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Abstract. In this paper, we show the existence of solution for a relatively general system
of semilinear parabolic equations with nonlinear reaction rate terms and inflow-outflow
boundary conditions. Generally, to show the existence of global solution, it has been
seen in the literature that either mass conservation or some growth condition on the
source term is needed. Also, in several recent works only the nonlinearity up to certain
order or of certain structure is allowed. However, our work considerably weakens the
ones previously made by several authors on the coefficients of the elliptic operator, on
the source (reaction rate) terms as well as on the boundary conditions. Our proof is
also rather small and uses an argument based on implicit function theorem.
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1 Introduction

Even a very simple semilinear parabolic equation (e.g., diffusion-reaction equation) can have
merely local solutions, i.e. solutions in some perhaps small neighbourhood of the initial time
t0. The same applies to coupled systems of more than one variable. Therefore, it takes some
special structure of the nonlinearities to guarantee the existence of the global solutions, i.e.
solutions on any given time interval [0, T), T < ∞. In this regard, nonlinearities which are
obtained by modelling equilibrium (reversible) reactions amongst chemical species via mass-
action kinetics bear some potential for producing global solutions since positive productions
are accompanied by negative ones. Kräutle [11] and Mahato et al. [12] showed that the pro-
duction rates of a large class of J number of equilibrium (reversible) reactions of I number of
chemical species can be reduced to the following setting: let Ω ⊂ RN be a bounded domain
with C2-boundary ∂Ω, S := [0, T) be the time interval for some T < ∞ and we denote by
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S the stoichiometric matrix such that S = (sij) ∈ MI×J , the set of all I × J matrices, with
rank(S) = J and |sij| ∈ {0} ∪ [1, ∞). The entries sij = νij − τij for 1 ≤ i ≤ I and 1 ≤ j ≤ J,
where −τij ∈ Z−

0 and νij ∈ Z+
0 are the stoichiometric coefficients for reversible reactions given

by
τ1jX1 + τ2jX2 + · · ·+ τ I jXI ⇌ ν1jX1 + ν2jX2 + · · ·+ νI jXI , (1.1)

where Xi, 1 ≤ i ≤ I, denotes the chemical species involved in J reactions. Let u = (u1, . . . , uI)

be the unknown concentration vector of I chemical species. For k f
j , kb

j > 0 and j = 1, 2, . . . , J,
we set

R f
j (u) = k f

j

I

∏
m=1
smj<0

u
−smj
m , Rb

j (u) = kb
j

I

∏
m=1
smj>0

u
smj
m (1.2a)

Rj(u) =
(

R f
j (u)− Rb

j (u)
)

, R = (R1, . . . , RJ)
T, f̂ (u) = SR(u), (1.2b)

where s−mj and s+mj denote the negative and positive parts of smj, respectively, such that smj =

s+mj − s−mj. For the i − th species,

(SR(u))i =
J

∑
j=1

sijRj(u). (1.3)

Furthermore, let D = (D01 , . . . , D0I ), where D0i denotes the symmetric N × N diffusive matrix
of the i-th chemical species such that D0i ∈ L∞(Ω; Sym(N)). Let q : S × Ω → RN denote the
velocity vector such that ∇ · q = 0. For i = 1, 2, . . . , I, we now define the following operators:

A := diag(A1, . . . , AI), B := diag(B1, . . . , BI), Ai(D, u) := Ai := div(ji) (1.4a)

ji := −aiD0i∇ui + qui (= diffusive + advective flux) (1.4b)

Bi(D, u) := Bi := −(aiD0i∇ui − qui) · n⃗, (1.4c)

where n⃗ = n⃗(x) is the unit outward normal on ∂Ω. The coefficients ai = ai(x) ∈ {0, 1} and
θ ∈ (0, 1] are explained below. The semilinear problem is: let g and h be given, then find a
u : S × Ω → RI such that

θ
∂u
∂t

+ A(D, u) = f̂ (u) in S × Ω, u(0, ·) = g in Ω and (1.5)

