Appendix A: Statistical and Economic Terms - X Product Quality Characteristic - L Lower Specification Limit Of X - U Upper Specification Limit Of X - N Lot Size - n Sample Size - \overline{x} Sample Mean - μ Mean Of The Quality Characteristic X - σ^2 Variance Of The Quality Characteristic X - m Mean Of The Mean μ - c Acceptance Number Under Attribute Sampling - s Number Of Defectives In A Sample Under Attribute Sampling - K_R Sales Price Of An Item - K_p Production Cost Of An Item - K_J Junk Value Of A Scrapping Item = 0 In This Model - K_A Cost Of Accepting A Defective Item Delivered To The Consumer - p Fraction Of Items Defective - p' Minimum Variance Unbiased Estimate Of The Fraction Defective p - $1-\alpha$ Minimum Probability Of Accepting A Lot Given A Lot Of Acceptable Quality - $1-\beta$ Maximum Probability Of Rejecting A Lot Given A Lot Of Rejectable Quality - C_1 Prior Cost Function Associated With The Decision To Accept Outright - C_2 Prior Cost Function Associated With The Decision To Reject Outright and scrap - p₁ Profit Per Item To Accept The Lot Without Sampling - p2 Profit Per Item To Reject The Lot Outright - p₃ Expected Posterior Profit Per Item For Accepting The Remainder Of The Lot - p₄ Expected Posterior Profit Per Item For Rejecting And Scrapping The Remainder Of The Lot - p₅ Profit Per Item Resulting From Sampling And Scrapping n Units - K_1' Posterior Cost Function Associated With Acceptance - K_2' Posterior Cost Function Associated With Rejection - $E(K_2'|\Phi)$ Expected Posterior Cost Associated With Rejection - $K(n, \Phi_n^{01}, \Phi_n^{02})$ Cost Equation In Terms Of The Sample Size n And An Upper And Lower Limits Of The Parameter Φ_n . - σ_{μ}^2 Variance Of The Mean μ (In This Work σ_{μ} Is Assumed Known) - $f(x|\mu)$ Conditional Probability Density Function Of The Quality Characteristic (X) Given μ - $h(\mu)$ Probability Density Function Of The Mean μ