”(m,p)a Co = ”710&1751 (yl) + yl”(m,p)a and
2 = |Tay,8,(Y2) = Tay,8, (Y1) || (c,0)- It follows from (2.6) that

1
2% < (ly2 = v1ll(m,p) + c1laa — ar| + cals2 — s1]) T ly2 = y1ll . )

Taking v := (|ly2 — Y1ll(m.p) + 1]z — 1| + c2]s2 — s1]), we observe that |ly2 —
Y1ll(m,p) < 7, and therefore,
522 < lz + 72.
M1
Therefore, z < C(d)7, and the lemma is proven. O

Note that in the case a; = as = « and 8y = B2 = 3, «v is independent of ¢; and
co. Therefore, since C(9) is also independent of y; and ys, we have the following
corollary.

Corollary 2.8. For a given o and 3, rq.8 : Y — X, is globally Lipschitz continu-
ous.

Lemma 2.9. There exists a C > 0 such that ||7a.5(Y)ll(c.0) < CllYll(m,p)-

Proof. Suppose yo =y and y; = 0 are fixed and further suppose that a3 = as = «

and f1 = B3 = B. Then x2 = 714,,8,(y2) = 7a,5(y) and z1 = ra, 6, (Y1) = 7a,5(0) =
0. Then (2.6) reduces to

1
Slras W2 < (- Iras @)lic) + 19l ) ¥l

We may solve this inequality to observe that d|[ra,5(y)llc,e < C(0)||yll(m,p) Where
c(6) = ﬁ +./5+ ﬁ > 0. Note that C is a decreasing function of 4, and
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therefore, if o — pi, = € > 0, then we can choose § = < % — 1= such that

€ o
M Mk

ras@lleo < dlras@les < CONYIm.p < CONYlm,p) -

The function r, g(y) also satisfies a compactness condition, namely:

Lemma 2.10. Let {(ay, 8,)} be a bounded sequence in R? satisfying pi, < a, <
rt1 and an < B, and let {y,} be a bounded sequence in Y. Then there exist
subsequences, again called, {(cun, Bn)} and {y,} such that (a, Bn) — (o, B) in R?,
yn vy inY,y, >y inY, and Tan.Bn(Yn) = Tap(y) in Xg.

Proof. There exists a subsequence of {(a,, 3,)} converging to (a, 3) in R? by the
Bolzano-Weierstrauss Theorem, call it again {(ay, 8,,)}. Then there exists a subse-
quence of {y,} converging weakly to y in Y by the fact that H*(Q) is reflexive. We
again call that subsequence {y, }. Finally, by the Rellich-Kondrachov Theorem and
the compactness of the trace operator given m € L () and p € L>°(91), there ex-
ists a subsequence of {y,} converging strongly to 3 in Y, called again {y,,}. Hence,
by the continuity of 7 g established in Lemma [2.7} we have 7, 8, (Yn) = Ta,5(Y)
in X. (]

Finally, we observe the following property of r4 3.

Lemma 2.11. If u € HY(Q) is a critical point of Jo g, then u = ro5(y) +y for
somey €Y.

Proof. Since u is a critical point of Jo g, J}, 5(u) - v =0 for all v € H*(Q). Since
HY(Q) = X}, @Y, we may write u = x + y where z € X3 and y € Y. We observe
that 0 = J;, 5(u) -z = J;, 5(x) - ¥, showing that x is a critical point of J,, 5 on the
set y+X. But J, g is strictly concave on y+ X and its unique maximizer is defined
as Ta,3(Y). So x =14.(y) and hence u = r45(y) + y. O

3. REDUCING THE FUNCTIONAL

Motivated by Lemma we now define the restricted functional J, 5: Y — R
by Ja.s(y) = Juos(res(y) +y). We begin by establishing some properties of this
new functional.

L;mmz;&l. The functional Jo5 € CY(Y,R) and J, 5(y) = J. 5(ras(y) +y) for
alyey.

Proof. We will establish this claim by showing that

Ja,8(y2) — Ja,p(y1) = J,;yg(m,g(yl) +y1) - (y2—y1) +o (Hyz - yl||(m,p)) .
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In addition to showing that J, s € C'(Y,R), this will also establish that J:’Lﬁ(y) =
Jt, 5(Ta,5(y) +y). First, note that

a)

08(Y2) — Ja,(y1)

= Jo,5(Ta,p(Y2) + Y2) — Ja,5(ra,s(y1) + 1)

< Jap(ra.s(y2) +y2) — aB(Taﬁ( 2) + Y1)

=T, 5(rap(y2) +91) - (2 —y1) + 0 (lv2 — yillomp) (3.1)
= Tl s (asyn) + 1) - (w2 = 1) + (Tl s (ras(v2) + 91)

~ T n) + 1) - e = 31) + 0 (ly2 = yillm.p)

by the maximizing property of r, g, the Lipschitz continuity of r, g, and the dif-
ferentiability of J, g. By the continuity of 74,4 and J}, 5, we note that

(o s(ras(y2) +y1) — I s(ras(yn) + 1)) - (g2 — 1) = o ([ly2 — villom.p)) »
and hence (3.1)) reduces to

Jap(y2) = Jas(W1) < Jh g(rasyn) +31) - (2 — y1) + 0 (ly2 = villm,p)) -
A similar argument will show that

a5 (y2) = Jas (1) = T g (ras() +y1) - (g2 = 1) + 0 (ly2 = 91l omp) »
and hence the claim is proven. O

Remark 3.2. If we knew 7, 3 to be differentiable, this result would be a simple
consequence of the chain rule. However, in general, this is not the case.

