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1 Introduction

This paper is concerned with the existence of solutions for the problem

−∆u + ϕ(x)u = λ f (u) in Ω,
−∆ϕ(x) = g(u) in Ω,
u > 0 in Ω,
ϕ > 0 in Ω,
u(x) = ϕ(x) = 0 on ∂Ω,

(P)

where 0 < λ is a parameter, Ω ⊂ R3 is a bounded domain with smooth boundary ∂Ω,
f ∈ C1([0, ∞), R) and g ∈ C(R, [0, ∞)).

When the function g(t) = t2, this system represents the well known Schrödinger–Poisson
(or Schrödinger–Maxwell) equations, that have been widely studied in the recent past. This
equation appears in the mean field approach for the Hartree–Fock model and as a nonlinear
Schrödinger equation that takes into account the electrostatic field generated by the wave, see
[7, 10, 14, 15].

Recently, many authors have studied the existence, non-existence and multiplicity of solu-
tions of the problem 

−∆u + λϕ(x)u = z(u) in Ω,
−∆ϕ(x) = u2 in Ω,
u(x) = ϕ(x) = 0 on ∂Ω,
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where z is a superlinear function; see for example [1,3,8,9,11,13] and the references therein. To
prove their results they used the reduction argument and then employed variational methods.
It is worth pointing out that in the proof of Theorem 2.1 of [13] the authors used the Leray–
Schauder degree to prove the existence of a positive solution when the parameter λ is small
enough. Also, in the references of the papers mentioned above the reader will find many
works dealing with Schrödinger–Poisson systems where Ω = R3.

Motivated by the papers above and Ambrosetti and Hess [4], we are interested in study-
ing system (P) when f is asymptotically linear and g satisfies some suitable assumptions.
Specifically, we introduce the following assumptions:

(F1) f ∈ C1([0, ∞), R), f (0) = 0 and m0 = lim
t→0+

f (t)
t

> 0 (namely m0 = f ′+(0));

(F2) There exist m∞ > 0, a function h and a constant C such that

f (t) = m∞t + h(t), where h ∈ C0,1(R+, R) and |h(t)| ≤ C, ∀t ∈ R+(R+ = [0, ∞));

(G1) g(t) = t2p, where 0 < p < 2;

(G2) g ∈ C(R, (0, ∞)) and there exist the limit lim
t→∞

g(t) = g(∞) and a constant c > 0 such

that 0 < g(t) < c for all t ∈ R.

Some examples of functions satisfying the above assumptions are as follows.

Example 1.1.

(a) The function f (t) = t − t10, t ≥ 0, satisfies (F1).

(b) The function f (t) = t − arctg(t2), t ≥ 0, satisfies (F1) and (F2).

(c) The function f (t) = t, t ≥ 0, satisfies (F1) and (F2).

(e) The function g(t) = t2

1+t2 + 1, t ∈ R, satisfies (G2).

(g) The function g(t) = |t|
1+t2 + 1, t ∈ R, satisfies (G2).

As we can see, the function f is allowed to change sign. Before stating our main results,
we need some definitions and notations. First, we introduce the Banach space

X = C(Ω, R)

endowed with the norm ∥u∥ = supx∈Ω |u(x)| for u ∈ X.
We say that (λ, u, ϕu) ∈ R × [(H1

0(Ω)× H1
0(Ω)) ∩ (X × X)] is a solution of (P) if u > 0 in

Ω, ϕu > 0 in Ω and ∫
Ω
∇u∇φdx +

∫
Ω

ϕu(x)uφdx = λ
∫

Ω
f (u)φdx, (1.1)∫

Ω
∇ϕu∇ψdx =

∫
Ω

g(u)ψdx, (1.2)

for all (φ, ψ) ∈ H1
0(Ω)× H1

0(Ω). When u > 0 in Ω, (u, ϕu) is a positive solution. Moreover,
we say that (λ, u, ϕu) is a weak solution of (P) if (u, ϕu) ∈ H1

0(Ω) × H1
0(Ω) and it satisfies

(1.1)–(1.2). It turns out that weak solutions are solutions provided f has subcritical growth
(see Lemma 2.4).

A bifurcation point for (P) is a number λ∗∈ R such that there exists a sequence (λn, un, ϕun)

∈ R × [(H1
0(Ω)× H1

0(Ω)) ∩ (X × X)] satisfying the following properties:
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(i) λn −→ λ∗;

(ii) (λn, un, ϕun) is a solution of (P) with un ̸= 0 and ∥un∥ −→ 0.

We say that λ∗ ∈ R is a bifurcation point from infinity of (P) if there exists a sequence
(λn, un, ϕun) ∈ R × [(H1

0(Ω)× H1
0(Ω)) ∩ (X × X)] satisfying the following properties:

(i) λn −→ λ∗;

(ii) (λn, un, ϕun) is a solution of (P) and ∥un∥ −→ +∞.

It is well known that under the assumption (G2) there exists a unique solution ϕ∞ ∈
H1

0(Ω) ∩ X of the problem 
−∆u = g(∞) in Ω,
u > 0 in Ω,
u = 0 on ∂Ω.

