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Abstract. In this short note, we provide a self-contained proof for the criterion
∇u ∈ L

5
2 (0, T; L2(R3)) to Navier–Stokes equations energy balance, which improves

some recent results on this problem.
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1 Introduction

We are interested in the energy balance of distributional solutions to Navier–Stokes equations
∂tu + u · ∇u − ∆u +∇p = 0, x ∈ R3, t > 0

∇ · u = 0, x ∈ R3, t > 0

u|t=0 = u0(x), x ∈ R3.

(1.1)

It is well known since the work of Leray [8] and Hopf [6], that for any u0 ∈ L2
σ(R

3) one can
construct a global weak solutions to (1.1), namely, a function u that, for each T > 0, is in the
class

u ∈ L∞(0, T; L2
σ(R

3)) ∩ L2(0, T; H1(R3)) (1.2)

and solves (1.1) in a distributional sense. Here, L2
σ(R

3) is the subspace of L2(R3) of divergence-
free vector functions. In addition, such a u satisfies the so-called energy inequality:

∥u(t)∥2
L2 + 2

∫ t

0
∥∇u(τ)∥2

L2 dτ ≤ ∥u0∥2
L2 , ∀ t ≥ 0. (1.3)

Much about the solutions of the Navier–Stokes equation is unknown, including uniqueness
and regularity. The main barrier is the fact that the energy equality, which states that for any
smooth solution u, it obeys the following energy balance:

∥u(t)∥2
L2 + 2

∫ t

0
∥∇u(τ)∥2

L2 dτ = ∥u0∥2
L2 , ∀ t ≥ 0. (1.4)
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A natural question immediately arises: does any Leray–Hopf weak (distributional) solution
of the Navier–Stokes equations automatically satisfy the energy balance (1.4)? To date this
question remains open, and only conditional results are available.

Energy equality is clearly a prerequisite for regularity, and can be a first step in proving
conditional regularity results [2, 3, 11, 12]. Lions [9] and Ladyzhenskaya [7] proved indepen-
dently that a Leray–Hopf weak solution satisfy the (global) energy equality (1.4) under the
additional assumption u ∈ L4L4. Shinbrot [13] generalized the Lions–Ladyzhenskaya condi-
tion to

u ∈ Lr(0, T; Ls(Rd)) with
2
r
+

2
s
≤ 1, s ≥ 4. (1.5)

Recently, Yu [14] given a new proof to the Shinbrot energy conservation criterion. In addition,
Berselli and Chiodaroli in [1] prove some new energy balance criteria in terms of the gradient
of the velocity. Specially, they showed that

∇u ∈ L
5
2 (0, T; L2(Ω)) (1.6)

can ensure the energy identity.
From the PDEs point of view, it is significant to study the motion of distributional (very

weak) solutions of fluid equations, see Definition 1.1. In this regard, there is not any available
regularity on velocity field u, apart the solution being in L2

loc

(
R3 × [0, T)

)
. Recently, The

famous mathematician Giovanni P. Galdi [4, 5] systematically studied the relation between
very weak and Leray–Hopf solutions to Navier–Stokes equations, and he first proved that
if distributional solution in L4(0, T; L4(R3)), and with initial data u0 in L2(R3), then energy
equality (1.4) holds true, in particular, he emphasized that the requirement (1.2) is entirely
redundant. The key observation is the use of the duality argument and the above conditions
to improve the regularity of the solution (i.e., L∞ (

0, T; L2 (R3)) ∩ L2 (0, T; H1 (R3))).
As everyone knows, in fluid mechanics, the gradient of velocity(∇u) is an important phys-

ical quantity. Objective of this note is to prove that control the gradient of velocity, i.e.,
∇u ∈ L

5
2 (L2(R3)) along with the (necessary) condition u0 ∈ L2

σ(R
3) can ensure the energy

balance. More precisely, setting

DT := {φ ∈ C∞
0 (R3 × [0, T)) : div φ = 0}.

Definition 1.1 (Distributional solution). Let u0 ∈ L2(R3) with ∇ · u0 = 0, T > 0. The function
u ∈ L2

loc

(
R3 × [0, T)

)
is a distributional solution to the Navier–Stokes equations (1.1) if

1. for any Φ ∈ DT, we have

∫ T

0

∫
R3

u · (∂tΦ + ∆Φ + u · ∇Φ)dxdt = −
∫

R3
u(x, 0) · Φ(x, 0)dx;

2. for any φ ∈ C∞
0 (R3), it holds that ∫

R3
u · ∇φdx = 0,

for a.e. t ∈ (0, T).

