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Abstract. In this paper, we study the following Schrödinger–Hardy system
−∆Gu− µ

ψ2

r(ξ)2 u = Fu(ξ, u, v) in Ω,

−∆Gv− ν
ψ2

r(ξ)2 v = Fv(ξ, u, v) in Ω,

u = v = 0 on ∂Ω,

where Ω is a smooth bounded domain on Carnot groups G, whose homogeneous di-
mension is Q ≥ 3, ∆G denotes the sub-Laplacian operator on G, µ and ν are real
parameters, r(ξ) is the natural gauge associated with fundamental solution of −∆G on
G, ψ is the geometrical function defined as ψ = |∇Gr|, and ∇G is the horizontal gradi-
ent associated with ∆G. The difficulty is not only the nonlinearities Fu and Fv without
Ambrosetti–Rabinowitz condition, but also the hardy terms and the structure on Carnot
groups. We obtain the existence of nonnegative solution for this system by mountain
pass theorem in a new framework.
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1 Introduction and main results

In this paper, we consider the following Schrödinger–Hardy system
−∆Gu− µ

ψ2

r(ξ)2 u = Fu(ξ, u, v) in Ω,

−∆Gv− ν
ψ2

r(ξ)2 v = Fv(ξ, u, v) in Ω,

u = v = 0 on ∂Ω,

(1.1)

where Ω is a smooth bounded domain on Carnot groups G, whose homogeneous dimension
is Q ≥ 3, ∆G denotes the sub-Laplacian operator on G, µ and ν are real parameters, r(ξ) is
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the natural gauge associated with fundamental solution of −∆G on G, ψ is the geometrical
function defined as ψ = |∇Gr|, and ∇G is the horizontal gradient associated with ∆G. The
difficulty in this paper is not only the nonlinearities Fu and Fv without Ambrosetti–Rabinowitz
condition, but also the hardy terms and the structure on Carnot groups.

In the context of stratified groups, the problem has been intensively studied in last decades,
starting with the pioneering papers [21,22]. In particular, a number of literatures are related to
Heisenberg group, such as [4,15,16,23,35,36] and references therein. Only few results concern
the general Carnot setting. For related topics, see [2, 3, 11, 31, 37] and references therein.

We mention that Ferrara et al. [17] obtained the existence of a weak solution for the fol-
lowing problem {

−∆Gu = λ f (ξ, u) in Ω,
u = 0 on ∂Ω,

where Ω is a bounded domain of G, λ > 0 is a real parameter, and f is a subcritical nonlin-
earity. For critical exponent subelliptic problem,{

−∆Gu = |u|2∗−2u + f in Ω,
u = 0 on ∂Ω,

(1.2)

with 2∗ = 2Q
Q−2 . When f = 0, problem (1.2) does not admit any nonnegative non trivial

solution on star-shaped domain, see [21, 22]. If Ω is a bounded domain of G, Loiudice
[27] established the existence of positive and sign changing solutions for f = λu, extend-
ing the famous Brezis–Nirenberg results [8] to the subelliptic Carnot setting. Subsequently,
by Nehari manifold and Ekeland variational principle, Loiudice [32] considered the general
non-homogeneous problem (1.2) and proved the existence of at least two positive solutions,
provided that non-homogeneous term f satisfies suitable assumptions.

Concerning the problem for sub-Laplacian operator involving critical Hardy–Sobolev non-
linearity {

−∆Gu = ψα

r(ξ)α |u|2
∗(α)−2u + λu in Ω,

u = 0 on ∂Ω,

where Ω ⊂ G is a bounded domain, 0 < α < 2, 2∗(α) = 2(Q−α)
Q−2 is the critical Sobolev–Hardy

exponent, Loiudice [29] proved that if λ = 0, there is no nonnegative nontrivial solutions
when Ω is a bounded star-shaped domain about the origin with respect to dilations of the
group. Also, the existence of solution was established provided that λ > 0.

For more general nonlinearity with Hardy type potential, that is{
−∆Gu− µ

ψ2

r(ξ)2 u = f (ξ, u) in Ω,
u = 0 on ∂Ω,

(1.3)

where Ω is an open subset of G, 0 ∈ Ω, 0 ≤ µ < (Q−2
2 )2, the function f satisfies f (ξ, u) ≤

C(|u| + |u|2∗−1), ∀(ξ, u) ∈ Ω × R and C > 0 is a constant. By Lp regularity of solutions
and Moser’s iteration, Loiudice [30] showed that any positive solution of (1.3) has a stronger
singularity as µ → (Q−2

2 )2. When f is a purely critical nonlinearity, that is f (u) = |u|2∗−2u,
the behavior of solutions at origin shows the decay of solution at infinity by Kelvin transform
on Rn in Euclidean setting. However, this technique fails in Carnot group, because there does
not exist a suitable inversion with good conformal properties. We point out this technique is
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true for a special subclass of stratified groups, that is the Iwasawa-type groups H. Loiudice
[28] showed that if u ∈ S1

0 (Ω) is a solution to

−∆Hu− µ
ψ2

r(ξ)2 u = |u|2∗−2u in Ω,

there is C1 > 0 such that

|u(ξ)| ≤ C1r(ξ)−
√

µH−
√

µH−µ, for r(ξ) large.

Moreover, if u is positive, there exists C2 > 0 such that

|u(ξ)| ≥ C2r(ξ)−
√

µH−
√

µH−µ, for r(ξ) large,

where S1
0 (Ω) is the Folland–Stein space, defined as the completion of C∞

0 (Ω) with respect to
the norm

∥u∥S1
0 (Ω) =

( ∫
Ω
|∇Gu|2dξ

) 1
2
,

and µH = (Q−2
2 )2 is the best constant in Hardy inequality on Iwasawa-type groups,

µH

∫
H

ψ2 |u|2
r(ξ)2 dξ ≤

∫
H
|∇Hu|2dξ, ∀u ∈ C∞

0 (H),

and it is never attained, some more details can be seen in [5, 10]. Moreover, this result was
extended to the whole Carnot groups in [33] by using different methods, and Loiudice in-
vestigated the existence and nonexistence for subelliptic Brezis–Nirenberg type problem as
follows {

−∆Gu− µ
ψ2

r(ξ)2 u = u2∗−1 + λu in Ω,
u = 0 on ∂Ω.

Concerning the results in the whole Carnot group, Zhang [39] considered the following
equation

−∆Gu = λ
ψα

r(ξ)α
|u|2∗(α)−2u + β f (ξ)|u|p−2u in G,

where λ, β > 0 are parameters, 0 < α ≤ 2, Zhang proved the existence and multiplicity
of solutions by variational methods and the theory of genus. Concerning multiple Hardy
nonlinearities, Zhang [38] proved the attainability of best Sobolev–Hardy constant of

Sµ,α = inf
u∈S1(G)\{0}

∫
G
|∇Gu|2dξ − µ

∫
G

ψ(ξ)2

r(ξ)2 |u|2dξ( ∫
G

ψ(ξ)α

r(ξ)α |u|2∗(α)dξ
) 2

2∗(α)
.