Also, there exists a unique solution ϕ0 ∈ H1
0(Ω) ∩ X of the problem

−∆u = g(0) in Ω,
u ≥ 0 in Ω,
u = 0 on ∂Ω,

where ϕ0 > 0 in Ω if g(0) > 0 holds.
Let us denote by λ1[ϕ∞] and φ∞ the first eigenvalue and the positive eigenfunction nor-

malized by ∥φ∞∥ = 1, respectively, of the eigenvalue problem

−∆u + ϕ∞(x)u = λu in Ω,

u = 0 on ∂Ω.

Similarly, let us denote by λ1[ϕ0] and φ0 the first eigenvalue and the positive eigenfunction
normalized by ∥φ0∥ = 1, respectively, of the eigenvalue problem

−∆u + ϕ0(x)u = λu in Ω,

u = 0 on ∂Ω.

We observe that if g(0) = 0 then λ1[ϕ0] and φ0 are the first eigenvalue and the positive
eigenfunction, respectively, of (−∆, H1

0(Ω)).
Now we are ready to state our main results.

Theorem 1.2. Suppose that (F1) and (G1) hold. Then λ0 = λ1[ϕ0]/m0 is the unique bifurcation point
of (P). In addition, the continuum Σ0 emanating from (λ0, 0) is unbounded. The same conclusion holds
under the assumptions (F1) and (G2).

Theorem 1.3. Assume that (F2) and (G2) hold. Then λ∞ = λ1[ϕ∞]/m∞ is the unique bifurcation
point from infinity of (P). Moreover, there exists a subset Σ∞ in R × X of solutions of (P) such that
Σ̃∞ =

{
(λ, z) : (λ, z/∥z∥2) ∈ Σ∞

}
∪ {(λ∞, 0)} is connected and unbounded.

After a bibliography review, we did not find any paper involving bifurcation theory and
problems involving a generalized Schrödinger–Poisson system in a bounded domain as in the
problem (P). Inspired by this fact, in the present paper we show that it is possible to apply
the Leray–Schauder degree theory and the global bifurcation result due to Rabinowitz [12] to
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study the existence of solution for (P). To carry out this program, we first use the reduction
argument (see [2]), which says that (P) is equivalent to a nonlocal problem (see problem
(S)). After, we follow the same methodology as Ambrosetti and Hess [4]. However as we
are working with a nonlocal problem it is necessary to do a careful study on some estimates
and convergences involving the nonlocal term ϕuu. Also, the calculation of Leray–Schauder
degree of some maps involving the nonlocal term ϕuu must be justified (see Lemma 3.2). The
reader is invited to verify that when g(0) ̸= 0 the bifurcation points of Theorems 1.2 and 1.3
are different from those found in [4]. Moreover, under additional assumptions on f and g we
will show that the bifurcation point found in our work is supercritical (the nontrivial solutions
branch off on the right of λ∞), while under the same assumption on f , the bifurcation point
found in [4] is subcritical (the branching is on the left of bifurcation point).

Finally, we would like to point out that our results are new even in the case where g(t) = t2

(that is, p = 1 in (G1)), which is the case considered in the papers mentioned above and which
allows us to apply variational methods. Indeed, in the papers mentioned above they did not
study the existence of bifurcation points for problems of type (P). Also, they did not consider
asymptotically linear nonlinearities as in our work. Thus, our work is the first to deal with the
existence of bifurcation points and the continuum emanating from these points for Problem
(P) with asymptotically linear nonlinearities even in the case when p = 1.

The paper is organized as follows. Section 2 is devoted to some preliminaries. In Section 3,
we prove Theorem 1.2. In Section 4, we prove Theorem 1.3. In section 5 we will show a result
of multiplicity of solutions under additional assumptions on f and g.

Notation. Throughout this paper, we make use of the following notations:

• Lp(Ω), for 1 ≤ p ≤ ∞, denotes the Lebesgue space with usual norm denoted by |u|p.

• H1
0(Ω) denotes the Sobolev space endowed with inner product

(u, v)H =
∫

Ω
∇u∇v, ∀u, v ∈ H1

0(Ω).

The norm associated with this inner product will be denoted by ∥ ∥H.

• W2,k(Ω) denotes the Sobolev space with norm ∥u∥W2,k =
(

∑|α|≤2 ∥Dαu∥k
k

)1/k
.

• If u is a measurable function, we denote by u− the negative part of u, which is given by
u− = max {−u, 0}.

• The function d(x, ∂Ω) denotes the distance from a point x ∈ Ω to the boundary ∂Ω,
where Ω = Ω ∪ ∂Ω is the closure of Ω ⊂ RN .

• deg(I − Ψ,W , 0) denotes the Leray–Schauder degree of I − Ψ in W with respect to 0,
where W ⊂ X is a bounded open set and Ψ : W −→ X is a compact operator.

• Br(0) ⊂ X denotes the ball centered at 0 ∈ X with radius r > 0.

• c, c1, c2, . . . and C, C1, C2, . . . are possibly different positive constants which may change
from line to line.
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2 Preliminary results

Throughout this paper, unless it is explicitly stated, we will assume that (G1) or (G2) holds.
In this section we will establish some results that we will need in the next sections.