Given that we have now established that ja, 5 € C1(Y,R), we may improve upon
Lemma 2171

Lemma 3.3. The elementy € Y is a critical point of Ju. g if and only if 7o, 5(y) +y
is a critical point of Jo 3.

Proof. First, assume that 74 g(y)+y is a critical point of J, 3. Then J/, B(Ta g(y) +
y)-v =0 for all v € H*(Q) (and in particular, for all v € V). By Lemma this
implies that j(’lﬂ(y) -v=0forall v € Y, and y is a critical point of jaﬁ.

Now, assume that y is a critical point of J, g. As before, we then have that
J?, 5(ra,s(y) +y)-v =0 for all v € Y. However, since 74 s(y) maximizes Jo,5(z+y)
for all x € Xj, we also have that J|, 5(ra,s(y) +y) 2 =0 for all z € Xj. Hence,
since H'(Q) = X3, ® Y, we have J), 4(ras(y) +y) -w=0forallwe H(Q). O

Now, we observe a homogeneity property of ja’g.

Lemma 3.4. The functional jaﬁ(ty) = t2ja’5(y) forallt >0 andy €Y.

The result follows immediately from the homogeneity of J, g and the homo-
geneity of 74 g from Lemma An important consequence of this lemma easily
follows.

Lemma 3.5. Ify € Y is a critical point of ja”g, then jag(y) =0.

Proof. Differentiating the identity ja,g (ty) = t2ja,5(y) with respect to ¢, we find
that J’ sty)y= 2tJu5(y). Setting t = 1, the result immediately follows. O
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As with J, g, it will occasionally be helpful to think of ja,g as a function on
R? x Y, which we denote J(c, 3,y).

Lemma 3.6. For each fized y # 0, the functional J(a, 8,y) := Ju.p(y) is strictly
decreasing in o and 3.

Proof. Assume that a; < as and 8y < (9, with at least one of these inequalities
strict. Then

J(az, Ba,y) = J(az, B2, (02, B2,y) +y)
1 +
= 5 |:||T'(O[2, 527 y) + y”?c,a') - OQH (T(QQa 627 y) + y) H(2m,p) (32)
- 62” (T(O[Qa /627 y) + y)_ ||?m,p)] .
Since r(wa, f2,y) + y is sign-changing for y # 0 by Lemma it follows that
(a2, B2y y) +9)" Nm | ((c2, B2y y) +9) ™ [l .y > 0,

and hence, since at least one of the inequalities a; < as and 7 < B is strict, we

have from (3.2]) that

1
‘](O‘27B2,y) < 5 [||’I"(052,,827y) + y”%c,a) - al” (T(O‘%ﬂ%y) + y)+ H(2m,p)

— Bl (r(2, Boyy) + 1) )]
= J(Oél,ﬁl,?”(OéQ,BQ, y) + y)

But recalling the maximizing property of 7, s (see (2.5)), we must have that

(3.3)

J(Oél,,Bl,’l"(O(Q,,B27y) =+ y) < J(almﬁlar(ahﬁlay) +y) = J(alﬁﬂhy)' (34)

Combining (3.3)) and (3.4]) gives the desired result, that j(ag, Ba2,y) < j(al,ﬁl,y)
for each y # 0. O

Lemma 3.7. Given any K > 0, there exists C > 0 such that
| (a2, B2, z) — J (a1, B1,2)| < C (Jaz — aq| + |B2 — Bi])

on R(K) := {(a1, a2, 1, B2,y) € R* x H'(Q) : max{|a1], |ea|, |B1], B2, [yl (c.)} <
K.

Proof. First, we establish that the functional J is uniformly Lipschitz in «, 8, and
x. Note that

1 _
|J(O‘27ﬂ2ax) - J(O‘hﬂlax” =5 (QQ - al)”er”%m,p) + (BQ - Bl)Hx ||%m,p)

[\)

1
< QTMHQSH%C,J) (|ae — a1 + (B2 — Bi)

1
< QTMK(MQ —aq|+ B2 = B1l) -

Hence J is uniformly Lipschitz in «, 8 on R(K). Since J € C*(H*(2);R), it is also
uniformly Lipschitz in z on R(K)

Recall from Lemma @ that 74, is locally Lipschitz in «, 3. Therefore, we
have that ro g is uniformly Lipschitz in «, 8 on R(K). Therefore, J(o, B,x) =
J(a, B,r(a, B,x) + x) is a composition of uniformly Lipschitz functions, and hence
the claim follows. O
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3.1. Minimizing in Y. By Lemma [3.3] we know that searching for critical points
of J, 5 on H is equivalent to searching for critical points of .J, 4 on Y. Further, since
ja,g is homogeneous, it is sufficient to search for critical points on the (m, p)-unit
sphere in Y, namely Sy := {y € Y : [[yl|(m,p) = 1}

Since we assume m,p € L°°(2), Sy is weakly closed in H'(f2); that is, for any
sequence {y,} C Sy with y, — y in H*(2), we have y, — y in Y and y € Sy.
First we note several properties of J, 5 when restricted to Sy-.