Moreover, as an application, by variational methods and local compactness of Palais–Smale se-
quences, Zhang obtained the existence of nontrivial weak solution to the following singularity
sub-elliptic equation and system

−∆Gu− µ
ψ(ξ)2

r(ξ)2 u =
ψ(ξ)α

r(ξ)α
|u|2∗(α)−2u +

ψ(ξ)β

r(ξ)β
|u|2∗(β)−2u in G,
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and  −∆Gu− µ
ψ(ξ)2

r(ξ)2 u = ψ(ξ)α

r(ξ)α |u|2
∗(α)−2u + λη

η+θ
ψ(ξ)α

r(ξ)α |u|η−2u|v|θ in G,

−∆Gv− µ
ψ(ξ)2

r(ξ)2 v = ψ(ξ)α

r(ξ)α |v|2
∗(α)−2v + λη

η+θ
ψ(ξ)α

r(ξ)α |u|η |v|θ−2v in G,

where 0 ≤ α, β < 2 and η, θ > 1 with η + θ = 2∗(α), λ > 0 is a parameter. Further,
the problems with Hardy potential have been considered by [24] and [6, 7, 34, 35] for Hardy
nonlinearity in Heisenberg group. In particular, we mention that Bordoni and Pucci [6] first
proved the existence of nontrivial nonnegative solutions of the Schrödinger system including
multiple critical nonlinearities and Hardy potentials in Heisenberg groups.

In order to deal with (1.1), we introduce the Sobolev-type inequality: there exists a positive
constant C > 0 such that∫

Ω
|u|2∗dξ ≤ C

( ∫
Ω
|∇Gu|2dξ

) 2∗
2

, ∀u ∈ C∞
0 (Ω), (1.4)

where 2∗ is the critical exponent for ∆G, the embedding S1
0 (Ω) ↪→ Lq(Ω) is compact for

1 ≤ q < 2∗ but only continuous for q = 2∗, and the Hardy-type inequality is: for every
u ∈ C∞

0 (Ω), there holds (Q− 2
2

)2( ∫
Ω

ψ2

r(ξ)2 |u|
2dξ

)
≤

∫
Ω
|∇Gu|2dξ, (1.5)

where
(Q−2

2

)2 is the optimal constant but never attained (see [12, 20]). (1.5) is first proved by
Garofalo and Lanconelli [20] in Heisenberg group, then, D’Ambrosio [12] extended this result
to all Carnot groups. Moreover, the best Hardy constant K > 0 of (1.5) is given by

K = inf
u∈S1

0 (Ω),u ̸=0

∥u∥2
S1

0 (Ω)

∥u∥2
ψ

with ∥u∥2
ψ =

∫
Ω

ψ2

r(ξ)2 |u|
2dξ. (1.6)

Now, let us define a suitable solution space W = S1
0 (Ω) × S1

0 (Ω), which is a separable,
reflexive Banach space and endowed with the norm

∥(u, v)∥ =
(
∥u∥2

S1
0 (Ω)

+ ∥v∥2
S1

0 (Ω)

) 1
2
, (1.7)

we denote

∥(u, v)∥p =
( ∫

Ω
|(u, v)|pdξ

) 1
p
=

( ∫
Ω
|(u2 + v2)

1
2 |pdξ

) 1
p
,

for 1 ≤ p < ∞, and let

λ∗ = inf
(u,v)∈W\{(0,0)}

∥(u, v)∥2

∥(u, v)∥2
2
> 0.

Throughout the paper, we assume that F(ξ, u, v) : Ω×R2 → R is continuous, F(ξ, 0, 0) = 0
in Ω, and it satisfies the following assumptions.

( f1) The partial derivatives Fu, Fv ∈ C(Ω×R2), F(ξ, u, v) ≥ 0 in Ω×R2. Moreover, for each
ξ ∈ Ω,

Fu(ξ, u, v) = 0
{

if u ≤ 0 and v ∈ R,
if v ≤ 0 and u ∈ R.
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( f2) There exists s ∈ (2, 2∗) and λ ∈ [0, λ∗), then for each ϵ > 0, there is a constant Cϵ > 0
such that

|Fw(ξ, w)| ≤ (λ + ϵ)|w|+ Cϵ|w|s−1,

for every (ξ, w) ∈ Ω×R2, w = (u, v), |w| =
√

u2 + v2, where Fw = (Fu, Fv).

( f3) lim
|w|→∞

2F(ξ,w)
|w|2 = ∞, uniformly in Ω.

( f4) For any w = (u, v) ∈ R+ ×R+ and 0 < τ < 1, there exists a nonnegative function g ∈
L1(Ω) and a constant CF ≥ 1 such that H(ξ, τw) ≤ CF H(ξ, w) + g(ξ), where H(ξ, w) =

Fw(ξ, w)w− 2F(ξ, w).

The main result can be stated as follows.

Theorem 1.1. Assume that F satisfies ( f1)–( f4). Then (1.1) has at least a nonnegative solution
(u, v) ∈W for any µ, ν ∈ (−∞,K) such that

Θ− 2λ

λ∗
> 0, (1.8)

where λ ∈ [0, λ∗), Θ = min
{

1− µ+

K , 1− ν+

K
}

, µ+ = max{0, µ} and ν+ = max{0, ν}.

In this paper, the main difficulty is that the energy functional does not satisfy Palais–
Smale condition since the nonlinearities Fu and Fv loss the Ambrosetti–Rabinowitz condition,
see also [14, 25, 26]. It should be mentioned that the ( f4) plays an important role in proving
the boundless of Palais–Smale sequence.

The rest of the paper is organized as follows. In Section 2, we recall the main notations
and definitions related to the Carnot groups, and present some preparatory results. In Sec-
tion 3, we prove that the energy functional satisfies the mountain pass geometry structures.
In Section 4, we obtain the compactness theorem and prove the main result. Finally, we show
two lemmas in Section 5.

2 The functional setting of Carnot groups

We briefly recall the definitions and notations related to the Carnot groups functional setting.
For a complete treatment, we refer to [5, 18, 19].

2.1 The Carnot groups

A Carnot group is a homogeneous group, denoted as G = (Rn, ◦,F), whose Lie algebra g is
stratified, that is, g =

⊕r
i=1 Vi, where r > 0 is a integer number and called the step of G, g is

the Lie algebra of left invariant vector fields on G, Vi is a linear subspace of g, i = 1, . . . , r, and
satisfies

dimVi = ni, for i = 1, . . . , r,

[V1, Vi] = Vi+1, for 1 ≤ i ≤ r− 1, and [V1, Vr] = {0}.

From these, we can see that [V1, Vi] stands for the subspace of g generated by the commutators
[X, Y] with X ∈ V1, Y ∈ Vi.
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In fact, (Rn, ◦) is a Lie group equipped with a family of group automorphisms (namely
dilatations) F := {δη}η>0 such that, for every η > 0, the map

δη :
r

∏
i=1

Rni →
r

∏
i=1

Rni ,

shows that δη(ξ(1), . . . , ξ(r)) = (ηξ(1), η2ξ(2), . . . , ηrξ(r)), where ξ(i) ∈ Rni , i = 1, . . . , r, and
∑r

i=1 ni = n. The structure G = (Rn, ◦,F) is called a homogeneous group, and Q = dimhG :=
∑r

k=1 knk is called the homogeneous dimension of G. In this paper, we pay attention to dimhG ≥ 3.
In particular, G is the Euclidean space provided that dimhG ≤ 3, i.e. G = (RdimhG,+).

Let {Xj}n1
j=1 be a basis of V1, then the associated subelliptic operator ∆G is given by

∆G :=
n1

∑
j=1

X2
j ,

which is the second order differential operator on G. Here, n1 is the dimension of the first
step, moreover, the subelliptic gradient is ∇G := (X1, X2, . . . , Xn1). As proved in [18], there
exists a suitable homogeneous norm r(ξ), called gauge norm, such that Γ(ξ) = C

r(ξ)Q−2 is the
fundamental solution of −∆G, where C > 0 is a constant. By definition, a homogeneous norm
is any continuous function from G to [0,+∞) such that for η > 0, ξ ∈ G, r(δη(ξ)) = ηr(ξ),
r(ξ−1) = r(ξ), r(ξ) = 0 if and only if ξ = 0.