For all u ∈ L3/p(Ω) there exists a unique ϕu ∈ H1
0(Ω) which solves

−∆ϕ = g(u(x)) in Ω,

and there holds

ϕu(x) =
∫

Ω

g(u(y))
|x − y| dy.

By Lp-theory one has ϕu ∈ W2,3/p(Ω), 0 < p < 2, and so ϕu ∈ X (because 6/p > 3). Since
g(u) ≥ 0, then by the maximum principle ϕu ≥ 0. Moreover, if u ̸= 0 then ϕu > 0 in Ω. Also,
we have the following estimates.

Lemma 2.1. For every u ∈ L3/p(Ω) there holds

∥ϕu∥ ≤ C2|g(u)|3/p,

for some constant C2 > 0 independent of u. In particular, if u ∈ X, then

∥ϕu∥ ≤ C∥g(u)∥, (2.1)

for some constant C > 0 independent of u.

Proof. By Lp-theory one has ϕu ∈ W2,3/p(Ω) and

∥ϕu∥W2,3/p ≤ C1|g(u)|3/p,

for some constant C1 > 0, which depends only on Ω and p.
Combining this inequality with the embedding of W2,3/p(Ω) into X we get

∥ϕu∥ ≤ C2|g(u)|3/p,

for some constant C2 > 0, which depends only on Ω and p.
If in addition u ∈ X, then the inequality |g(u)|3/p ≤ |Ω|p/3∥g(u)∥ is valid, and therefore

∥ϕu∥ ≤ C∥g(u)∥,

where C = C2(Ω)|Ω|p/3. This completes the proof of the lemma.

We recall that a map J : X → X is bounded if it maps bounded sets onto bounded sets.
In order to apply Bifurcation Theory we will need the following lemma.

Lemma 2.2. The map J : X −→ X defined by setting J (u) = ϕu is continuous and bounded.

Proof. Let {un} ⊂ X be a sequence such that un → u in X. As ϕun − ϕu ∈ H1
0(Ω) satisfies

−∆(ϕun − ϕu) = g(un)− g(u) in Ω,

by elliptic regularity it follows that

∥ϕun − ϕu∥ ≤ C∥g(un)− g(u)∥,

for some constant C > 0 independent of un and u. Since un → u in X implies g(un) → g(u)
in X, from the last inequality one deduces that ϕun → ϕu in X. This proves that the map J is
continuous in X.

Finally, the boundedness of J follows from (2.1), and the proof is completed.
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Our next result establishes the positivity of weak solutions to a variational inequality.

Lemma 2.3. Let ϕ ∈ X and suppose that u ∈ H1
0(Ω) satisfies{

−∆u + ϕ(x)u ≥ 0 in Ω,
u ≥ 0 in Ω.

Then either u ≡ 0, or there exists ϵ > 0 such that u(x) ≥ ϵd(x, ∂Ω) in Ω.

Proof. Let k = ∥ϕ∥ and assume that u ̸≡ 0. In this case, we get

−∆u + ku ≥ −∆u + ϕ(x)u ≥ 0 in Ω,

namely, u satisfies {
−∆u + ku ≥ 0 in Ω,
u ≩ 0 in Ω.

This allows us to apply Theorem 3 of Brezis–Nirenberg [6] to deduce that u(x) ≥ ϵd(x, ∂Ω) in
Ω, for some ϵ > 0. This completes the proof.

Now, we consider the nonlocal problem{
−∆u + ϕu(x)u = z(u) in Ω,
u(x) = 0 on ∂Ω,

(Q)

under the following assumption on z ∈ C(R, R):

(H) |z(t)| ≤ c1 + c2|t|q, where c1, c2 > 0 are constants and 0 < q < 2∗ − 1.

Lemma 2.4. Suppose that (H) holds. Then every u ∈ H1
0(Ω) which is a weak solution of (Q) belongs

to X.

Proof. Indeed, u ∈ H1
0(Ω) is a weak solution of the problem

−∆u = h(x, u) in Ω,

where h(x, t) = z(t)− ϕu(x)t. From Lemma 2.2 and (H) one infers that

|h(x, t)| ≤ c3 + c4|t|q,

for all x ∈ Ω, t ∈ R and some constants c3, c4 > 0. Thus, a standard bootstrap argument
implies that u ∈ X. This completes the proof.

3 Global bifurcation

The main goal of this section is to prove Theorem 1.2. To do this we need some definitions
and auxiliary lemmas.

It is well known that Problem (P) is equivalent to the nonlocal problem
−∆u + ϕu(x)u = λ f (u) in Ω,
u > 0 in Ω,
u(x) = 0 on ∂Ω.

(S)
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We extend the function f to a continuous function f̃ defined on R in such a way that
f̃ (t) = f (0) for all t < 0. Then, we can consider the nonlocal problem

−∆u + ϕu(x)u = λ f̃ (u) in Ω,
u > 0 in Ω,
u(x) = 0 on ∂Ω.

(S̃)

Now we prove the following result.

Lemma 3.1. Assume that either (F1) or (F2) is satisfied. Then Problems (S) and (S̃) are equivalent.