B(D, u) = h on S × ∂Ω. (1.6)

For identical diffusion coefficients and p > N + 1, in [11] Kräutle’s showed that the solution
u(t, ·) belongs in H2,p(Ω)I for a.a. t. Since he deals with diffusion and reaction in porous
media, in his setting the porosity θ might be different from one whereas, Mahato et. al. in [12]
considers a free flow and thus in his setting θ = 1. Kräutle in [11] splits ∂Ω in two disjoint
parts Γin and Γout, the inflow and outflow boundary parts, respectively, and specifies (1.5) as

− q·⃗n = 0 on S × Γin, −q·⃗n ≤ 0 on S × Γout and (1.7)

−D0i
∂ui

∂⃗n
= 0 on S × Γout, h ≤ 0 on S × Γin and h ≥ 0 on S × Γout, (1.8)
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i.e. the outflow is entirely advective (cf. [11]). Let us denote the problem (1.5)–(1.6) by (P).
In order to model the conditions in (1.6) and (1.7), we choose ai(x) := 1 on (1.5)–(1.7) and
ai(x) := 0 on Γout whereas in Ω, ai(x) = 1. The existence of solution of (1.5)–(1.7) in [11]
is based on L∞-estimates obtained via a Lyapunov functional, a fixed-point argument and
classical H2,p-theory for linear parabolic systems. An essential drawback of their approaches
is that the diffusion coefficients need to be the same for all species. For a diffusion setting
in a porous medium this can be justified by the observation that, usually, the advective flux
dominates the diffusive one by order of magnitudes. In this note we address the issue of
non-identical diffusion coefficients and show that the unique existence of weak solutions can
still be guaranteed under certain assumptions which are given in next section.

1.1 Literature survey

In regards to the global in time solution, the authors in [18] showed that only mass control and
positivity of the solutions are not sufficient to prevent the blowup in the solution and therefore
we need a growth control condition. In the survey paper [16], the author has summarized the
conditions (and limitations) under which the global solution can be guaranteed. The existence
of weak solutions for (P) is shown in [17] under the assumption that the nonlinearities belong
to L1(S×Ω). For quadratic nonlinearities, the existence of weak solutions is shown in [4] via a
duality method. The authors in [8,20] showed the existence of a global renormalized solution
if nonlinearities satisfy the entropy condition: ∑I

i=1 f̂i(u)(log ui + αi) ≤ 0 for all u ∈ (0, ∞)I

for some α1, α2, . . . , αI ∈ R. In [9], the global classical solutions for (P) with homogeneous
Neumann boundary condition is shown under the assumption of mass conservation and en-
tropy condition. In [9], the authors have assumed that f̂i(u) has the cubic growth for n = 1
and f̂i(u) has the quadratic growth for n = 2. The result later improved in [24] by utiliz-
ing a modified Gagliardo–Nirenbarg inequality. For higher-order nonlinearities in any space
dimension if the diffusion coefficients are close to each other, i.e. if they are quasi-uniform,
then the global existence of classical solutions is proved in [3, 5]. In [1], the authors have
shown that under the polynomial growth condition, the L∞-norm of the classical solution can
be obtained, however, later on this growth condition is removed in [3]. The authors in [19]
proved the global existence and uniform boundedness for quadratic growth and dimension
n = 2 by relaxing the mass conservation to mass dissipation. This result is improved in [15]
by replacing the mass dissipation assumption with a weaker intermediate sum condition. In
higher dimensions, the existence of global classical solutions for nonlinearities with quadratic
growth has been proved in [2,6,23] and for the case of Ω = Rn is deduced in [10]. The work in
[2] is based on mass conservation assumption together with the entropy condition, whereas in
[23] the mass conservation condition is replaced by the mass dissipation assumption. A more
general work is done in [6] under the mass control assumption. The uniform in time bound
for the solutions is shown in [7]. Thus, in the previous works the global classical solutions
in any space dimensions and for the higher order nonlinearities is shown under the restric-
tion that the diffusion coefficients are close to each other and on some particular structure of
the nonlinearities. Our work shows the existence of weak solution in a H1,p setting and far
less assumptions on the nonlinearities. Our argument to prove the existence of global solu-
tion is rather small and involves less calculations. We have also incorporated inflow-outflow
boundary conditions which in turn do not disturb the global existence of the solution.
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2 Mathematical preliminaries