2.2 Functional setting and preliminary results

In this subsection, we present some useful results and comments, (1.1) has a variational struc-
ture and the Euler–Lagrange functional Iµ,ν : W → R is given by

Iµ,ν(u, v) =
1
2
∥u∥2

S1
0 (Ω)

+
1
2
∥v∥2

S1
0 (Ω)
− µ

2
∥u∥2

ψ −
ν

2
∥v∥2

ψ −
∫

Ω
F(ξ, u, v)dξ,

for all u, v ∈W. Indeed, Iµ,ν is well defined and be of class C1(W) under the assumptions ( f1)

and ( f2). A function (u, v) ∈W is a weak solution of (1.1) if holds

⟨u, Φ⟩+ ⟨v, Ψ⟩ − µ⟨u, Φ⟩ψ − ν⟨v, Ψ⟩ψ =
∫

Ω

(
Fu(ξ, u, v)Φ + Fv(ξ, u, v)Ψ

)
dξ,

for every (Φ, Ψ) ∈W, where

⟨u, Φ⟩ =
∫

Ω
(∇Gu,∇GΦ)dξ, ⟨v, Ψ⟩ =

∫
Ω
(∇Gv,∇GΨ)dξ,

⟨u, Φ⟩ψ =
∫

Ω

ψ2

r(ξ)2 uΦdξ, ⟨v, Ψ⟩ψ =
∫

Ω

ψ2

r(ξ)2 vΨdξ.

Moreover, for all (u, v) ∈W, there holds

⟨I′µ,ν(u, v), (Φ, Ψ)⟩ = ⟨u, Φ⟩+ ⟨v, Ψ⟩ − µ⟨u, Φ⟩ψ − ν⟨v, Ψ⟩ψ

−
∫

Ω

(
Fu(ξ, u, v)Φ + Fv(ξ, u, v)Ψ

)
dξ, for every (Φ, Ψ) ∈W.

Therefore, the weak solutions of (1.1) are exactly the critical points of Iµ,ν.
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Lemma 2.1. The embedding W ↪→ Lq(Ω)× Lq(Ω) is continuous for 1 ≤ q ≤ 2∗ and ∥(u, v)∥q ≤
C
′
q∥(u, v)∥ for all (u, v) ∈W and C

′
q > 0 is a constant.

Proof. From [19], we know that S1
0 (Ω) ↪→ Lq(Ω) for 1 ≤ q ≤ 2∗, thus, there is Cq > 0 such that

∥u∥q ≤ Cq∥u∥S1
0 (Ω) and ∥v∥q ≤ Cq∥v∥S1

0 (Ω).

Moreover, by ( f2), (1.7) and a fact a + b ≤
√

2(a2 + b2) for each a, b ∈ R, there holds

∥(u, v)∥q = ∥
√

u2 + v2∥q ≤ ∥
√
(u + v)2∥q ≤ ∥u∥q + ∥v∥q

≤ Cq(∥u∥S1
0 (Ω) + ∥v∥S1

0 (Ω)) ≤ Cq

√
2(∥u∥2

S1
0 (Ω)

+ ∥v∥2
S1

0 (Ω)
) = C

′
q∥(u, v)∥.

This proof is finished.

Lemma 2.2 ([1]). Let {(uk, vk)} ⊂ W be such that (uk, vk) ⇀ (u, v) weakly in W as k → ∞, then
up to a subsequence, (uk, vk)→ (u, v) a.e. in Ω as k→ ∞.

Lemma 2.3. Let Ω ⊂ G be a smooth bounded domain, then, the embedding W ↪→ Lq(Ω)× Lq(Ω) is
compact when 1 ≤ q < 2∗.

Proof. From [19], it holds that S1
0(Ω) ↪→ Lq(Ω) is compact for 1 ≤ q < 2∗, that is, if {uk} and

{vk} are bounded sequences in S1
0(Ω), then there exist u, v ∈W such that,

uk → u and vk → v in Lq(Ω).

Hence, if {(uk, vk)} ⊂W be a bounded sequence, we have

∥(uk, vk)− (u, v)∥q ≤ ∥uk − u∥q + ∥vk − v∥q → 0.

It follows that {(uk, vk)} strongly in Lq(Ω)× Lq(Ω).

In the following, we recall the definition of Cerami sequence and Cerami condition.

Definition 2.4. Let X = (X, ∥ · ∥) be a Banach space, X′ denotes its dual space, the functional
I : X → R be of C1(X).

(i) Cerami sequence: A sequence uk ∈ X is called a Cerami sequence if for every uk ∈ X,
I(uk) is bounded and (1 + ∥uk∥)∥I′(uk)∥X′ → 0 as k → ∞. In particular, ∥I′(uk)∥X′ → 0 as
k→ ∞.

(ii) Cerami condition: A functional I satisfies the Cerami condition if any Cerami sequence
associated with I has a strongly convergent subsequence in X.

3 Mountain pass structure

In this section, the results concern the existence of Palais–Smale sequence for Iµ,ν.

Lemma 3.1 ([9]). Let E be a real Banach space, I ∈ C1(E) with I(0) = 0. There are constants
ρ, τ > 0 and e ∈ E with ∥e∥E > ρ such that

inf
∥u∥E=ρ

I(u) ≥ τ and I(e) < 0.
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Then there is a Cerami sequence {uk} ⊂ E such that

I(uk)→ c, (1 + ∥uk∥E)∥I′(uk)∥E → 0,

where
c := inf

γ∈Γ
max
t∈[0,1]

I(γ(t)) ≥ τ,

and
Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = e}.

The number c is called mountain pass level. If the functional I satisfies the Cerami condition at the
minimax level c, then c is a critical value of I in E.

We first show that the energy functional Iµ,ν satisfies the geometric structure required by
Lemma 3.1.

Lemma 3.2. Assume that ( f2) holds, then there exist ζ, ρ > 0 such that

Iµ,ν(u, v) ≥ ζ, if ∥(u, v)∥ = ρ.

Proof. Let us set χ = min{(1− µ+

K ), (1− ν+

K )} and from ( f2), we have

Iµ,ν(u, v) =
1
2
∥u∥2

S1
0 (Ω)

+
1
2
∥v∥2

S1
0 (Ω)
− µ

2
∥u∥2

ψ −
ν

2
∥v∥2

ψ −
∫

Ω
F(ξ, u, v)dξ

≥ 1
2
∥u∥2

S1
0 (Ω)

(
1− µ+

K

)
+

1
2
∥v∥2

S1
0 (Ω)

(
1− ν+

K

)
−

∫
Ω

(1
2
(λ + ϵ)|(u, v)|2 + 1

s
Cϵ|(u, v)|s

)
dξ

≥ χ

2
(∥u∥2

S1
0 (Ω)

+ ∥v∥2
S1

0 (Ω)
)− 1

2
(λ + ϵ)∥(u, v)∥2

2 −
1
s

Cϵ∥(u, v)∥s
s

≥ χ

2
∥(u, v)∥2 − 1

2λ∗
(λ + ϵ)∥(u, v)∥2 − 1

s
CϵCs∥(u, v)∥s

=
1
2

(
χ− λ + ϵ

λ∗
− 2

s
CϵCs∥(u, v)∥s−2

)
∥(u, v)∥2,

where Cs > 0 is a constant, K is given in (1.6) and s ∈ (2, 2∗). Thus, if ρ is small enough such
that

χ− λ + ϵ

λ∗
− 2

s
CϵCsρ

s−2 > 0,

it holds Iµ,ν(u, v) ≥ 1
2

(
χ− λ+ϵ

λ∗ −
2
s CϵCsρ

s−2)ρ2 = ζ > 0 for all (u, v) ∈ W with ∥(u, v)∥ = ρ.
We obtain this lemma.