Proof. It is clear that if u is a solution of (S) then it is also a solution of (S̃). Now, we assume
that u is a solution of (S̃). Taking u− as test function in (S̃) we get

−∥u−∥2
H −

∫
Ω

ϕu(x)(u−)2 =
∫

Ω
λ f (0)u−,

which implies ∥u−∥H = 0, that is, u ≥ 0 in Ω. Thus f̃ (u) = f (u) in Ω, and if either (F1) or
(F2) is satisfied then

| f̃ (t)| = | f (t)| ≤ c1|t|, ∀t ∈ [0, ∥u∥+ 1),

and for some constant c1 > 0. Therefore, u satisfies
−∆u + (ϕu(x) + λc1)u ≥ 0 in Ω,
u ≩ 0 in Ω,
u(x) = 0 on ∂Ω,

and from Lemma 2.3 one infers that u > 0 in Ω. This completes the proof.

Due to Lemma 3.1, the proof of Theorems 1.2 and 1.3 is reduced to proving the existence
of the bifurcation points of Problem (S̃). To study Problem (S̃) we will transform it into a
functional equation. From now on we will denote by K the Green operator of −∆ on H1

0(Ω).
It is well known that K is compact as a map from X in itself. From Lemma 2.2 it follows that
the map Fλ : X → X given by

Fλ(u) = λ f̃ (u)− ϕuu

is continuous and bounded. As a consequence, the map T : R × X → X defined by T(λ, u) =
K(Fλ(u)) is compact and Problem (S̃) is equivalent to the functional equation

Φ(λ, u) = 0,

where Φ(λ, u) = u − T(λ, u) for (λ, u) ∈ R × X.
The first property of the map Φ that we highlight is the following.

Lemma 3.2. For every µ ∈ [0, 1] the function u ≡ 0 is the unique solution of the problem{
−∆u + µϕu(x)u = 0 in Ω,
u ∈ H1

0(Ω) ∩ X.
(A)

In particular,
deg(Φ(0, ·), Br(0), 0) = 1,

for all r > 0.
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Proof. If u satisfies (A) then,

∥u∥2
H + µ

∫
Ω

ϕuu2 = 0,

and this implies that ∥u∥H = 0, namely that u ≡ 0.
Thus the homotopy H(µ, u) = u − µT(0, u), (µ, u) ∈ [0, 1] × X, is admissible on the ball

Br(0), for all r > 0. Using the homotopy invariance, it follows that

deg(H(1, ·), Br(0), 0) = deg(I, Br(0), 0) = 1,

and since Φ(0, ·) = H(1, ·), we get deg(Φ(0, ·), Br(0), 0) = 1.

Now, let us give the precise definition of bifurcation point of the functional equation
Φ(λ, u) = 0.

Definition 3.3. We say that λ∗ is a bifurcation point of Φ(λ, u) = 0 if there exists a sequence
(λn, un) ∈ R × X, with un ̸= 0, such that λn −→ λ∗, ∥un∥ −→ 0 and Φ(λn, un) = 0.

It turns out that the bifurcation points of Φ(λ, u) = 0 are the bifurcation points of (S̃) (and
therefore are also the bifurcation points of (P)).

Denoting by
ΣΦ = {(λ, u) ∈ R × X : Φ(λ, u) = 0, u ̸= 0} ,

and taking the closure ΣΦ of ΣΦ, we see that λ∗ is a bifurcation point of Φ(λ, u) = 0 if and
only if (λ∗, 0) ∈ ΣΦ.

For each λ ∈ R fixed, the index of Φλ = Φ(λ, ·) relative to 0, denoted by i(Φλ, 0), is
defined by

i(Φλ, 0) = lim
ϵ→0

deg(Φλ, Bϵ(0), 0).

To prove Theorem 1.2 we have to prove the change of index of Φ(λ, ·) as λ crosses λ = λ0.
The proof is based on the following lemmas.

Lemma 3.4. Let Λ ⊂ R+ be a compact interval with λ0 /∈ Λ. Then there exists ϵ > 0 satisfying

Φ(λ, u) ̸= 0, ∀λ ∈ Λ, ∀0 < ∥u∥ ≤ ϵ.

Proof. We argue by contradiction assuming that there exists a sequence (λn, un) ∈ Λ × X
satisfying

λn −→ λ ̸= λ0, ∥un∥ −→ 0,

Φ(λn, un) = 0, un > 0.

Now, we divide the equation un = K(Fλn(un)) by ∥un∥ to get

vn = K
(

Fλn(un)

∥un∥

)
, where vn =

un

∥un∥
.

We claim that the sequence
{ Fλn (un)

∥un∥
}

is bounded in Λ × X. To prove this claim, let δ > 0 such
that | f (t)| ≤ (m0 + 1)|t| for all 0 < t < δ (the existence of δ is guaranteed by (F1)). Since
∥un∥ −→ 0 there exists n0 ∈ N such that ∥un∥ < δ for all n > n0. From this and (2.1) we
deduce that

∥Fλn(un)∥ ≤ C(∥un∥+ ∥g(un)∥∥un∥),

for all n > n0 and for some constant C > 0 independent of n.
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Therefore,

∥Fλn(un)

∥un∥
∥ ≤ C(1 + ∥g(un)∥) ≤ C(1 + max

t∈[−δ,δ]
|g(t)|),

for n > n0, which implies that the sequence
{ Fλn (un)

∥un∥
}

is bounded in Λ × X.