Lemma 3.8. j%g attains a global minimum on Sy .
Proof. First, note that

2Ja,5(y) = 2Ja,5(ra,s(y) + 1)
17a.8(Y) + Yll7e0y = @l (ra.s(W) + )13 ) = Bl (ras W) +9) 71170 )

> *CM”’I"a’B(y) + y“%m,p) - 6|‘r0¢75(y) + yH(Qm,p)
> 72ﬂ|‘ra,5(y) + y”(2m,p)

Since ro 5(y) € X and y € Y, (7a,58(Y),¥) (m,p) = 0 and hence

2ja,,8(y) > 72[3”7%1,5(3/) + y“%m,p)
= =28(lr W)l ) + 191Em. )

1
> f2B(EHT(y)IIfC,U) + 19llm. )

02 2 2
> 72B(E”y”(m,p) + ||y||(m,p))

where k = 2,8(%2 +1) by (zorollary 2.2 (a) in [7] and Lemma
Now, take M = infg, Ja5(y) > —oo (since ||y||(m,,) = 1 on Sy) and choose

{yn} C Sy to be a minimizing sequence, that is, Jo g(yn) — M. So Jo.5(yn) is
bounded. We wish to show that ||y, [|(c,s) is also bounded. Note first that since

Jo,8(yn) is bounded and

2J0,6(Yn) = 2Ja,5(rap(yn) +yn)
= ras(vn) + ynltey) = allras(vm) +vn) "G,y
= Bll(ra,s(ym) +yn) ") (3-5)
= lIra,8Wn)lle.o) + 19n 1 {e,0y = (e (Wn) + ym) ", )
= Bll(ra,s(n) +yu) " em.p)-
We wish to show that all terms other than ||y, ”%c,a) in (3.5) are bounded, and hence

lYnll(c,s) must also be bounded.
We recall that |[ra,s(yn)l7. .y < C?llyallf,. ) = C* by Lemma 2.9/ and by the
fact that {y,} C Sy. We also note that
[(ra,s(yn) + yn)Jr”%m,p) < rap(yn) + yn”%m,p)
< ||T0£,5(yn)”(2m,p) + Hyn“%m,p)
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1
H1

2 2

< —lrasWn)lleo) + Ynllim,p)

02 2 2

2
= g + 17
K1
by [, Corollary 2.2(a)], Lemma and the fact that {y,} C Sy. An identical
argument will show that ||(74.8(Yn) + yn)~ ||%m’p) < %12 + 1. Hence, we have shown

via equation (3.5) that ||y,|[(c,s) is also bounded.
Hence, by Lemma we may choose a subsequence, call it again {y,}, with

c,o m, . (¢,0) .
Yn (o) Y0s Yn ﬂ> yo with |lyol| m.p) = 1, and Ta,8(Yn) — Ta,8(yo). So taking
h

the limit inferior of both sides of (3.5 as n — oo, we see that

2M = liminf Qj%,@(yn)
n—oo

= e o) ) + liminf a2,

= al(ra.5(¥0) +0) [l ) = Bll(ras (y0) +0) "Il )

2 [Irecs (Wo)l[Ee.o) + 90llEe.) — @l (a8 (w0) + 10) " lEm, )
= Bll(ra,5(y0) +¥0) " 17 )
= Qja,ﬁ(yo)a
by the weak lower semicontinuity of the (c¢,o) norm. But then M > Jap(yo) with
yo € Sy and hence we must have J, g(yo) = M as desired. O

Lemma 3.9. yy is a nontrivial critical point of ja”/_; if and only if W s a
m.p

critical point of ja’ﬁ restricted to Sy and ja”g(yo) =0.
Proof. 1f y is a nontrivial critical point of J, 5, then by Lemma Jas(yo) = 0.

Furthermore, since yg is a critical point of J, g, we may differentiate both sides of
the equation in Lemma (3.4 with respect to y and set t = 1/||yo]|(m,p) to see that

71 71 Yo
’ 1901l (m,p) Jas(Wo) Y = Jag ( HZ/OH(m,p)) Y
holds for all ¥y € Y. So in particular, it holds for y € Sy and the forward direction
is established.