2.1 Function spaces

Let p, q ∈ [1, ∞], 1
p + 1

q = 1, λ ∈ [0, 1], Ω ⊂ RN be a bounded Lipschitz domain. Sym(N)

is the set of all real symmetric matrices A = (Aij) normed by |A|Sym(N) := maxi,j=1,...,N
∣∣Aij

∣∣.
(·, ·)p,λ and [·, ·]λ stand for the real- and complex-interpolation functor, respectively (cf. [25]).
Likewise Lp(Ω), Hα,p(Ω), α ∈ N and Cλ(Ω) denote the Lebesgue, Sobolev and Hölder spaces,
respectively, with their usual norms (cf. [25]). ” ↪→ ” denotes a continuous imbedding. For
a normed space Y, Lp(S; Y) and H1,p(S; Y) are the (standard) Bochner and Sobolev–Bochner
spaces (cf. [25]). Y∗ stands for the dual of Y. ⟨·, ·⟩I denotes the inner product on RI and
| · |I be the corresponding norm. If X and Y are normed spaces, then L(X, Y) represents
the set of all bounded linear operators from X to Y and Iso(X; Y) stands for the set of all
linear isomorphisms of L(X; Y). From here on we assume p > N + 2 is fixed. The imbedding
Lp(Ω)I ↪→ (H1,q(Ω)∗)I is given by Lp(Ω)I ∋ h0 7→ Lh : ⟨Lh, w⟩ := ∑I

i=1
∫

Ω h0i(x)wi(x)dx, w ∈
(H1,q(Ω))I . We set Fp := Fp(S, Ω) := Lp(S; H1,p(Ω)) ∩ H1,p(S; H1,q(Ω)∗) normed by

∥ψ∥Fp
:= ∥ψ∥Lp(S;H1,p(Ω)) +

∥∥ψ′∥∥
Lp(S;H1,q(Ω)∗)

, (2.1)

where u′ is the distributional derivative of u. The solution space of the system under consid-

eration is FI
p = Fp × Fp × · · · × Fp︸ ︷︷ ︸

I-times

and its norm is defined by ∥u∥FI
p

:=
[

∑I
i=1 ∥ui∥

p
Fp

] 1
p . Note

that for p > N + 2, Fp ⊂ C(S; (H1,q(Ω)∗, H1,p(Ω))1− 1
p ,p) and Fp ⊂ C(S; C(Ω)) (cf. [12]). For

abbreviation, we set

V := H1,p(Ω)I , W := H1,q(Ω)I , W∗ := [H1,q(Ω)∗]I , V0 := (H1,q(Ω)∗, H1,p(Ω))I
1− 1

p ,p, (2.2a)

V∂Ω := Lp(∂Ω)I , P0 = Lp(S; V0), P1 = FI
p, P2 := Lp(S; H1,q(Ω)∗)I , P := P2 × V0, (2.2b)

Q1 := C(S; C(Ω))I , Q2 := Lp(S; C(Ω))I , E := Q0 × P1 and Q0 := L∞(Ω; Sym(N))I . (2.2c)

Then, for p > N + 2, a simple embedding result from [12] yields

Lp(S; V) ∩ H1,p(S; W∗) ↪→ C(S; V0) ↪→ C(S̄; C(Ω̄))I ↪→ C(S̄; L∞(Ω))I . (2.3)

Remark 2.1. If D = (D01 , D02 , . . . , D0I ) ∈ L∞(Ω; Sym(N))I , i.e. ∀i D0i ∈ L∞(Ω; Sym(N)), then
|||D|||L∞(Ω;Sym(N))I := maxi,j,k ∥D0ikj∥L∞(Ω) = maxi,j,k ess supx∈Ω |D0ikj(x)|L∞(Ω). However, in our
case, we only have D0ikj(x) = D0 = constant ∀i, j, k and x ∈ Ω, then |||D|||L∞(Ω;Sym(N))I :=
maxi,j,k ∥D0ikj∥L∞(Ω) = maxi,j,k ess supx∈Ω |D0ikj(x)| = D0.