Since K is compact, from vn = K
( Fλn (un)

∥un∥
)

we deduce that, up to a subsequence, vn strongly
converges to some v ∈ X with ∥v∥ = 1. Then, by Lemmas 2.1 and 2.2 and (F1) one infers

Fλn(un)

∥un∥
−→ (λm0 − ϕ0)v in X,

and therefore
v = K((λm0 − ϕ0)v).

But this says that v is a solution of the problem{
−∆v + ϕ0(x)v = λm0v in Ω,
v ≥ 0 in Ω,

and from Lemma 2.3 one infers that v > 0 in Ω. As a consequence v is an eigenfunction of
norm one associated to λ.

Using φ0 as a test function in this eigenvalue problem we obtain

λ1[ϕ0]
∫

Ω
vφ0 =

∫
Ω
∇v∇φ0dx +

∫
Ω

ϕ0vφ0dx = λm0

∫
Ω

vφ0,

and we conclude that λ1[ϕ0] = λm0, which is a contradiction and the proof is finished.

As a consequence of the proof of Lemma 3.4 we obtain the following corollary.

Corollary 3.5. The unique possible bifurcation point of solutions is λ = λ0.

Lemma 3.6. If λ < λ0 then i(Φλ, 0) = 1.

Proof. Fix any λ < λ0 and take Λ = [0, λ]. For t ∈ [0, 1], the parameter tλ belongs to Λ and
from Lemma 3.4 it follows that Φ(tλ, u) ̸= 0 for all 0 < ∥u∥ ≤ ϵ, where ϵ > 0 is given by
Lemma 3.4. Consider the homotopy H(t, u) = Φ(tλ, u). Using the homotopy invariance, we
get

deg(H(1, ·), Bϵ(0), 0) = deg(H(0, ·), Bϵ(0), 0),

namely
i(Φλ, 0) = deg(Φλ, Bϵ(0), 0) = deg(Φ0, Bϵ(0), 0) = 1,

where we have used Lemma 3.2 in the last equality. This completes the proof.

Lemma 3.7. For every λ > λ0 there exists δ > 0 such that

Φ(λ, u) ̸= τφ1, ∀0 < ∥u∥ ≤ δ, ∀τ ≥ 0.

Proof. We fix λ > λ0 and we assume, by contradiction, that there exist sequences un ∈ X and
τn ≥ 0 satisfying un > 0 in Ω, ∥un∥ −→ 0 and

Φ(λ, un) = τn φ1,
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or, equivalently,
un = K(Fλ(un)) + τn φ1.

Dividing this equation by ∥un∥ one finds

vn = K
(

Fλ(un)

∥un∥

)
+ φ1

τn

∥un∥
, where vn =

un

∥un∥
.

Arguing as in the proof of Lemma 3.4, we see that the sequence
{ Fλ(un)

∥un∥
}

is bounded in

X. Thus, using the compactness of K, we deduce that, up to a subsequence, K
( Fλ(un)

∥un∥
)

is
convergent and hence τn/∥un∥ is bounded. Passing again to a subsequence, if necessary, we
can assume that τn/∥un∥ −→ τ ≥ 0 and un/∥un∥ −→ v with v ∈ X and ∥v∥ = 1. Arguing as
we have done in the proof of Lemma 3.4, it is easy to see that v satisfies

−∆v + ϕ0v = λm0v + τλ1φ1 in Ω,
v = 0 on ∂Ω,
∥v∥ = 1.

Then, using φ0 as a test function in this problem we obtain

λ1[ϕ0]
∫

Ω
vφ0 = λm0

∫
Ω

vφ0 +
∫

Ω
τλ1φ1φ0 ≥ λm0

∫
Ω

vφ0,

which implies that λ0 ≥ λ, a contradiction. The proof is finished.

Lemma 3.8. If λ > λ0 then i(Φλ, 0) = 0.

Proof. If λ > λ0 then, from Lemma 3.7, we derive that

deg(Φλ, Bδ(0), 0) = deg(Φλ − τφ1, Bδ(0), 0), ∀τ > 0,

where δ > 0 is given by Lemma 3.7.
But, again using Lemma 3.7, the problem{

−∆w + ϕw(x)w = λ f̃ (w) + τλ1φ1 in Ω,
w = 0 in ∂Ω,

has no nontrivial solution satisfying 0 < ∥u∥ ≤ δ. Since, w = 0 is not a solution provided that
τ > 0, we deduce that

i(Φλ, 0) = deg(Φλ, Bδ(0), 0) = deg(Φλ − τφ1, Bδ(0), 0) = 0, ∀λ > λ0.

This completes the proof.

Now, we are ready to prove Theorem 1.2.

Proof. (of Theorem 1.2) Assume that λ0 is no bifurcation point. Then there exists ϵ > 0 such
that

Φλ(u) ̸= 0, for all λ ∈ [λ0 − ϵ, λ0 + ϵ] and 0 < ∥u∥ ≤ ϵ.