Lemma 3.3. Suppose that ( f3) holds, then there exists (ũ, ṽ) ∈ W with ∥(ũ, ṽ)∥ > ρ such that
Iµ,ν(ũ, ṽ) < 0.

Proof. It suffices to prove that for a fixed (u0, v0) ∈ W, Iµ,ν(tu0, tv0) → −∞ as t → +∞. We
assume that (u, v) ∈ W with compact support Dc. From ( f3), there are constants c1, c2, δ > 0,
such that for |u|, |v| > δ, one has

F(ξ, u, v) ≥ c1|(u, v)|2 ≥ c1|(u, v)|2 − c2, for (u, v) ∈W.
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Now, choosing arbitrarily (u0, v0) ∈W with u0, v0 > 0, and ∥(u0, v0)∥ = 1, hence, for all t > 0,
we set µ− = min{0, µ} and ν− = min{0, ν}, then

Iµ,ν(tu0, tv0) ≤
t2

2

(
∥u0∥2

S1
0 (Ω)

+ ∥v0∥2
S1

0 (Ω)
− µ∥u0∥2

ψ − ν∥v0∥2
ψ

)
−

∫
Ω

(
c1|(tu0, tv0)|2 − c2

)
dξ

≤ t2

2

(
∥u0∥2

S1
0 (Ω)

+ ∥v0∥2
S1

0 (Ω)
+ |µ−|∥u0∥2

ψ + |ν−|∥v0∥2
ψ − 2c1∥(u0, v0)∥2

2

)
+ c2|Dc|.

If c1 is large enough, there holds

0 < ∥u0∥2
S1

0 (Ω)
+ ∥v0∥2

S1
0 (Ω)

+ |µ−|∥u0∥2
ψ + |ν−|∥v0∥2

ψ < 2c1∥(u0, v0)∥2
2.

Therefore, we have Iµ,ν(tu0, tu0) → −∞ as t → ∞. Setting (ũ, ṽ) = (t0u0, t0u0) ∈ W, such that
∥(ũ, ṽ)∥ > ρ and Iµ,ν(ũ, ṽ) < 0. We obtain this lemma.

4 Cerami sequence and existence of solutions

4.1 Cerami sequence

In this section, we give an analysis of Cerami sequence and prove that Iµ,ν satisfies Cerami
condition.

Lemma 4.1. Assume that ( f1)–( f4) hold, then for each µ, ν ∈ (−∞,K), any Cerami sequence of Iµ,ν

is bounded in W.

Proof. Let {(uk, vk)} ⊂ W be a Cerami sequence of Iµ,ν, then, there exists L > 0 independent
of k such that

|Iµ,ν(uk, vk)| ≤ L for all k, (1 + ∥(uk, vk)∥)I′µ,ν(uk, vk)→ 0 as k→ ∞. (4.1)

Thus, there is τk > 0 and τk → 0 as k→ ∞, such that

|⟨I′µ,ν(uk, vk), (Φ, Ψ)⟩| ≤ τk∥(Φ, Ψ)∥
1 + ∥(uk, vk)∥

, ∀(Φ, Ψ) ∈W. (4.2)

Let us set (Φ, Ψ) = (uk, vk), then∣∣∣⟨uk, uk⟩+ ⟨vk, vk⟩ − µ⟨uk, uk⟩ψ − ν⟨vk, vk⟩ψ −
∫

Ω

(
Fu(ξ, uk, vk)uk + Fv(ξ, uk, vk)vk

)
dξ

∣∣∣
= |⟨I′µ,ν(uk, vk), (uk, vk)⟩| ≤

τk∥(uk, vk)∥
1 + ∥(uk, vk)∥

≤ τk ≤ C,

that is

− ∥uk∥2
S1

0 (Ω)
− ∥vk∥2

S1
0 (Ω)

+ µ∥uk∥2
ψ + ν∥vk∥2

ψ

+
∫

Ω

(
Fu(ξ, uk, vk)uk + Fv(ξ, uk, vk)vk

)
dξ ≤ C. (4.3)

Now, we prove that (uk, vk) is bounded in W. Suppose, by contradiction, ∥(uk, vk)∥ → ∞
as k → ∞. We define a sequence as (wk, zk) =

(uk ,vk)
∥(uk ,vk)∥

, then, ∥(wk, zk)∥ = 1. By Lemmas 2.2
and 2.3, there exists (w, z) ∈W such that

(wk, zk) ⇀ (w, z) weakly in W,

(wk, zk)→ (w, z) strongly in Lq(Ω)× Lq(Ω) for q ∈ [1, 2∗),

(wk, zk)→ (w, z) a.e. in Ω. (4.4)
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We divide the argument into several steps.

Step 1: We prove w ≥ 0 and z ≥ 0 a.e. in Ω. Let us set w−k = min{0, wk} and z−k = min{0, zk},
then (w−k , z−k ) is bounded because (wk, zk) in W is bounded. We choose (Φ, Ψ) = (w−k , z−k ) in
(4.2), it follows that

o(1) =
|⟨I′µ,ν(uk, vk), (w−k , z−k )⟩|

∥(uk, vk)∥
for ∥(uk, vk)∥ → ∞.

Therefore, from ( f1), the elementary inequality |a−− b−|2 ≤ (a− b)(a−− b−), (a, b ∈ R), (1.5)
and a fact that µ, ν < K, one has

o(1) =
1

∥(uk, vk)∥

(
⟨uk, w−k ⟩+ ⟨vk, z−k ⟩ − µ⟨uk, w−k ⟩ψ − ν⟨vk, z−k ⟩ψ

−
∫

Ω

(
Fu(ξ, uk, vk)w−k + Fv(ξ, uk, vk)z−k

)
dξ

)
=

1
∥(uk, vk)∥2

(
⟨uk, u−k ⟩+ ⟨vk, v−k ⟩ − µ⟨uk, u−k ⟩ψ − ν⟨vk, v−k ⟩ψ

)

−
∫

Ω

(
Fu(ξ, uk, vk)u−k + Fv(ξ, uk, vk)v−k

)
∥(uk, vk)∥2 dξ

=
1

∥(uk, vk)∥2

(
⟨uk, u−k ⟩+ ⟨vk, v−k ⟩ − µ⟨uk, u−k ⟩ψ − ν⟨vk, v−k ⟩ψ

)
≥ 1
∥(uk, vk)∥2

(
∥u−k ∥

2
S1

0 (Ω)
+ ∥v−k ∥

2
S1

0 (Ω)
− µ∥u−k ∥

2
ψ − ν∥v−k ∥

2
ψ

)
≥

(
1− µ+

K

)
∥w−k ∥

2
S1

0 (Ω)
+

(
1− ν+

K

)
∥z−k ∥

2
S1

0 (Ω)
.

It follows that
∥w−k ∥S1

0 (Ω) → 0 and ∥z−k ∥S1
0 (Ω) → 0.

Hence, (w−k , z−k ) → (0, 0) in W as k → ∞, (w−k , z−k ) = (0, 0) a.e in Ω, by the definition of w−k
and z−k , we get that w ≥ 0 and z ≥ 0 a.e. in Ω.