We will show the following.
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Theorem 1.2. Suppose that u ∈ L2
loc

(
R3 × [0, T)

)
be a distributional solution in the sense of Defini-

tion 1.1 to the Navier–Stokes (1.1). If

∇u ∈ L
5
2
(
0, T; L2(R3)

)
,

then ∫
R3

|u(t, x)|2dx + 2
∫ t

0

∫
R3

|∇u(x, τ)|2dxdτ =
∫

R3
|u0|2 dx

for any t ∈ [0, T].

Remark 1.3. From a purely mathematical perspective, it seems that a new strategy for study-
ing the energy balance of distributional solutions based on gradient of velocity, which may be
applied to other incompressible fluid equations.

Remark 1.4. Note that this result is supercritical with respect to the Prodi–Serrin scaling since
3
p +

2
q = 3

2 +
4
5 > 2, showing that the energy balance holds even if one does not expect the full

regularity of solutions to hold.

Remark 1.5. Berselli and Chiodaroli [1] obtained energy equality via ∇u ∈ L
5
2
(
0, T; L2(Ω)

)
,

however, we want to emphasize is that the finite energy (u ∈ L∞L2 ∩ L2H1) plays a key role
in their proof.

2 Proof of Theorem 1.2

This section is devoted to proof of Theorem 1.2. For the sake of simplicity, we will proceed
as if the solution is differentiable in time. The extra arguments needed to mollify in time are
straightforward.

Let η : R3 → R be a standard mollifier, i.e. η(x) = Ce
1

|x|2−1 for |x| < 1 and η(x) = 0 for
|x| ⩾ 1, where constant C > 0 selected such that

∫
R3 η(x)dx = 1. For any ε > 0, we define

the rescaled mollifier ηε(x) = ε−3η
( x

ε

)
. For any function f ∈ L1

loc(R
3), its mollified version is

defined as
f ε(x) = ( f ∗ ηε) (x) =

∫
R3

ηε(x − y) f (y)dy.

If f ∈ W1,p(R3), the following local approximation is well known

f ε(x) → f in W1,p
loc (R

3) ∀p ∈ [1, ∞).

The crucial ingredient to prove Theorem 1.2 is the following lemmas.

Lemma 2.1 ([10]). Let ∂ be a partial derivative in one direction. Let f , ∂ f ∈ Lp (R+ × R3), g ∈
Lq (R+ × Rd) with 1 ≤ p, q ≤ ∞, and 1

p +
1
q ≤ 1. Then, we have

∥∂( f g) ∗ ηε − ∂ ( f (g ∗ ηε)) ∥Lr(R+×R3) ≤ C∥∂ f ∥Lp(R+×Rd)∥g∥Lq(R+×R3)

for some constant C > 0 independent of ε, f and g, and with 1
r = 1

p +
1
q . In addition,

∂( f g) ∗ ηε − ∂ ( f (g ∗ ηε)) → 0 in Lr (R+ × R3)
as ε → 0, if r < ∞.
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Lemma 2.2. Let u0 ∈ L2(R3) with ∇ · u0 = 0 and let u be a distributional solution in the sense of
Definition 1.1 to the Navier–Stokes equations (1.1) and satisfies

∇u ∈ L
5
2
(
0, T; L2(R3)

)
,

then we have
sup
t≥0

∥uε(·, t)∥2
L2 +

∫ t

0

∫
R3

|∇uε|2dxdτ ≤ K, ∀ t ∈ [0, T],

where K is a constant depending only on ∥u0∥L2 and
∫ T

0 ∥∇u∥
5
2
L2 dt.

Remark 2.3. Lemma 2.2 shows distributional solution u falls into the class of Leray–Hopf
weak solutions provided that ∇u ∈ L

5
2
(
0, T; L2(R3)

)
.