Thus, if we take
λ0 − ϵ < λ̃ < λ0 < λ̂ < λ0 + ϵ
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one has
deg(Φλ̃, Bϵ(0), 0) = deg(Φλ̂, Bϵ(0), 0),

and therefore,
i(Φλ̃, 0) = i(Φλ̂, 0),

which contradicts Lemmas 3.6 and 3.8. Moreover, from Corollary 3.5 λ0 is the unique bifurca-
tion point for (P).

As a consequence, one can repeat the arguments carried out in the proof of the Global
Bifurcation Theorem due to Rabinowitz [12] to show the existence of Σ0. This completes the
proof.

4 Bifurcation from infinity

In this section we are going to prove Theorem 1.3. Hereafter we will assume that (F2) and
(G2) hold. We start with the following definition.

Definition 4.1. We say that λ∞ is a bifurcation point from infinity of Φ(λ, u) = 0 if there exists
a sequence (λn, un) ∈ R × X satisfying

λn −→ λ∞, ∥un∥ −→ +∞, Φ(λn, un) = 0.

It turns out that the bifurcation points from infinity of Φ(λ, u) = 0 are the bifurcation
points from infinity of (S̃) (and therefore are also the bifurcation points from infinity of (P)).

Following [4], if we make the Kelvin transform

z =
u

∥u∥2 , with u ̸= 0,

we derive that

Φ(λ, u) = 0, u ̸= 0 ⇔ z − ∥z∥2T
(

λ,
z

∥z∥2

)
= 0, z ̸= 0.

Thus we are led to define the map

Φ̃(λ, z) =

{
z − ∥z∥2T(λ, z

∥z∥2 ), if z ̸= 0,
0, if z = 0.

Moreover, using Lemma 2.1 we find that

∥z∥2∥ϕz/∥z∥2
z

∥z∥2 ∥ ≤ C∥z∥,

for all z ̸= 0 and some constant C > 0 independent of z. As a consequence we obtain

lim
z→0

∥z∥2ϕz/∥z∥2
z

∥z∥2 = 0.

From this limit and assumption on f it readily follows that Φ̃ is continuous. In particular,
Φ̃ is a compact perturbation of the identity and λ∞ is a bifurcation point from infinity for
Φ(λ, u) = 0 if and only if λ∞ is a bifurcation point for Φ̃(λ, z) = 0. Moreover, arguing as in
the proof of Lemma 3.2, we immediately deduce the following property:

deg(Φ̃(0, ·), Bϵ(0), 0) = 1, for all ϵ > 0.

The proof of Theorem 1.3 is based on the following lemmas.
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Lemma 4.2. Let Λ ⊂ [0, λ∞) be any compact interval. Then

(a) there exists r > 0 such that Φλ(u) ̸= 0, for all λ ∈ Λ and ∥u∥ ≥ r,

(b) λ∞ is the only possible bifurcation from infinity for Φ(λ, u) = 0,

(c) i(Φ̃λ, 0) = 1 for all λ < λ∞.

Proof. (a) We argue by contradiction assuming that there exists a sequence (λn, un) ∈ Λ × X
satisfying

λn −→ λ ̸= λ∞, ∥un∥ −→ ∞,

Φ(λn, un) = 0, un > 0.

Setting vn = ∥un∥−1un, we find

vn = K
(

λn
f (un)

∥un∥
− ϕun vn

)
.

By Lemma 2.1 we infer that there exists a constant C > 0 such that∥∥∥∥λn
f (un)

∥un∥
− ϕun vn

∥∥∥∥ ≤
[∥∥∥∥λn

(
m∞vn +

h(un)

∥un∥

)∥∥∥∥+ ∥ϕun vn∥
]
≤ C, for all n ∈ N.

Since K is compact, from vn = K
(
λn

f (un)
∥un∥ − ϕun vn

)
we deduce that, up to a subsequence,

vn strongly converges to some v ∈ X with ∥v∥ = 1. Note also that vn converges weakly to v
in H1

0(Ω) and v ≥ 0 in Ω. Moreover, there holds∫
Ω
∇vn∇φdx +

∫
Ω

ϕun vn φdx =
∫

Ω
λn

f (un)

∥un∥
φdx, φ ∈ H1

0(Ω). (4.1)

On the other hand, the boundedness of g and the Lp-theory imply that, up to a subsequence,
ϕun converges weakly in H1

0(Ω) and strongly in X, to some ϕ ∈ H1
0(Ω) ∩ X. Thus, by the

Lebesgue dominated convergence theorem we yield∫
Ω
∇v∇φdx +

∫
Ω

ϕvφdx =
∫

Ω
λm∞vφdx, φ ∈ H1

0(Ω), (4.2)

which together with Lemma 2.3 implies that v > 0 in Ω. As a consequence we get that
un(x) = ∥un∥vn(x) −→ ∞ for all x ∈ Ω, and applying the Lebesgue dominated convergence
theorem we found that ∫