Step 2: We prove (w, z) = (0, 0) a.e in Ω. Let us set D+ = {ξ ∈ Ω : w > 0 or z > 0} and
D0 = {ξ ∈ Ω : (w, z) = (0, 0)}. Assume that the Haar measure of D+ is positive. From the
assumption that ∥(uk, vk)∥ → ∞, we have

|(uk, vk)| = ∥(uk, vk)∥|(wk, zk)| → ∞ a.e. in D+.

Then, from ( f3), we get

lim
k→∞

F(ξ, uk, vk)

∥(uk, vk)∥2 = lim
k→∞

F(ξ, uk, vk)|(wk, zk)|2
|(uk, vk)|2

= ∞ a.e. in D+. (4.5)

Moreover, by Fatou’s lemma and (4.5), there holds

lim inf
k→∞

∫
Ω

F(ξ, uk, vk)

∥(uk, vk)∥2 dξ ≥
∫

Ω
lim inf

k→∞

F(ξ, uk, vk)

∥(uk, vk)∥2 dξ

=
∫

Ω
lim inf

k→∞

F(ξ, uk, vk)|(wk, zk)|2
|(uk, vk)|2

dξ = ∞ a.e. in D+. (4.6)
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On the other hand, from (4.1), a fact that ∥uk∥2
S1

0 (Ω)
≤ ∥(uk, vk)∥2, ∥vk∥2

S1
0 (Ω)
≤ ∥(uk, vk)∥2 and

(1.5), we get∫
Ω

F(ξ, uk, vk)dξ ≤ 1
2
∥uk∥2

S1
0 (Ω)

+
1
2
∥vk∥2

S1
0 (Ω)
− µ

2
∥uk∥2

ψ −
ν

2
∥vk∥2

ψ + L

≤ ∥(uk, vk)∥2 +
|µ−|
2K ∥(uk, vk)∥2 +

|ν−|
2K ∥(uk, vk)∥2 + L for k ∈N,

where we have used a fact that ∥(uk, vk)∥ ≥ 1 because the hypothesis (uk, vk)→ ∞. Hence

lim sup
k→∞

∫
Ω

F(ξ, uk, vk)

∥(uk, vk)∥2 dξ ≤ 1 +
|µ−|
2K +

|ν−|
2K +

Z
∥(uk, vk)∥2 ,

it contradicts with (4.6). Hence, the measure of D+ is zero, that is (w, z) = (0, 0) a.e in Ω.

Step 3: We prove that {(uk, vk)} ⊂ W is bounded. Choosing τk is the smallest value of
τ ∈ [0, 1] such that Iµ,ν(τkuk, τkvk) = max0≤τ≤1 Iµ,ν(τuk, τvk). For Λ > 0, we set (Wk, Zk) =√

2Λ(wk, zk) =
√

2Λ (uk ,vk)
∥(uk ,vk)∥

, then, by (4.4) and Step 2, we obtain

lim
k→∞

(Wk, Zk) = lim
k→∞

√
2Λ(wk, zk) =

√
2Λ(w, z) =

√
2Λ(0, 0), (4.7)

in Lq(Ω)× Lq(Ω) for q ∈ [1, 2∗). By ( f1), ( f2), (4.7) and let ϵ = 1, it holds

0 ≤
∫

Ω
F(ξ, Wk, Zk)dξ ≤

∫
Ω

(
(λ + 1)|(Wk, Zk)|+ C1|(Wk, Zk)|s

)
dξ

≤ (λ + 1)∥(Wk, Zk)∥1 + C1∥(Wk, Zk)∥s
s → 0, as k→ ∞,

for s ∈ (2, 2∗), that is

lim
k→∞

∫
Ω

F(ξ, Wk, Zk)dξ = 0. (4.8)

From ∥(uk, vk)∥ → ∞, we assume that there is k0 ≥ k, such that
√

2Λ
∥(uk ,vk)∥

∈ (0, 1), then

Iµ,ν(τkuk, τkvk) ≥ Iµ,ν

(√
2Λ

uk

∥(uk, vk)∥
,
√

2Λ
vk

∥(uk, vk)∥

)
≥ Λ∥wk∥2(1− µ+

K ) + ∥zk∥2(1− ν+

K )−
∫

Ω
F(ξ, Wk, Zk)dξ

≥ Λχ(∥wk∥2 + ∥zk∥2)−
∫

Ω
F(ξ, Wk, Zk)dξ

≥ 1
2

Λχ−
∫

Ω
F(ξ, Wk, Zk)dξ,

where χ is defined in Lemma 3.2, ∥wk∥2
S1

0 (Ω)
+ ∥zk∥2

S1
0 (Ω)

= 1 because ∥(wk, zk)∥ = 1. By (4.8),

there is k1 ≥ k0 such that
∫

Ω F(ξ, Wk, Zk)dξ ≤ 1
2 Λχ for k ≥ k1. It follows that

lim
k→∞

Iµ,ν(τkuk, τkvk) = ∞. (4.9)

Since 0 < τk < 1, by ( f4), one has∫
Ω

H(ξ, τkuk, τkvk)dξ ≤ CF

∫
Ω

H(ξ, uk, vk)dξ +
∫

Ω
g(ξ)dξ. (4.10)
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From the facts that Iµ,ν(0, 0) = 0, Iµ,ν(uk, vk)→ c ∈ R, (4.9), and τk ∈ (0, 1), there holds

0 = τk
d

dτ
Iµ,ν(τuk, τvk)

∣∣∣
τ=τk

= ⟨I′µ,ν(τkuk, τkvk), (τkuk, τkvk)⟩

= ∥τkuk∥2
S1

0 (Ω)
+ ∥τkvk∥2

S1
0 (Ω)
− µ∥τkuk∥2

ψ − ν∥τkvk∥2
ψ

−
∫

Ω

(
Fu(ξ, τkuk, τkvk)τkuk + Fv(ξ, τkuk, τkvk)τkvk

)
dξ.

By ( f4) and (4.10), it follows that

∥τkuk∥2
S1

0 (Ω)
+ ∥τkvk∥2

S1
0 (Ω)
− µ∥τkuk∥2

ψ − ν∥τkvk∥2
ψ

=
∫

Ω

(
Fu(ξ, τkuk, τkvk)τkuk + Fv(ξ, τkuk, τkvk)τkvk

)
dξ

= 2
∫

Ω
F(ξ, τkuk, τkvk)dξ +

∫
Ω

H(ξ, τkuk, τkvk)dξ

≤ 2
∫

Ω
F(ξ, τkuk, τkvk)dξ + CF

∫
Ω

H(ξ, uk, vk)dξ +
∫

Ω
g(ξ)dξ. (4.11)

From (4.9) and (4.11), one has

2Iµ,ν(τkuk, τkvk) = ∥τkuk∥2
S1

0 (Ω)
+ ∥τkvk∥2

S1
0 (Ω)
− µ∥τkuk∥2

ψ − ν∥τkvk∥2
ψ

− 2
∫

Ω
F(ξ, τkuk, τkvk)dξ

≤ CF

∫
Ω

H(ξ, uk, vk)dξ +
∫

Ω
g(ξ)dξ → ∞ as k→ ∞.