Now, let yo/||0l|(m,p) be a critical point of Jo p restricted to Sy and let J,, 5(yo) =
0. Then as in the previous case, we have

0=.J" (L) Y p———
*P Xyl (m,p) 190!l (. p)

for all y € Sy. But note that, for any ¢ € Y, we may write ¢ = ty for some y € Sy.
So,

j(;,g(yo) "y

j(;,ﬁ(yo) Y= j&,ﬁ(yo) (ty) = tj(;,ﬁ(yo) -y =0.
So yo is a critical point of J, g as desired. O
Lemma 3.10. A function uw € H'(Q) is a nontrivial critical point of Ju g if and

only if u=14,5o) +yo where yo/||yoll(m.p) is a critical point of Jo g restricted to
Sy and Jo 5(yo) = 0.
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The above lemma follows from combining Lemma [3.3] and Lemma [3:9] We now
define M (e, ) = minyecg, Ja,g(y)-

Lemma 3.11. The function M(«, ) is Lipschitz continuous and is strictly de-
creasing as a function of both a and 8. Moreover, M («, «) > 0.

Proof. Let (a1,B1) and (ag,2) be points in the plane, and let y; and y2 be the

corresponding minimizers on Sy (i.e. M(ax, Br) = Ja, 6, (yx) for k = 1,2). Let

Uij = Ta,,p;(y;) +y; for i, =1,2. Then

(a“ i)

Oéuﬁl (vi)

< Janﬂb (y])

= Ja;,B: (Tal7B’L (y]) + y])
1 1 _

O‘J»B] (Taz;51 (y]> + y]) + 2<aj - al)”“’j}”%’m,p) + 7(BJ - Bl)HuzJ”%m,p)

1 1 _

< oy (T 8 (43) + 95) + 505 — aa)llwfEo) + 585 = BlluisliEm )

1 _
= M(az,8) + 305 — aduf ) + 5% - @)Huijn(m,p)

by the minimizing property of y; and the maximizing property of r,; g,. This
inequality holds in the case ¢ = 1 and j = 2, as well as the case i = 2 and j = 1.
Hence

(3.6)

|M (a2, Ba) — M (i, f1)| < c(laz — ar| + |2 — Bi])
where ¢ = %max{”ulg”%m o) Hu21||%m - Note that if ap > oy and B > 81 with
at least one of the inequalities strict, then M (s, f2) < M(aq, 51) by taking i = 2

and j = 1 in (3.6). This follows from the fact that u;; must be sign-changing by
Lemma 2.6

In the case a = 3, for every w € H'(Q), we may write w = u + v where
u € H(lm 0 and v € Vi, ,y have

2Ja p(w) = 2Jq,0(w)
= ||U + v”%c,o’) - a||u + ’U”%m,p)
= [ullfeoy + 10l1Ee.0y = @l py + 1011, )
= ||UH?C o) a”“”%m,p) + ||’UH?C,O')
Z —Oé |CZ|2+ ||U||(co)

by [7, Theorem 2.1(iii)] where

1
G = ;<ua¢i>(c,a) = <ua¢i>(m’f’)'

Since pp < o < pg41, we note that the coefficients (u; — «) are negative for ¢ < k,
positive for ¢ > k£ 4+ 1, and are increasing in i¢. Writing u = = + y where z € X}
and y € Yy, we note that, if we maximize in the X}, direction, the maximum occurs
when ¢; = 0 for all i < k since (u; — «) are negative for i < k. In other words,
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Ta,a(y) = 0. Therefore,
200(y) =2Jaa(y) = D (ni—a)le]? for all y € ;. (3.7)
i=k+1

We now wish to show that M (e, a) = infyes, Ja.a(y) > 0. Taking

o0 (o)
flCrt1;chy,...) = Z (i = a)leil®,  glerir, Crya,. ) = Z leil?,
i=k+1 i=k+1

we apply the method of Lagrange multipliers to find the critical points of f subject
to the constraint g(cg41, Cgto,-..) = 1. Setting Vf = AVg, we obtain 2(u; —a)c; =
2Xc; for i > k+1. Hence, critical points occur when ¢; = £1 for some j > k+1 and
¢; = 0 for all i # j (corresponding to the Lagrange multiplier A = p; — a). Since
the coefficients (p; — ) are positive for ¢ > k + 1 and increasing, the minimizing
choice occurs when c,11 = 1 and ¢; = 0 for all ¢ > k£ + 1. Hence, the minimizer is

Y= £6p1 and M(a,@) = Joa(ber) + 02, = 20msr —a) + ol ,, > 0. O

Not only M (a, ) > 0, we can also make an additional estimate which will later
help in establishing bounds for the Fuéik spectrum.

Lemma 3.12. M (a, pp11) > 0.