To state the main theorem of the paper, we would require the following assumptions:

A1. let D0 be a positive constant. For each i = 1, 2, . . . , I, D0i := diag(D0, . . . , D0) ∈
Sym(N) ⊂ RN×N be a diagonal matrix such that D := (D01 , . . . , D0I ) ∈ Sym(N)I ,
where I ∈ N.

A2. let h ∈ Lp(∂Ω)I and let g ∈ V0 such that gi ≥ 0 for each i.

A3. let (1.6) and (1.7) hold true and q⃗ ∈ L∞(S × Ω) be such that Q := ∥⃗q∥L∞(S×Ω) < ∞ and
q⃗ · n⃗ ∈ L∞(S × Γout).
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Definition 2.2 (Weak formulation). Let the assumptions A1–A3 hold true. Then, a vector
u ∈ FI

p is said to be a weak solution of the problem (P) if u(0) = g and

∫
S
⟨∂tui, ϕi⟩W∗×W dt +

∫
S

∫
Ω
(D0i∇ui − q⃗ui)∇ϕi dx dt −

∫
S×Γin

hϕi ds dt

+
∫

S×Γout
q⃗ · n⃗ϕi ds dt =

∫
S
⟨ f̂i, ϕi⟩W∗×W dt, ∀ϕ ∈ Lq(S; W). (2.4)

Next, we state the existence theorem from [13] which addresses the question of same
diffusion coefficients in the system.

Theorem 2.3. Let the assumptions A1–A3 hold true. Then, there exists a unique global positive weak
solution (in the sense of Definition 2.2) u ∈ FI

p of the problem (P).

For Theorem 2.3, the global existence of solution follows from the construction of a par-
ticular type of Lyapunov function and exploiting the dissipative property of the reaction rate
term and an application of Schaefer’s fixed point theorem. The uniqueness and positivity
follow from Gronwall’s inequality.

Now, we shall state the main theorem of this paper which is existence of solution for
different diffusion coefficients.

Theorem 2.4. Let the assumptions A1–A3 hold true. Then, there is a neighborhood U = U(D0) in
L∞(Ω; Sym(N))I such that (1.5)–(1.7) is solvable for all D ∈ U. Moreover, the components of the
solutions are non-negative.

Remark 2.5. The proof of the implicit function theorem provides estimates for the size of
U(D0). Here we do not yet go into detail, however, in [5, 6] it has been shown that the if the
diffusion co-efficients are very close to one and another, then there exists a classical solution.

Remark 2.6. In this note we do not directly employ the particular structure (1.5) of the reac-
tion rates incorpoated into f̂ (u), rather we use f̂ is locally Lipschitz, then by Rademacher’s
theorem, we have f̂ ∈ C1(RI)I in Theorem 2.4.

2.2 Operators

Let U, V be two Banach spaces and x ∈ U, then a continuous linear operator Ψ : U → V is
called the Fréchet derivative of the operator T : U → V at x if T(x + θ) − T(x) = Ψ(θ) +

ϕ(x, θ) and lim∥θ∥U→0
∥ϕ(x,θ)∥V

∥θ∥U
= 0 or, equivalently lim∥θ∥U→0

∥T(x+θ)−T(x)−Ψ(θ)∥V
∥θ∥U

= 0. For a

function v = v(t, x), t ∈ S, x ∈ Ω, we set v(t) := v(t, ·). Let H : U → V and G : ∏n
i=1 Ui → V,

where U, Ui and V are Banach spaces. For functions ξ ∈ U, ξ i ∈ Ui ∀i, Dξ∗ H(ξ) is the Fréchet
derivative of H = H(ξ) at ξ∗ and ∂iG := ∂ξ i

G := ∂G
∂ξ i

is the partial Fréchet derivative of
G = G(ξ1, . . . , ξn).