Hence, we deduce that

1
CF

(
− C +

∫
Ω

H(ξ, uk, vk)dξ
)
→ ∞ as k→ ∞. (4.12)

On the other hand, by (4.1), ( f4) and (4.3), we have

L̃ ≥ 2Iµ,ν(uk, vk)

= ∥uk∥2
S1

0 (Ω)
+ ∥vk∥2

S1
0 (Ω)
− µ∥uk∥2

ψ − ν∥vk∥2
ψ − 2

∫
Ω

F(ξ, uk, vk)dξ

= ∥uk∥2
S1

0 (Ω)
+ ∥vk∥2

S1
0 (Ω)
− µ∥uk∥2

ψ − ν∥vk∥2
ψ

−
∫

Ω

(
Fu(ξ, uk, vk)uk + Fv(ξ, uk, vk)vk

)
dξ +

∫
Ω

H(ξ, uk, vk)dξ

≥ − C +
∫

Ω
H(ξ, uk, vk)dξ, (4.13)

where L̃ is a positive constant. Since CF ≥ 1 in ( f4) and by (4.13), we obtain

1
CF

(
− C +

∫
Ω

H(ξ, uk, vk)dξ
)
≤ −C +

∫
Ω

H(ξ, uk, vk)dξ ≤ L̃.

This contradicts with (4.12), it follows that {(uk, vk)} ⊂W is a bounded Cerami sequence. We
finish the proof of this lemma.

In the following, we verify that Iµ,ν satisfies the Cerami condition at level c.
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Lemma 4.2. Assume that ( f2) with ϵ = 1 holds. Then, for all µ, ν ∈ (−∞,K), Iµ,ν satisfies the
Cerami condition in W.

Proof. Assume that {(uk, vk)} ⊂ W is a Cerami sequence of Iµ,ν. Then, by Lemma 4.1, we
know that {(uk, vk)} is bounded. Then, up to subsequence, from (1.5), Lemmas 2.2 and 2.3,
for 1 ≤ q < 2∗, there exists (u, v) ∈W such that

(uk, vk) ⇀ (u, v) in W, ∥uk − u∥S1
0 (Ω) → ā, ∥vk − v∥S1

0 (Ω) → ǎ,

uk ⇀ u in L2(Ω, ψ2r−2), ∥uk − u∥ψ → á,

vk ⇀ v in L2(Ω, ψ2r−2), ∥vk − v∥ψ → à,

(uk, vk)→ (u, v) in Lq(Ω)× Lq(Ω), (uk, vk)→ (u, v) a.e in Ω,

∇Guk ⇀ ∇Gu in L2(Ω, R2n), ∇Gvk ⇀ ∇Gv in L2(Ω, R2n),

∇Guk ⇀ ϑ in L2(Ω, R2n), ∇Gvk ⇀ ς in L2(Ω, R2n),

(4.14)

where ϑ, ς ∈ L2(Ω, R2n) are two vector field functions in Ω, and ā, á, ǎ, à are four nonnegative
numbers.

From (4.14), we conclude that

∫
Ω

ψ2

r(ξ)2 ukΦdξ →
∫

Ω

ψ2

r(ξ)2 uΦdξ and
∫

Ω

ψ2

r(ξ)2 vkΨdξ →
∫

Ω

ψ2

r(ξ)2 vΨdξ, (4.15)

for (Φ, Ψ) ∈W. We choose ϵ = 1 in ( f2), and by Hölder inequality, then∫
Ω

∣∣∣(Fu(ξ, uk, vk)− Fu(ξ, u, v)
)
(uk − u)

+
(

Fv(ξ, uk, vk)− Fv(ξ, u, v)
)
(vk − v)

∣∣∣dξ

=
∫

Ω

∣∣∣Fw(ξ, wk)(wk − w)− Fw(ξ, w)(wk − w)
∣∣∣dξ

≤
∫

Ω

(
(λ + 1)(|wk|+ |w|)|wk − w|+ C1(|wk|s−1 + |w|s−1)|wk − w|

)
dξ

≤ Cλ(∥wk − w∥2 + ∥wk − w∥s)→ 0 as k→ ∞, (4.16)

where Cλ > 0 is a suitable constant. From (4.1), it holds that I′µ,ν(uk, vk) → 0 in W ′ as k → ∞,
then for every (Φ, Ψ) ∈W, we have

0←⟨I′µ,ν(uk, vk), (Φ, Ψ)⟩

=
∫

Ω
(∇Guk,∇GΦ)dξ +

∫
Ω
(∇Gvk,∇GΨ)dξ − µ

∫
Ω

ψ2

r(ξ)2 ukΦdξ − ν
∫

Ω

ψ2

r(ξ)2 vkΨdξ

−
∫

Ω

(
Fu(ξ, uk, vk)Φ + Fv(ξ, uk, vk)Ψ

)
dξ. (4.17)

Subsequently, we prove that the (PS) sequence satisfies compactness condition by means
of the Brézis–Lieb lemma.

From (4.17) and Lemma A.1 (it shows that (uk, vk) satisfies the Brézis–Lieb lemma’s con-
dition, see in the Appendix), one has

∇Guk → ∇Gu and ∇Gvk → ∇Gv a.e. in Ω, (4.18)
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and by (4.14), there holds ∇Guk ⇀ ϑ and ∇Gvk ⇀ ς in L2(Ω, R2n). Hence, from Proposition
A.7 in [1], we obtain ∇Gu = ϑ and ∇Gv = ς a.e. in Ω. It yields that ∇Guk ⇀ ∇Gu and
∇Gvk ⇀ ∇Gv in L2(Ω, R2n), therefore, for any (Φ, Ψ) ∈W, one has∫

Ω
(∇Guk,∇GΦ)dξ →

∫
Ω
(∇Gu,∇GΦ)dξ and

∫
Ω
(∇Gvk,∇GΦ)dξ →

∫
Ω
(∇Gv,∇GΦ)dξ.

It follows ⟨uk, u⟩ → ∥u∥2
S1

0 (Ω)
, ⟨u, uk⟩ → ∥u∥2

S1
0 (Ω)

and ⟨vk, v⟩ → ∥v∥2
S1

0 (Ω)
, ⟨v, vk⟩ → ∥v∥2

S1
0 (Ω)

.

Moreover, by (4.15) and (4.16), the weak limit w = (u, v) is a critical point of Iµ,ν in W. From
(4.14) and (4.18), the Brézis–Lieb lemma holds that

∥uk∥2
S1

0 (Ω)
= ∥uk − u∥2

S1
0 (Ω)

+ ∥u∥2
S1

0 (Ω)
+ o(1), ∥vk∥2

S1
0 (Ω)

= ∥vk − v∥2
S1

0 (Ω)
+ ∥v∥2

S1
0 (Ω)

+ o(1),

∥uk∥2
ψ = ∥uk − u∥2

ψ + ∥u∥2
ψ + o(1), ∥vk∥2

ψ = ∥vk − v∥2
ψ + ∥v∥2

ψ + o(1).

Consequently, one has

o(1) = ⟨I′µ,ν(wk)− I′µ,ν(w), wk − w⟩
= ∥uk∥2

S1
0 (Ω)

+ ∥u∥2
S1

0 (Ω)
+ ∥vk∥2

S1
0 (Ω)

+ ∥v∥2
S1

0 (Ω)
− ⟨uk, u⟩ − ⟨u, uk⟩ − ⟨vk, v⟩ − ⟨u, uk⟩

− µ
(
∥uk∥2

ψ + ∥u∥2
ψ − ⟨uk, u⟩ψ − ⟨u, uk⟩ψ

)
− ν

(
∥vk∥2

ψ + ∥v∥2
ψ − ⟨vk, v⟩ψ − ⟨vvk⟩ψ

)
+ o(1)

= ∥uk∥2
S1

0 (Ω)
− ∥u∥2

S1
0 (Ω)

+ ∥vk∥2
S1

0 (Ω)
− ∥v∥2

S1
0 (Ω)
− µ(∥uk∥2

ψ − ∥u∥2
ψ)

− ν(∥vk∥2
ψ − ∥v∥2

ψ) + o(1)

= ∥uk − u∥2
S1

0 (Ω)
+ ∥vk − v∥2

S1
0 (Ω)
− µ∥uk − u∥2

ψ − ν∥vk − v∥2
ψ + o(1).