Proof. Let y € Sy and let y = 2 + v where z € Y}, and v € V{;, ). Then, by the
maximizing property

Josirir = Jaeir Tanes W) +9)
> Joprsr (V)
= % (||y||§w) —ally™ 1) — uk+1lly’|\(2m,p))
R (T .
= 5 (12l ) = it 20y + el )
LS Gl + ey 20
i=k+1

We note that, of the last two inequalities above, at least one must be strict. If the
last inequality is in fact an equality, then ¢x41 = 1 and ¢; =0 for all ¢ > k+1. But
this would imply that y = 4¢ 1, in which case y* is nontrivial, and the previous
inequality was strict. So M (a, pgs1) > 0. O

3.2. Variational characterization of the Fuéik spectrum. All of the previous
lemmas lead to the following theorem.

Theorem 3.13. Let ur < a < urt1. Then one of the following is true:
(1) M(e,B8) >0 for all B > «, which implies that (o, 5) € X.
(2) There is a unique B(a) > pr41 such that M(«, B(a)) = 0, which implies
that (o, f(a)) € ¥ but (o, B) € X for all a < B < S(a).
(

Lemma 3.14. The curve (o, B(«)) is Lipschitz continuous, strictly decreasing, and
contains the point (tk+1, tk+1)-
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Proof. Consider two points (al,,@), (g, f2) € & wit~h as > ay. Let y; € Sy be
a minimizer of J,, g,(y). Then Jy, 5,(y;) = 0 and Jq, g,(y) > 0 for all y € Sy,

and therefore by the homogeneity of Jo, ,, Ja,5,(y) = 0 for all y € Y. Let
U; = T, 8, (Yi) + yi. Since (a1, 1) € X, we have

0= M(ou, B1)
= 2Ja15 (1)
= 2J4, .5 (u1)
= lull?, o) = arlluf 15, ) = Billul (G
> [luall?, ) = 2llef I, = Billur 6,
= 2Jas p1 (Tar 5 (1))
< M(az, £1)

where we note that the last inequality is strict since as > 1 and u; is nontrivial
by Lemma Since M (a, ) is strictly decreasing in S by Lemma and
M (ag, B2) = 0, we must have 8y < (1, which shows that 8(«) is strictly decreasing
as desired.

Now, we consider

1 -
M(O‘%ﬂl) < ']0‘2761 (u2) = Ja27[31 (UQ) - Jaz,ﬁz(u2) = 5(52 - ﬂl)”u2 H(2m,p)7

since Ja, g, (uz) = 0. Hence M (s, 81) < 3(B2 — 51)||u27||%m)p) < 0 since B; > fa.
Thus, we may rearrange the inequality to observe that

|Ba — B1| = B1 — B2
1
= W(*M(a% 1))
2 ll(m,p)
1
= QWIM(%, Bl
2 llm,p)
1
= 2W|M(02a51) — M(aq, 1)
2 l(m,p)
1
< 20f|012 — ],
||u2 ||(m7p)
by the fact that M (a1, 81) = 0 and the Lipschitz estimate for M («, 8) from Lemma
Hence, B(«) is Lipschitz continuous as desired. O

4. NONRESONANCE PROBLEM

We are interested in the existence of weak solutions of where (a,8) € R?
is such that pp < o < pgy1 and o < 8 < B(«). Since we consider a fixed k in this
section, we set X = X for notational convenience. By the characterization of the
Fucik Spectrum, we know that («, 5) ¢ X. All properties of f,g,m, p,c, and o are
as outlined in Section 1.

Consider the functional associated with defined by I, 5:=1: H'(Q) — R;
with

I(u) = Jo5(u) [/F(w,u) +fG(x,u)}, (4.1)
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where [ denotes the (Volume) integral on Q f denotes the (surface) integral on
o0, and F(z,u) = [}'m €)d¢, G = [y p(x)g(&)d¢, and J, p(u) is defined
in . Then

I'(u) v =J}, glu)v — {/f(x,u)v+ %g(a:,u)v} for all v € H'(Q).
So, a critical point of I is a weak solution of (1.2).

Theorem 4.1. Assume that pr < o < pgy1, @ < < B(a), the nonlinearities f
and g are bounded continuous functions, and m € L>®(Q) and p € L (09), then
problem (1.2) has at least one weak solution.

We will use a variational argument to prove Theorem [{.1] To do so, we first
prove some lemmas which will be needed in the sequel. The first lemma shows the
last two terms in I have at most linear growth.

Lemma 4.2. There is a positive constant k such that

’/F(:&u) + ?{G(a&u)’ < Kl|ull(m,p) for allu € H'(Q), (4.2)
where K is independent of u.

Proof. Since f and § are bounded then there exist constant C; and Cy such that
|f(u)| < Cy and |§(u)| < Cy. Therefore, |F(x,u)] < Cym(x)|u| and |G(z,u)| <
Cap(x)|u|. Using these estimates, Holder inequality, and the fact that m is bounded,
we obtain that

[Pl < [em@ll <& [m@h?)"™ <w [n < o,

where k1 = C1|[m||o. Similarly, | § G(z,u)| < &2 |ull(m,p). Thus,

’/F(x,u) + ?{G(I,u)’ < Kllullm,p) for all u € H (). O
The next lemma shows the geometry of I.

Lemma 4.3. The functional I is such that
(1) I(u) = =00 as ||ul|(c,0) — 00, for u € X; that is, I is anti-coercive on X.
(2) I is bounded below when restricted to Y, where Y := {ros(y) +y:y € Y}.