We will now define the following operators:
By Remark 2.6, f̂ ∈ C1(RI , RI) (production-rate vector). Clearly, f̂ : Lp(S; V) → Lp(S; W∗)

and we define
〈

f̂ (u), v
〉

:=
∫

Ω f̂ (u(x))Tv(x)dx (the V-realisation of f̂ ). We then introduce the

operator F : FI
p → Lp(S; W∗) via

⟨F (u)(t), v⟩ :=
∫

Ω
⟨ f̂ (u(t, x)), v(x)⟩Idx a.e. t ∈ S, v ∈ W. (2.5)
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We further define A(D, u) := A1(D, u) + A2(D, u), where A1(D, u) := −(div(D01∇u1),
. . . , div(D0I∇uI))

T, A2(D, u) := (div u1q, . . . , div uIq)T, where

A(D, u) := A1(D, u) + A2(D, u),

⟨A1(D, u), v⟩ := ∑I
i=1

∫
Ω

D0i∇ui · ∇vk dx, u ∈ V, v ∈ W,

⟨A2(D, u), v⟩ := ∑I
i=1

∫
Ω

uiq · ∇vi dx, u ∈ V, v ∈ W and

⟨B(h), v⟩ := ∑I
i=1

∫
∂Ω

hivi dσ, v ∈ V.

We note that A : E → P2. The corresponding extensions for time dependent u = u(t) is, with
the same notation, given by A(D, u)(t) := A(D, u(t)). Similarly, we proceed with A1, A2 and
B and obtain

A, A1, A2 : E → P2, B : Lp(S; V∂Ω) → P2.

Also, note that h ̸= 0 corresponds to non-homogeneous flux boundary conditions. Finally, we
set

G1(D, u) := u′ + A(D, u) + B(h)−F (u), (2.6)

G2(D, u) := u(0)− g, (2.7)

G(D, u) := (G1(D, u), G2(D, u))T. (2.8)

Therefore, the problem (1.5)–(1.7) has now been formulated into an abstract evolution
equation (2.6)–(2.8) and its weak formulation can be given by

Definition 2.7. Let the assumptions A1–A3 be true. A function u ∈ FI
p is called a weak

solution of problem (2.6)–(2.8), if u(0) = g and u′(t) + A(D, u(t)) + B(h(t)) = F (u(t)) in P2.
Alternatively, a function u ∈ FI

p is a weak solution of (2.6)–(2.8) if G(D), u) = 0 in P.

In order to prove Theorem 2.4, we will first look in to following lemmas:

Lemma 2.8. Let p > N + 2. For k = 1, 2, let Pk and Qk be the normed spaces, defined as in (2.2a)–
(2.2c), such that P1 ↪→ Q1, Q2 ↪→ P2. Assume further that M : Q1 → Q2 be a Fréchet differentiable
operator and set M := M|P1 = restriction of M on P1. Then,

L(Q1; Q2) ↪→ L(P1; P2), Du M = Du M|P1 ∈ L(P1; P2). (2.9)

Proof. Let v ∈ Q2, then ∥v∥Q2 ≤ C∥v∥Q1 . Since P1 ↪→ Q1 and Q2 ↪→ P2 , ∥v∥P2 ≤ C∥v∥Q2 ≤
C∥v∥Q1 ≤ C∥v∥P1 . This concludes (2.9). Now, we shall prove (2.9). We note that M : Q1 → Q2

is a Fréchet differentiable operator, i.e. Q1 ∋ l 7→ Dl M(l) ∈ Q2 is a bounded linear operator
from Q1 to Q2. Then, by the definition of Fréchet derivative, we have for ε > 0

∥M(u + l)− M(u)−Dl M(l)∥Q2 < ε∥l∥Q1 .