From (4.14) and above equality, it follows that

ā2 + ǎ2 = lim
k→∞
∥uk − u∥2

S1
0 (Ω)

+ lim
k→∞
∥vk − v∥2

S1
0 (Ω)

= µ lim
k→∞
∥uk − u∥2

ψ + ν lim
k→∞
∥vk − v∥2

ψ

= µá2 + νà2. (4.19)

Thus, when either µ+ + ν+ = 0 or á + à = 0, we get (uk, vk) → (u, v) in W as k → ∞ and
finish the proof about compactness condition for (PS) sequence of Iϵ. In order to achieve this
aim, we assume by contradiction, that is µ+ + ν+ > 0 and á + à > 0.

(1) If either µ+ + à = 0 or ν+ + á = 0, then either á > 0 and ā = 0, or à > 0 and ǎ = 0.
However, all of cases are impossible because the nonnegative of norm in (4.14).

(2) If either µ+ + á = 0 or ν+ + à = 0, then either à > 0, ν+ > 0 and ǎ2 ≤ ν+ à2 < Kà2 ≤ ǎ2,
or á > 0, µ+ > 0 and ā2 ≤ µ+ á2 < Ká2 ≤ ā2, it appears a contradiction.

(3) µ+ > 0, ν+ > 0, á > 0 and à > 0, from (4.19) and (1.5), we get

ā2 + ǎ2 = µá2 + νà2 < Ká2 +Kà2 ≤ ā2 + ǎ2,

and a contradiction arises. From above discussions, we get á + à = 0, that is (uk, vk) → (u, v)
in W as k→ ∞, from (4.19), the proof of this lemma is finished.
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4.2 The existence of solution

In this part, we study the existence of nonnegative solution for (1.1).

Proof of Theorem 1.1. From Lemmas 3.2 and 3.3, we know that Iµ,ν satisfies the mountain pass
geometry structures. Moreover, the Cerami condition holds by Lemma 4.2. Therefore, for
every (Φ, Ψ) ∈W, there exists (u, v) ∈W, (u, v) ̸= (0, 0) such that

⟨u, Φ⟩+ ⟨v, Ψ⟩ − µ⟨u, Φ⟩ψ − ν⟨v, Ψ⟩ψ =
∫

Ω

(
Fu(ξ, u, v)Φ + Fv(ξ, u, v)Ψ

)
dξ.

Now, we prove that (u, v) is nonnegative. Let us set Φ = u− = min{0, u} and Ψ = v− =

min{0, v}, then, from ( f1), (1.6) and (1.8), one has

0 =
∫

Ω

(
Fu(ξ, u, v)u− + Fv(ξ, u, v)v−

)
dξ

= ⟨u, u−⟩+ ⟨v, v−⟩ − µ⟨u, u−⟩ψ − ν⟨v, v−⟩ψ

≥ (1− µ+

K )∥u−∥2
S1

0 (Ω)
+ (1− ν+

K )∥v−∥2
S1

0 (Ω)
≥ 0.

Thus, u− = 0 and v− = 0 a.e. in Ω, that is u ≥ 0 and v ≥ 0 a.e. in Ω, it shows that any
solution of (1.1) is nonnegative. We finish the proof.

A Appendix

In this section, we give a proof for the following lemma.

Lemma A.1. Let (uk, vk) and (u, v) belongs to W and satisfying

(i) (uk, vk) ⇀ (u, v) in W,

(ii) (uk, vk)→ (u, v) a.e. in Ω,

(iii) I ′µ,ν(uk, vk)→ 0 strongly in W
′
,

(iv) ϑ, ς ∈ Ω are two vector field functions with ϑ, ς ∈ L2(Ω, R2n) such that ∇Guk ⇀ ϑ and
∇Gvk ⇀ ς in L2(Ω, R2n), then, it holds

∇Guk → ∇Gu and ∇Gvk → ∇Gv a.e. in Ω. (A.1)

Proof. Let function βR ∈ C∞
0 (Ω) with R > 0, such that 0 ≤ βR ≤ 1 in Ω and βR ≡ 1 in BR. For

every z ∈ R, we define

ϱϵ(z) =

 z, if |z| < ϵ,

ϵ
z
|z| , if |z| ≥ ϵ.

We set ϕk = βRϱϵ ◦ (uk − u) and φk = βRϱϵ ◦ (vk − v), thus, by Lemma 2.1, there holds ϕk,
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φk ∈W1,2(Ω). Let Φ = ϕk and Ψ = φk in (4.17), then∫
Ω

βR

(
(∇Guk −∇Gu,∇G

(
ϱϵ ◦ (uk − u)

))
dξ

+
∫

Ω
βR

(
∇Gvk −∇Gv,∇G

(
ϱϵ ◦ (vk − v)

))
dξ

= −
∫

Ω
ϱϵ ◦ (uk − u)(∇Guk,∇GβR)dξ −

∫
Ω

βR

(
∇Gu,∇G

(
ϱϵ ◦ (uk − u)

))
dξ

−
∫

Ω
ϱϵ ◦ (vk − v)(∇Gvk,∇GβR)dξ −

∫
Ω

βR

(
∇Gv,∇G

(
ϱϵ ◦ (vk − v)

))
dξ

+ ⟨I′µ,ν(uk, vk), (ϕk, φk)⟩+ µ
∫

Ω

ψ2

r(ξ)2 ukϕkdξ + ν
∫

Ω

ψ2

r(ξ)2 vk φkdξ

+
∫

Ω

(
Fu(ξ, uk, vk)ϕk + Fv(ξ, uk, vk)φk

)
dξ. (A.2)

Now, we prove the each term in (A.2).
(1) We choose that β̃R be the support of βR and contained in a suitable ball of Ω, since

|ϱϵ ◦ (uk − u)∇GβR| → 0 in L2(β̃R) and |ϱϵ ◦ (vk − v)∇GβR| → 0 in L2(β̃R), and by (4.14),
∇Guk ⇀ ϑ in L2(Ω, R2n), ∇Gvk ⇀ ς in L2(Ω, R2n), then∫

Ω
ϱϵ ◦ (uk − u)(∇Guk,∇GβR)dξ → 0 and

∫
Ω

ϱϵ ◦ (vk − v)(∇Gvk,∇GβR)dξ → 0.

(2) Since∇G

(
ϱϵ ◦ (uk−u)

)
in L2(Ω, R2n),∇G

(
ϱϵ ◦ (vk− v)

)
in L2(Ω, R2n),∇Guk∈L2(Ω, R2n),

∇Gvk ∈ L2(Ω, R2n). From Lemma 2.1, uk ⇀ u and vk ⇀ v in W, one has∫
Ω

βR

(
∇Gu,∇G(ϱϵ ◦ (uk − u))

)
dξ → 0 and

∫
Ω

βR

(
∇Gv,∇G(ϱϵ ◦ (vk − v))

)
dξ → 0.

(3) From I′µ,ν(uk, vk)→ 0 in W ′ and (φk, ϕk) ⇀ 0 in W as k→ ∞, we have

⟨I′µ,ν(uk, vk), (φk, ϕk)⟩⇀ 0.