Ω
∇ϕ∇φdx =

∫
Ω

g(∞)φdx, φ ∈ H1
0(Ω),

namely ϕ = ϕ∞.
Finally, using φ∞ as a test function in (4.2) we obtain

λ1[ϕ∞]
∫

Ω
vφ∞dx = λm∞

∫
Ω

vφ∞dx,

and we conclude that λ∞ = λ, which is a contradiction. This contradiction proves (a).
Statement (b) follows immediately from (a). Regarding (c), fix any λ < λ∞ and take Λ =

[0, λ]. For t ∈ [0, 1], the parameter tλ belongs to Λ and from (a) it follows that u ̸= T(tλ, u)
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for all ∥u∥ ≥ r. This implies that Φ̃(tλ, z) ̸= 0 for all 0 < ∥z∥ ≤ 1/r. Consider the homotopy
H(t, z) = Φ̃(tλ, z). Using the homotopy invariance, we get

deg(Φ̃λ, B1/r(0), 0) = deg(Φ̃0, B1/r(0), 0),

namely
i(Φ̃λ, 0) = deg(Φ̃0, B1/r(0), 0) = 1,

proving (c).

Lemma 4.3. Let λ > λ∞. Then

(a) there exists ϵ > 0 such that Φλ(u) ̸= τφ1, for all τ ≥ 0 and ∥u∥ ≥ ϵ,

(b) i(Φ̃λ, 0) = 0 for all λ > λ∞.

Proof. (a) We fix λ > λ∞ and we assume, by contradiction, that there exist τn ≥ 0 and
∥un∥ → ∞ such that Φλ(un) = τn φ1, namely

un − τn φ1 = K(λ f (un)− ϕun un).

Setting vn = ∥un∥−1un, we get

vn − τn∥un∥−1φ1 = K
(

λ
f (un)

∥un∥
− ϕun vn

)
,

and arguing as in Lemma 4.2, one readily shows that the sequence
{ f (un)

∥un∥ − ϕun vn
}

is bounded
in X. Thus, using the compactness of K, we deduce that, up to a subsequence,

K
(

λ
f (un)

∥un∥
− ϕun vn

)
is convergent and hence τn/∥un∥ is bounded. Passing again to a subsequence, if necessary,
we can assume that τn/∥un∥ −→ τ ≥ 0 and un/∥un∥ −→ v with v ∈ X and ∥v∥ = 1. Arguing
as we have done in the proof of Lemma 4.2, we can deduce that un(x) → ∞ for all x ∈ Ω and
that v satisfies 

−∆v + ϕ∞v = λm∞v + τλ1φ1 in Ω,
v = 0 on ∂Ω,
∥v∥ = 1.

Therefore, using φ∞ as a test function in this problem we obtain

λ1[ϕ∞]
∫

Ω
vφ∞ ≥ λm∞

∫
Ω

vφ∞,

and we conclude that λ∞ ≥ λ, which is a contradiction. This proves (a).
(b) Take τ = t∥u∥2, with t ∈ [0, 1]. By (a) it follows that Φλ(u) ̸= t∥u∥2φ1 for all ∥u∥ ≥ ϵ.

This implies

Φ̃λ(z) ̸= tφ1, ∀0 < ∥z∥ ≤ 1
ϵ

, ∀t ∈ [0, 1]. (4.3)

Using the homotopy H(t, z) = Φ̃λ(z)− tφ1 on the ball B1/ϵ(0) we find

i(Φ̃λ, 0) = deg(Φ̃λ, B1/ϵ(0), 0) = deg(Φ̃λ − φ1, B1/ϵ(0), 0).

The latter degree is zero because (4.3), with t = 1, implies that Φ̃λ(z) = φ1 has no solution on
B1/ϵ(0). This proves (b).
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Now, we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Arguing as in the proof of Theorem 1.2, the Lemmas 4.2 and 4.3 ensure
that λ∞ is the unique bifurcation point for the equation Φ̃(λ, z) = 0, and that from (λ∞, 0)
emanates an unbounded continuum of solutions Σ̃∞ =

{
(λ, z) : Φ̃(λ, z) = 0

}
in R× X. More-

over, (λ, z) ∈ Σ̃∞, z ̸= 0, if and only if (λ, z/∥z∥2) ∈ ΣΦ = {(λ, u) : Φ(λ, u) = 0, u ̸= 0}. We
define Σ∞ =

{
(λ, z/∥z∥2) : (λ, z) ∈ Σ̃∞, z ̸= 0

}
. Therefore, Σ∞ ⊂ ΣΦ and

Σ̃∞ =
{
(λ, z) : (λ, z/∥z∥2) ∈ Σ∞

}
∪ {(λ∞, 0)}

is connected and unbounded. This completes the proof.

Remark 4.4. The reader can ask why we consider only assumption (G2) in Theorem 1.3. To
answer this question, we recall that in the proof of Lemmas 4.2 and 4.3 the boundedness of
the sequence {ϕun vn} plays a fundamental role. However, under the assumption (G1), we
have the inequality ∥ϕun∥ ≤ C∥un∥2q, which does not ensure the boundedness of the sequence
{ϕun vn} as ∥un∥ −→ ∞.