Proof. We shall first prove that I is anti-coercive when restricted to X. Using the
fact that ||a:|\%c,0) < ,uk||xH%m p forallz € X, and o < 8 < f(a), it follows that

1 _
JO&,,B(‘:U) = 5[”1'”%070) - a||x+||%m,p) - ﬂ”x ||%m,p)]
1
< 7[||x||%c o) a”x”%m,p)]
<3 [|| @lle.q) — HfCH o)

1
= 5(1 - ﬁ)”xn(c o)

Then using Lemma [£.2] we obtain
I(z) < =nl|z[lf. o) + &zl m,py + C,
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where 1 = %(/\% —1) > 0. Since p1[|x||(m,p) < |7[l(c,0) (see [7, Corrolary 2.18]),

then I(z) < —77||x||%cya) + =zl ey + €. So, I(u) = —o0 as [Jul/(c,s) — oo for
u € X. Thus [ is anti-coercive on X.

Now, we shall prove that I is bounded below when restricted to ). By the
assumption 5 < fB(a) and Theorem, it follows that minye s, Ja.5(y) = M(a, 5)
and M (a, ) > 0. Then for y # 0 and y € Y, we have that
Y

Yy sy,
W) Z Ml

Ja8(Tas®) +9) = Ja8) = 1ylim ) Jas(

where € = M(a, 8). Since 7o s is Lipschitz continuous, as in Lemma we have
that [|7a,5(W)ll(c,0) < CllYll(m,p) for some C' > 0, and we see that

I(w) > ellyln.,) = Ellwllm.p
= ellylltn ) = Ellra,s (W) + Yllm.p)

(4.3)
> eyl — 5 (Iras @)l i) + 19l (m.p))
> eyl — 5 (C+ DYl m.p
Thus, I is bounded below when restricted to ). O

As a consequence of the results above, there exists some R > 0 sufficiently large
such that
sup I(z) < inf I(u).
{zeX:|z]l (e, =R} uey
The next lemma shows the linking property of I. Let Br = {z € X : ||z|(¢,,) < R}
and O0Bg = {z € X : [|z]|(c,0) = R}.

Lemma 4.4. Let v : B C X — HY(Q) be a continuous function such that
VNopr(x) = 2. Then y(Br)NY # 0.

Proof. Let x € Bg and let write v(x) = yx(z) + vy (), where yx(z) € X and
vy (xz) € Y. One can see that for all x € 0Bpg, vx(z) = z and yy(z) = 0. To
show that v(Bg) N Y # 0, it suffices to show that there is an € Bg such that
% (2) = Tas (o (@),

Let H : B — X defined by H(z) = yx(x) — 7a,8(yy (x)). We shall show that
there is € Bpr such that H(x) = 0. Notice that H is continuous and for all x €
OBgr, H(xz) = x # 0. Therefore, the Brouwer degree deg(H, Bgr,0) is well defined.
Now, consider the homotopy h(x,t) = tH(x) + (1 — ¢)x. Note that for v € 0Br we
have h(x,t) =tz + (1 — t)x = x # 0. Hence, deg(H, Bg,0) = deg(Id, Br,0) = 1,
where Id represents the identity map. Thus H(z) = 0 has a solution in Bg. O

To prove Theorem [£.1] using the saddle point theorem of Rabinowitz, it suf-
fices first to show I satisfies the Palais-Smale condition (PS) which builds some
compactness into the functional I.

Lemma 4.5. [ satisfies the Palais-Smale condition (PS).

Proof. Let {u,} be asequence in H*({2) such that {I(u,)} is bounded and I’ (u,) —
0 as n — co. We will show that {u,} has a convergent subsequence. In view of the
assumptions on the nonlinearities f and g, it suffices to first show that the sequence
{un} is bounded with respect to || - [|(n,,), that is, there exists a constant K such
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that [|ul|(m,,) < K. Suppose by contradiction that |, (m,, — 0o as n — oco. Let
Un = Un/|[Un]|(m,p)- Then

L;):Ja,ﬁ(vn)— . [/ (@, un) f{Gx“"

[unllf, ) Nl
Taking the limit, we have that I(un)/||un||%m7p) — 0 since {I(un)} is bounded,
e ”2 fF (z,un) + ¢ G(z,u,)] = 0 because of the estimate (£.2]). Hence,

(un)/||un|| ) A0d [ F(z,un) + ¢ G(z,un)]/||unllf,, ) are bounded. Also note
that [|v||(n ) < 1. From the definition of J, g it follows that ||vy ||, is bounded.
Using the fact that H'(Q) is reflexive, the Sobolev compact embedding, and the
continuity of the trace operator, we obtain that there exists a subsequence v,, that
converges weakly to vy in H*(£) and that converges strongly to vo in L?(Q) (also
in L2(09)). Since m and p are bounded functions and using the continuity of the

and

norm || - ||, p), we obtain that [|v,||(m.p) = [Voll(m,p)- Thus, [|[vo|l(m,e) = 1 since
||UnH(m,p =
Now, for any w € H*(),
I'(un)

W= <'Una w>(c,o) - O‘<U:Lra w> (m,p) + 6<ija w>(m,p)

||un||(mp) /m (n erj{ p(2)g(un)w]

Using the boundedness of the nonlinearities f and g, and of the weights m and p,
we have that

Hunll(m,p)

Iunll ) /m (un) w+]{p(x)§(un)w] - 0.

