Appendix A: Statistical and Economic Terms

- X Product Quality Characteristic
- L Lower Specification Limit Of X
- U Upper Specification Limit Of X
- N Lot Size
- n Sample Size
- \overline{x} Sample Mean
- μ Mean Of The Quality Characteristic X
- σ^2 Variance Of The Quality Characteristic X
- m Mean Of The Mean μ
- c Acceptance Number Under Attribute Sampling
- s Number Of Defectives In A Sample Under Attribute Sampling
- K_R Sales Price Of An Item
- K_p Production Cost Of An Item
- K_J Junk Value Of A Scrapping Item = 0 In This Model
- K_A Cost Of Accepting A Defective Item Delivered To The Consumer
- p Fraction Of Items Defective
- p' Minimum Variance Unbiased Estimate Of The Fraction Defective p
- $1-\alpha$ Minimum Probability Of Accepting A Lot Given A Lot Of Acceptable Quality
- $1-\beta$ Maximum Probability Of Rejecting A Lot Given A Lot Of Rejectable Quality
- C_1 Prior Cost Function Associated With The Decision To Accept Outright

- C_2 Prior Cost Function Associated With The Decision To Reject Outright and scrap
- p₁ Profit Per Item To Accept The Lot Without Sampling
- p2 Profit Per Item To Reject The Lot Outright
- p₃ Expected Posterior Profit Per Item For Accepting The Remainder Of The Lot
- p₄ Expected Posterior Profit Per Item For Rejecting And Scrapping The Remainder Of The Lot
- p₅ Profit Per Item Resulting From Sampling And Scrapping n Units
- K_1' Posterior Cost Function Associated With Acceptance
- K_2' Posterior Cost Function Associated With Rejection

- $E(K_2'|\Phi)$ Expected Posterior Cost Associated With Rejection
- $K(n, \Phi_n^{01}, \Phi_n^{02})$ Cost Equation In Terms Of The Sample Size n And An Upper And Lower Limits Of The Parameter Φ_n .
- σ_{μ}^2 Variance Of The Mean μ (In This Work σ_{μ} Is Assumed Known)
- $f(x|\mu)$ Conditional Probability Density Function Of The Quality Characteristic (X) Given μ
- $h(\mu)$ Probability Density Function Of The Mean μ