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Abstract: In recent years researchers in various quality control procedures 
consider the possibility of inspection errors as an important issue. The 
presence of these errors leads to changes in the so-called operational 
characteristic (O.C.) control curve, and as a result the average outgoing quality 
of an industrial process. We present a new mathematical model that can be 
applied to calculate such quantities as the expected number of defective items 
replaced in an accepted lot, and other functions of this process. 

Keywords: Inspection Errors, industrial process, Bayesian methods, statistics 
AMS Mathematical Subject Classification: 46N30, 62-06,62P30 
 

 
© 2002 by EJMAPS (http://www.ejmaps.org). Reproduction for noncommercial purposes permitted 

mailto:Ajalbout@ejmaps.org


Electron. J. Math. Phys. Sci., 2002, Sem. 1 10

 
 
1. Introduction 
 

In attribute sampling plans the errors are generally of two kinds: 
 

Type I error: a good item is classified as bad, with a probability e1 

Type II error: a bad item is classified as good, with a probability e2 

Collins and Case [1] derived an expression for the probability of acceptance under 

inspection errors. An expression was later derived for the marginal distribution of the 

observed defectives. (Hald [2-5] Case, Bennett and Schmidt [6-7] developed formulas for 

calculating the average outgoing quality (AOQ) when attribute inspection is subject to 

Type I and Type II inspection errors. Nine different rectification inspection policies are 

considered. These policies were first introduced by Wortham and Mogg [8].  Beainy and 

Case [9] later generalized these models, and they developed nine different sample/rest-of-

lot disposition policies for single and double sampling along explicitly developed AOQ 

models.  In this work both the attribute variable plans are considered [10] and a Bayesian 

technique is developed to estimate different parameters. Appendix A lists all of the 

notations used in this work. Although more the more recent work of Johnson, Kotz and 

Wu [11] describes some more modern industrial approaches to inspection errors with 

attributes in quality control, they still forget to include the Bayesian methods, a novel 

approach which is presented in this work.  

2. Mathematical Development 
 
Hald [2-5] has derived the following form of the marginal distribution of x : 
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under the assumption that the number of defectives X in a lot size is binomially  N
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distributed, with a p.d.f: 
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where p is the process fraction defective.  

The second assumption of equation (2.1) is that the number of defectives x in a 

sample size given n X is hypergeometric:  
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thus this proves that the Hald’s [2-5] derivations of the binomial distribution is 

reproduced by hypergeometric sampling.  Thus for the Bayesian operating characteristic 

(BOC) curve the probability of lot acceptance is derived from the above equations as: 
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where is the acceptance number. For the inspection error analysis the observed 

defectives from a sample is replaced by observed number of defectives . The 

probability of lot acceptance given in (2.4), will be reduced: 
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Equation (2.4) gives the probability of lot acceptance for perfect inspection. The 

probability of lot acceptance when inspection errors are presented as in equation 

(2.5), and using equation (2.6) we can derive: 
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We can now deduce an expression for the average outgoing quality (AOQ). 

 The AOQ can be defined as: 
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An expression fro AOQ can be derived by introducing the following terms: 

, the number of defectives in the uninspected portion of an accepted 

, the number of defective of defective items classified as being good in the 

screened portion of the rejected lot. is the number of defective items classified as 

good in the sample, is the number of defective items introduced through 

replacement into the lot. For an accepted lot, the expected number of defective items 

replaced in the lot is: 
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The probability that an item is classified as being good is then: 
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A set of  items are selected at random, tested and classified as good or bad. A total of 

items were needed to replace the defective items in the accepted lot. This procedure 
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of sampling defines a negative binomial process. The expected number of items tested to 

obtain np items, which are good, is then: e

gP
y .        (2.11) 

The expected number of defective items replaced in an accepted lot is then: 
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The expected number of defective items replaced in a rejected lot, which is screened, is: 
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The expected number of items to be replaced is: 
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The expression AOQ is then: 
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Expression (14) can be reduced to the form: 
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Similarly the AOQ expression for sampling with no replacement can be derived as: 
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This is true so no defectives are introduced through the replacement process.  
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3. Conclusions 
 

In this work expressions for the average outgoing quality were derived for both 

the model involving replacement of defective items in the lot and when the items are not 

replaced. The potential application of this work lies in the ability of industrial researchers 

to calculate both of these quantities and decide the loss of such events, which are so very 

common in real life inspections. This simple model, is novel, and will be fruitful for any 

industrial process involving a constant inspection process. (see Jalbout, Alkahby [12]) 
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Appendix A: Notations Used in text 
 

Notation Definition 
p  Fraction of items defective  
pe Apparent fraction defective 
e1 Type I inspection error 
e2 Type II inspection error 
N Lot size 
X Value for measurable quality 

characteristic in variable sampling 
plans for fraction defective 

x Sample 
n Sample size 
Pa Probability of acceptance for a single 

variable sampling plan for fraction 
defective.  

c Acceptance number 
i Distribution of actual defectives  
pae Probability of acceptance when errors are 

present 
ye Observed number of defectives 
AOQ Average outgoing quality  
AOQe Average outgoing quality error 
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