Since v,, — vy strongly in L2(€2) and L2(9Q), (v, ,w)(m,p) — (v, W) (m,p) and
(V5 s W) (mp) = (Vg » W) (m,p)- By the weak convergence of vy, in H1(Q), we see that
(un)

”unH(m p)

0 = (vo, W) (c,0) — a(vg,>(m,p) — B(vy W) (m,py forallw e HY(Q).

Thus vg is a nontrivial weak solution of ([1.1]). This leads to a contradiction since
(o, B) € ¥. Thus, {u,} are bounded with respect to || - [|(;n,p)-
Let us analyze carefully the functional I.

1 _

Since I(uy,) is bounded and using the fact that {u, } is bounded with respect to ||-
| (m,p) and the estimate ([£.2), we have that ||u,}||(m.p)» |ty l(m,p)> and [[ F(z,un)+
¢ G(x,u,)] are all bounded. Thus, |uyl|(. ) must be bounded. Therefore there
exists a subsequence u,, that converges weakly to v in H'() and converges strongly
to u in L2(Q) (also in L?(99Q)). Since m and p are bounded functions and using
the continuity of the norm || - we obtain that |[un||(m,p) — Ul (m,p)-

Now, consider

I/(un)-(un —u) = Uy, (un — )>(c o) — a(u jm(un 7u)>(m,p) + Bluy, , (uy, 7u)>(m,p)
/ (&) f (1) (21 — ) + 74 ()3 (1) (t1n — )

(Un, W) (¢,0) =+ (V0, W) (c,0)- We also note that -w — 0 as n — oo. Hence,

||(m,p)7
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By the assumption I’(u,) — 0 in (Hl(Q))* it follows that I'(u,).(u, —u) — 0.
Since [t ] (m.pys 1ty [ () s f, and § are all bounded, and wnll(m,p) = 2l (m,p)s
we have that

un_ )>(mp +B< n?( n_u)>(m,P)
/ m(e —w)+ 74 ()9 (1) (1 — )] = 0.

Therefore (u,, (un —u))(c,o) — 0. Thus ||un||%C o) ~ {Un, W (c,0) = 0.
Since u,, converges weakly to u in H'(2), we have that (upn,u) o) — ||u||%C o)

Hence, [t (e.o) — |tll ey ThUS, 1, =% 1 in H(Q). O

Proof of Theorem[4.1] The functional I satisfies the Palais-Smale condition due to
Lemma[4.5] and by Lemma[4.4] I satisfies the linking property. Set
c=1inf sup I(y(u)),
yer u€EBRrNX
where R is a sufficiently large constant, and I' = {y € C(Bg N X;H*(Q?)) :
YoBrnx(z) = x}. Then by the Saddle Point Theorem [9], it follows that ¢ is
a critical value of I. Thus problem (1.2) has a weak solution. [l

5. RESONANCE PROBLEM

In this section, we again assume (o, 8) € R? with puy < o < pg11. However we
now assume that 5 = f(a) so that (o, 3) € ¥ by the characterization in Theorem
Again for notational convenience we take X = Xj. Most arguments from the
previous section still apply, with the exception of Lemmas[4.3|part 2 and [£.5} namely
that I is bounded from below and that I satisfies (PS). This is not surprising, as the
case that (o, 8) € ¥ corresponds to the case p = pi+1 in the Fredholm alternative.
We expect in such cases that solutions only exist when a generalized orthogonality
condition is met.

In establishing existence of solutions in the non-resonance cases, we will need a
generalized Landesman-Lazer condition, namely

Definition 5.1. If for any sequence {u, } C H*(2) such that ||uy,]|(m,,) — co and
W % ¥, where v is a Fucik eigenfunction associated with («, 8), we have
nll(m,p

lim | F(x,u,)+ G(z,up) = —o0. (5.1)
n=eo Jq oQ

Theorem 5.2. Assume that pp, < o < pgy1, 8= B(a), the nonlinearities f and g
are bounded continuous functions, and m € L*(Q) and p € L>(0R2), then problem
(1.2) has at least one weak solution provided that condition (5.1)) holds.

Lemma 5.3. If (5.1)) is satisfied, then I is bounded below on ).