Proof of Lemma 2.2. Multiplying (1.1)1 by (uε)ε, then integrating over (0, T)× R3, we infer that

1
2

d
dt

∫
R3

|uε|2dx +
∫

R3
|∇uε|2dx = −

∫
R3

div(u ⊗ u)ε · uεdx. (2.1)

Indeed, taking advantage of the interpolation inequality, Hölder’s inequality and Young’s
inequality, we know that∣∣∣∣− ∫

R3
div(u ⊗ u)ε · uεdx

∣∣∣∣ ≤ C∥(u · ∇u)∥
L

3
2
∥uε∥L3

≤ C∥u∥L6∥∇u∥L2∥uε∥L3

≤ C∥∇u∥2
L2∥uε∥L3

≤ C∥∇u∥2
L2∥uε∥

1
2
L2∥uε∥

1
2
L6

≤ C∥∇u∥
5
2
L2

(
∥uε∥2

L2 + 1
)

.

(2.2)

Then substituting estimates (2.2) into (2.1), we arrive at

d
dt

∫
R3

|uε|2dx +
∫

R3
|∇uε|2dx ≤C∥∇u∥

5
2
L2

(
∥uε∥2

L2 + 1
)

. (2.3)

Applying Gronwall’s inequality to see that

sup
t≥0

∥uε(·, t)∥2
L2 +

∫ t

0

∫
R3

|∇uε|2dxdτ ≤ ∥u0∥2
L2 exp C

∫ t

0
∥∇u∥

5
2
L2 ds

≤ K,
(2.4)

for all t ∈ [0, T], where K is a constant depending only on initial data u0 and
∫ T

0 ∥∇u∥
5
2
L2 dt.

Let ε → 0 in (2.4), one has

sup
t≥0

∥u(·, t)∥2
L2 +

∫ t

0

∫
R3

|∇u|2dxdτ ≤ K. (2.5)

Then we complete the proof of Lemma 2.2.

Proof of Theorem 1.2. With Lemma 2.1 and Lemma 2.2 in hand, we are ready to prove our main
result. First, we appeal to u ∈ L∞ (

L2) ∩ L
5
2 (H1), by interpolation inequality we show that

∥u∥L4 ≤ ∥u∥
1
4
L2∥u∥

3
4
L6 ,
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By integration in (0, T) one easily proves that the estimate∫ T

0
∥u∥

10
3

L4 dt ≤
∫ T

0
∥u∥

5
2
L6∥u∥

5
6
L2 dt ≤

∫ T

0
∥∇u∥

5
2
L2∥u∥

5
6
L2 dt ≤ C. (2.6)

Next, modifying the momentum equation (1.1)1 and taking the inner-product with uε, thus
we have ∫

R3
uε (∂tu + u · ∇u − ∆u +∇p)ε dx = 0. (2.7)

This yields

1
2

d
dt

∫
R3

|uε|2dx +
∫

R3
|∇uε|2dx = −

∫
R3

div(u ⊗ u)ε · uεdx. (2.8)

Clearly,∫
R3

|uε|2dx −
∫

R3
|uε

0|2dx + 2
∫ t

0

∫
R3

|∇uε|2dxdτ = −2
∫ t

0

∫
R3

div(u ⊗ u)ε · uεdxdτ. (2.9)

Notice that the incompressible condition div u = 0 ensures

−2
∫ t

0

∫
R3

div(u ⊗ uε) · uεdxdτ = 0,

by using Hölder’s equality and Lemma 2.1, one has

− 2
∫ t

0

∫
R3

div(u ⊗ u)ε · uε − div(u ⊗ uε) · uεdxdτ

= 2
∫ t

0

∫
R3
[(u ⊗ u)ε − (u ⊗ uε)] · ∇uεdxdτ

≤ 2
∫ t

0

∫
R3

(|(u ⊗ u)ε − u ⊗ u|+ |u ⊗ u − u ⊗ uε|) |∇uε| dxdτ

≤ C∥∇u∥
L

5
2 (0,T;L2(R3))

(
∥(u ⊗ u)ε − u ⊗ u∥

L
5
3 (0,T;L2(R3))

+ ∥u∥
L

10
3 (L4(R3))

∥u − uε∥
L

10
3 (0,T;L4(R3))

)
.

(2.10)

Thanks to (2.6) and standard properties of mollifier, we know that the right hand side of (2.10)
becomes zero as ε → 0, which completes the proof of this case.

Finally, letting ε go to zero in (2.9), and using the facts (2.10), what we have proved is that
in the limit ∫

R3
|u(t, x)|2dx + 2

∫ t

0

∫
R3

|∇u(x, τ)|2dxdτ =
∫

R3
|u0|2 dx.

This completes the proof of Theorem 1.2.
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