(4) For simplicity, we denote

Mk = µ
ψ2

r(ξ)2 uk + Fu(ξ, uk, vk), Nk = ν
ψ2

r(ξ)2 vk + Fv(ξ, uk, vk), (A.3)

by 0 ≤ βR ≤ 1 in Ω, the definition of ϕk, φk and ϱϵ(z), Lemma A.2, there holds∫
Ω
(Mk φk + Nkϕk)dξ ≤

∫
β̃R

(
|Mk| · |ϱϵ ◦ (uk − u)|+ |Nk| · |ϱϵ ◦ (vk − v)|

)
dξ

≤ ϵ
∫

β̃R

(|Mk|+ |Nk|)dξ ≤ ϵCR,

where CR > 0 is a constant. Moreover

βR

(
∇Guk −∇Gu,∇G(ϱϵ ◦ (uk − u))

)
≥ 0,

βR

(
∇Gvk −∇Gv,∇G(ϱϵ ◦ (vk − v))

)
≥ 0 a.e. in Ω. (A.4)
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Furthermore ∫
BR

βR

(
∇Guk −∇Gu,∇G

(
ϱϵ ◦ (uk − u)

))
dξ

+
∫

BR

βR

(
∇Gvk −∇Gv,∇G

(
ϱϵ ◦ (vk − v)

))
dξ

≤
∫

Ω
βR

(
∇Guk −∇Gu,∇G

(
ϱϵ ◦ (uk − u)

))
dξ

+
∫

Ω
βR

(
∇Gvk −∇Gv,∇G

(
ϱϵ ◦ (vk − v)

))
dξ.

From (1)–(4) and a fact that βR ≡ 1 in BR, then (A.2) becomes

lim sup
k→∞

[ ∫
BR

(
∇Guk −∇Gu,∇G

(
ϱϵ ◦ (uk − u)

))
dξ

+
∫

BR

(
∇Gvk −∇Gv,∇G

(
ϱϵ ◦ (vk − v)

))
dξ

]
≤ lim sup

k→∞

[ ∫
Ω

(
∇Guk −∇Gu,∇G

(
ϱϵ ◦ (uk − u)

))
dξ

+
∫

Ω

(
∇Gvk −∇Gv,∇G

(
ϱϵ ◦ (vk − v)

))
dξ

]
≤ ϵCR. (A.5)

Subsequently, let gk = gu,k + gv,k with gu,k =
(
∇Guk − ∇Gu,∇G(uk − u)

)
and gv,k =(

∇Gvk −∇Gv,∇G(vk − v)
)
. We will show that gk is nonnegative and bounded in L1(Ω).

Firstly, if we assume that gk is negative, it appears a contradiction with (A.4), thus, gk is
nonnegative. Secondly, since ∇Guk is bounded in L2(Ω, R2n), and by (4.14), we know that
∇Gvk is bounded in L2(Ω, R2n). Therefore

0 ≤
∫

Ω
gk(ξ)dξ ≤ ∥∇Guk −∇Gu∥2

2 + ∥∇Gvk −∇Gv∥2
2 ≤ C0, (A.6)

where C0 is a suitable constant and independent of k.
We select t ∈ (0, 1) and divide the ball BR into four parts,

Bϵ
u,k(R) = {ξ ∈ BR : |uk(ξ)− u(ξ)| ≤ ϵ}, B̃ϵ

u,k(R) = BR \ Bϵ
u,k(R),

Bϵ
v,k(R) = {ξ ∈ BR : |vk(ξ)− v(ξ)| ≤ ϵ}, B̃ϵ

v,k(R) = BR \ Bϵ
v,k(R).

Since ∇G

(
ϱϵ ◦ (uk − u)

)
= ∇G(uk − u) in Bϵ

u,k(R) and ∇G

(
ϱϵ ◦ (vk − v)

)
= ∇G(vk − v) in

Bϵ
v,k(R), and from (A.6), we get∫

BR

gt
kdξ ≤

∫
BR

gt
u,kdξ +

∫
BR

gt
v,kdξ

=
∫

Bϵ
u,k(R)

gt
u,kdξ +

∫
B̃ϵ

u,k(R)
gt

u,kdξ +
∫

Bϵ
v,k(R)

gt
v,kdξ +

∫
B̃ϵ

v,k(R)
gt

v,kdξ

≤
( ∫

Bϵ
u,k(R)

gu,kdξ
)t
|Bϵ

u,k(R)|1−t +
( ∫

B̃ϵ
u,k(R)

gkdξ
)t
|B̃ϵ

u,k(R)|1−t

+
( ∫

Bϵ
v,k(R)

gv,kdξ
)t
|Bϵ

v,k(R)|1−t +
( ∫

B̃ϵ
v,k(R)

gkdξ
)t
|B̃ϵ

v,k(R)|1−t

≤ (ϵCR)
t
(
|Bϵ

u,k(R)|1−t + |B̃ϵ
v,k(R)|1−t

)
+ Ct

0

(
|Bϵ

u,k(R)|1−t + |B̃ϵ
v,k(R)|1−t

)
.
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Moreover, the definition of Bϵ
u,k(R) and Bϵ

v,k(R) follows that, |B̃ϵ
u,k(R)| and |B̃ϵ

v,k(R)| tends to 0
as k goes to ∞. Thus, 0 ≤ lim supk→∞

∫
BR

gt
kdξ ≤ (ϵCR)

t|BR|1−t, which means that gt
k → 0 as

ϵ→ 0 in L1(BR). Hence, gk → 0 a.e. in Ω for R is arbitrary, then, (A.1) is valid from Lemma 3
in [13].

Finally, the following result shows that the hardy term is bounded in W.

Lemma A.2. Let {(uk, vk)} ⊂ W be a bounded sequence and Ω0 represent a compact set of Ω, Mk
and Nk are given in (A.3). Then there is a constant C(Ω0) > 0 such that

sup
k

∫
Ω0

(|Mk|+ |Nk|)dξ ≤ C(Ω0).

Proof. Since ψ = |ψ| ≤ 1 and the Jacobian determinant is r4, thus, ψ2r−2 be of class L1
loc(Ω),

by (1.5), one has∫
Ω0

((ψ

r

)2
|uk|+

(ψ

r

)2
|vk|

)
dξ ≤

∥∥∥ψ

r

∥∥∥
2

sup
k
∥uk∥ψ +

∥∥∥ψ

r

∥∥∥
2

sup
k
∥vk∥ψ = C2(Ω0),

where C2(Ω0) is a positive constant depending on Ω0. Moreover, from ( f2), it holds∫
Ω0

∣∣∣Fu(ξ, uk, vk) + Fv(ξ, uk, vk)
∣∣∣dξ

≤
√

2
∫

Ω0

∣∣∣√H2
u(ξ, uk, vk) + H2

v(ξ, uk, vk)

2

∣∣∣dξ

≤
√

2
∫

Ω0

∣∣∣(λ + 1)|(uk, vk)|+ Cϵ|(uk, vk)|s−1
∣∣∣dξ

≤
√

2
(
(λ + 1) sup

k
∥(uk, vk)∥2∗ |Ω0|

1
t + Cϵ|Ω0|2

∗−2+1 sup
k
∥(uk, vk)∥2−1

2∗

)
= C3(Ω0),

where t > 1 and t = 2∗
2∗−1 is the Lebesgue exponent for s ∈ (2, 2∗). From above argument, we

get supk

∫
Ω0
(|Mk|+ |Nk|)dξ ≤ C(Ω0), the proof of this lemma is completed.
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