Proof. Suppose to the contrary that there exists a sequence {u,} C Y with I(u,) —
—oo. Since {u,} C Y, we may write u,, = rqg(yn) + yn. Taking inequality
(4.3) with e = M(«, 5) = 0, we observe that since I(u,) — —o0, we must have
1| (m,py — o0. But since

[wnlfn ) = 70,6 (¥n) + ynllfnp)

= I8 W) Itm ) + 19 l1fm. )
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< 1 2 2
= i ||’ra7ﬁ(yn)‘|(c,o') + ||y’ﬂ||(m,p)
02

02

we observe that [|y,|(m,,) — o0. Thus, no subsequence of {u,} lies in a set of the

form {v € Y 1 u = rqg(y) + vy, Ja,s(y) > c|ly||} for some ¢ > 0, since if such a
subsequence existed, this would imply I(u) — oo by (4.3). Therefore, Ju 5(yn) —

W) 0. Since M(a, ) = 0,

{yn/HynH(m,p)} C Sy is a minimizing sequence of J, g. As in the proof of Lemma
this implies that ||y, /[|ynll(m,p)ll(c,0) i bounded. Therefore, there exists y €

(c,0) (m,p)

Sy such that yn/|lynllm,) — y and yn/llyallm.p
homogeneity of r, g, we have that

Yn Yn
ttn = [l (s )+ ).

0 and by the homogeneity of jaﬁ, jaﬁ (

y. Using the the

”ynH(m,P) Hyn”(m,p)
and
ltnllom.p) = Wnllompy 78 (") + =" lm.p)-
Hyn”(m,p) ”yn”(m,p)
Therefore,
Un _ To"ﬁ(l\ynﬁ?m,m) - Hynﬁzn,p)
[[tnll(m,p) Hra,ﬁ(”ynﬁzmp)) + Hynﬁ?mm ||(m,p)
Therefore,
Un (o) Tap®)ty
nll (. 70,8 ) + Yl mp)’
Un  (mp)  Tap(y) +y
[tnl(m,p) I7a,8(¥) + Yllom.p)
Setting
ras(y) Ty

= ¢.
Hrot,,@(y) + yH(m,p)
we notice that ||@||m,,) = 1 and Jap(®) = 0 = M(a,B(a)). Therefore ¢ is a

nontrivial eigenfunction associated to («, 8(«)). Since —i2——0 {mo), ¢ and (5.1))

”u"”(m,p)
is satisfied, we have that lim, e ([ F(z,un) + § G(x,u,)) = —oo. It follows that
I(u,) — o0, a contradiction. The lemma is proved. O

Lemma 5.4. If (5.1)) is satisfied, then I satisfies (PS).

Proof. The first part of the proof is identical to the proof in Lemma Sup-
pose {u,} C H'(Q) is a sequence such that I(u,) is bounded, I'(u,) — 0, and
|tun |l (m,p)y — 00. As before, we take v, = and by an identical argument

U
lwnll(m,p)

we show that v, {29, 4 and Up b)) with V]|(m,py = 1 and v a Fucik eigen-

function associated with (a, 8). In the previous case this was a contradiction, but
since («, 8) € ¥ in this case, we have not yet reached a contradiction, and further
argument is needed.
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Write u,, = Ty + Y = Tno + 7a,8(Yn) + Yn. Then
I'(un) - &n = J}, gun) - /f Ty U )Ty + j{g(ﬂc,un)in

=J,5(@n +7a,8yn) +Yn) - /fa:un xn+fgxun

= aﬁ(xn'i‘raﬂ(yn)""yn) Ja ﬁ(raﬁ yn + Yn ) Tn

/f X, Up )Ty + ]{g(x,un)in

813,y — / £ un) i + f 9%, un)Bn
Sl — / F (& )i + 74 9@, un)En

by the fact that J;, 5(ra,(y) +y) -2 =0 for all z € X and Lemma Dividing
the inequality through by [|Z, || (m,,) gives

< 51|l — / F ()i + 7? 92, n) —

Han(m,p)

IA

IN

Ty Tn

I'(uy) -

)

||xn||(m,p)

but since I'(u,) — 0 and f,g are bounded, we obtain that ||Z,|(y,,) is also
bounded. It now follows that

Tt g(un) - Zn = I'(up) - Tn —l—/f(x,un)fn + %g(x,un)j}n

must also be bounded.

Now, let h(t) = Ja,5(ra,s(yn) + yn + tZ,). Then W' (t) = J., 5(ra.5(yn) + Yn +
t%,) - &, and we observe that h'(0) = 0 (by the definition of r, g) and A'(t) is
decreasing by the strict concavity of J, g on y, +X. By the Mean Value Theorem,
h(1) — h(0) = h/(c) for some ¢ € (0,1), and hence h(1) — h(0) > h/(1) since h' is
decreasing. So,

Jaﬁ(TOé,B(yn) +Yn + Tn) — Ja,ﬁ(rwﬂ(yn) +Yn) > J B(Ta,ﬂ(yn) +Yn + ) Tn.

Since Ja,ﬂ(""aﬁ(yn) + yn) 2 ||ynHm,pM(OA7/B) = O’ we then haVe that Ja,ﬁ(un) Z
o5 (un) - &n. Therefore,

I(up) = Jo,p(tn) /Fa:un %qun

> ) - = [ [ P+ f o)

However, J/, 5(un) - & is bounded and [[ F(z,u,) + § G(z,u,)] — —oo by (5.1),
which contradicts the boundedness of I(u,). Hence ||uy|(m,p) is bounded, and the
proof proceeds as in Lemma ([l

By a straightforward application of the Saddle Point Theorem, we now conclude
that there exists a solution to the resonance problem.
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