5 Multiplicity of solutions

Throughout this section we will use the same notation as in the previous sections. In this
section we will apply Theorems 1.2 and 1.3 to show a result of multiplicity of solutions for (P)
under additional assumptions on f and g. Specifically, we introduce the following assump-
tions:

(F3) 2−1m∞t ≤ f (t) ≤ m∞t for all t ≥ 0 and f ′+(0) = m∞;

(G3) g(∞) = lim
t→∞

g(t) = lim
t→0

g(t) and g(∞) ≤ g(t) for all t ∈ R.

Assume that (G3) is valid. For every u ∈ H1
0(Ω) we have

−∆ϕu = g(u) ≥ g(∞) = −∆ϕ∞ in Ω,

which implies
ϕu ≥ ϕ∞ in Ω. (5.1)

Moreover, if we define

g̃ = sup
t≥0

g(t) and − ∆ϕg̃ = g̃, ϕg̃ ∈ H1
0(Ω),

we can show that ϕu ≤ ϕg̃ in Ω (using the same argument as above) for all u ∈ H1
0(Ω).

Let us denote by λ1[ϕg̃] and φg̃ the first eigenvalue and the positive eigenfunction normal-
ized by ∥φg̃∥ = 1, respectively, of the eigenvalue problem

−∆u + ϕg̃(x)u = λu in Ω,

u = 0 on ∂Ω.

Let us point out that under the assumptions (F1)–(F3) and (G2)–(G3) one has λ0 = λ∞.
Now we have the following lemma.
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Lemma 5.1. Suppose that (F3) and (G3) hold. If Problem (S) has a solution, then λ0 ≤ λ ≤ λg̃,
where λg̃ = 2λ1[ϕg̃]/m∞.

Proof. Indeed, if u is a solution of (S), then

λ1[ϕ∞]
∫

Ω
uφ∞dx =

∫
Ω
∇u∇φ∞dx +

∫
Ω

ϕ∞uφ∞dx

≤
∫

Ω
∇u∇φ∞dx +

∫
Ω

ϕuuφ∞dx (by (5.1))

= λ
∫

Ω
f (u)φ∞dx

≤ λm∞

∫
Ω

uφ∞dx (by (F3)).

This now implies λ ≥ λ0.
Similarly,

2−1m∞λ
∫

Ω
uφg̃dx ≤

∫
Ω

λ f (u)φg̃dx

=
∫

Ω
∇u∇φg̃dx +

∫
Ω

ϕuuφg̃dx

≤
∫

Ω
∇u∇φg̃dx +

∫
Ω

ϕg̃uφg̃dx

= λ1[ϕg̃]
∫

Ω
uφg̃dx,

whence we infer that λg̃ ≥ λ. This proves the lemma.

The main result of this section is the following theorem.

Theorem 5.2. Assume that (F1)–(F3) and (G2)–(G3) hold. Then

(a) Σ0 = Σ∞ ∪ {(λ∞, 0)},

(b) there exists ϵ > 0 such that Problem (P) has at least two solutions for λ0 < λ < λ0 + ϵ.

Proof. (a) First of all, let us remark that since Σ̃∞ is connected and Σ̃∞ ∩ (R×{0}) = {(λ∞, 0)}
then Σ̃∞ − {(λ∞, 0)} is connected. Now, the map W : Σ̃∞ − {(λ∞, 0)} −→ ΣΦ given by

W(λ, z) = (λ, z/∥z∥2)

is continuous. Thus W(Σ̃ − {(λ∗, 0)}) = Σ∞ is a connected subset of ΣΦ. Using Lemma 5.1
and that λ∞ is the unique bifurcation point of Φ(λ, u) = 0 and the unique bifurcation point
from infinity of Φ(λ, u) = 0 we can see that Σ∞ = Σ∞ ∪ {(λ∞, 0)} (which is a connected subset
of ΣΦ too).

Finally, we will show that Σ0 = Σ∞ ∪ {(λ∞, 0)}. Clearly, Σ∞ ∪ {(λ∞, 0)} ⊂ Σ0. We assume
now that (λ, u) ∈ Σ0 − {(λ∞, 0)}, namely, u ̸= 0 and

u − T(λ, u) = 0.

Let us write (λ, u) = (λ, z/∥z∥2), where z = u/∥u∥2. Thus, the last equality above can be
rewritten as

z
∥z∥2 − T(λ, z/∥z∥2) = 0,
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which implies (λ, u) = (λ, z/∥z∥2) ∈ Σ∞.
Then one finds:

Σ0 − {(λ∞, 0)} ⊂ Σ∞

and as Σ∞ ⊂ Σ0 we conclude that Σ0 = Σ∞ ∪ {(λ∞, 0)}. This proves (a).
(b) Let uλ ∈ Σ0 and vλ ∈ Σ∞ be the solutions of (P) obtained in Theorems 1.2 and 1.3,

respectively. By using the fact that ∥uλ∥ → 0 and ∥vλ∥ → ∞ as λ → λ0 and Lemma 5.1, we
deduce that there exists ϵ > 0 such that

∥uλ∥ < 1 < ∥vλ∥ for λ0 < λ < λ0 + ϵ.

This allows us to conclude that uλ ̸= vλ, and therefore uλ and vλ are two distinct solutions of
(P) for λ0 < λ < λ0 + ϵ.
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