Then, by P1 ↪→ Q1, Q2 ↪→ P2, we obtain

∥M(u + l)− M(u)−Dl M(l)∥P2 < ε∥l∥P1 . (2.10)

(2.10) implies that Dl M : P1 → P2 is a bounded linear operator, i.e. M : P1 → P2 is a Fréchet
differentiable operator. Now, for u, l ∈ P1, M(u+ l) = M(u+ l), M(u) = M(u), therefore from
(2.10), we have ∥M(u + l) − M(u) − Dl M(l)∥P2 = ∥M(u + l) − M(u) − Dl M(l)∥P2 < ε∥l∥P1

which implies Dl M|P1 ∈ L(P1; P2).
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Lemma 2.9 (Implicit Function Theorem, cf. [22]). Suppose that X, Y, Z are Banach spaces, C is
an open subset of X × Y and T : C → Z is continuous operator. Suppose further that for some
(x0, y0) ∈ C,

(i) T(x0, y0) = 0,

(ii) The Fréchet derivative of T(·, ·), when x is fixed is denoted by Ty(x, y), is called the partial Fréchet
derivative w.r.t. y which exists at each point (x, y) in a neighourhood of the point (x0, y0) and is
continuous at (x, y).

(iii) [Ty(x0, y0)]−1 ∈ L(Z, Y).

Then there is an open subset U of X containing x0 and a unique continuous mapping y : U → Y such
that T(x, y(x)) = 0 and y(x0) = y0.

3 Proof of Theorem 2.4

Before we prove Theorem 2.4, we recall Theorem 2.4 since it deals with the system of semilin-
ear parabolic PDEs with identical diffusion coefficients. It states that under the assumptions
A1–A3, there exists a unique positive global weak solution u ∈ P1 of the problem (1.5)–(1.7).

In other words, for a fixed D ∈ Q0 there exists a unique u∗ ∈ P1 such that we have

G(D, u∗) = 0. (3.1)

Now, in the spirit of Lemma 2.9, we denote T = G, X = Q0, Y = P1 and Z = P. Next, we will
show that the following equations holds true:

⟨Du∗F (u), v⟩ =
∫

Ω
⟨Du∗ f̂ (u(t, x)), v(x)⟩Idx for a.a. t ∈ S, u ∈ P1, v ∈ W, (3.2)

⟨Du∗G1(D, u), v⟩ = ⟨∂tu∗ + A(D, u∗)−Du∗ F(u), v⟩ for u ∈ P1, and v ∈ W, (3.3)

⟨Du∗G2(D, u), v⟩ = ⟨u∗(0)− g, v⟩, (3.4)

G1 ∈ P2 is Fréchet differentiable on Q0 × P1, (3.5)

For fixed (D, u∗),

L := Du∗G(D, u) ∈ L(P, P1), i.e. L = (Du∗G1(D, u),Du∗G2(D, u)) ∈ Iso(P1, P). (3.6)

We shall prove (3.2)–(3.6) in several steps.

Step 1: At first, we show that G : Q0 × P1 → P2 × P0 is a continuous operator. We note
that G1(D, u) := u′ + A0(D, u) + B(h) − F(u), G2(D, u) = u(0) − g, Then, for a ϕ ∈ D :=
C∞

0 (S × Ω)I , we have

⟨G1(D, u), ϕ⟩ = ⟨u′ + A(D, u) + B(h)−F (u), ϕ⟩

= −⟨u, ∂tϕ⟩+
∫

S×Ω
⟨D∇u,∇v⟩I +

∫
S×Ω

⟨uq,∇ϕ⟩I +
∫

S×∂Ω
⟨h, v⟩I −

∫
S×Ω

⟨ f̂ , ϕ⟩I .

By Hölder’s inequality and D ↪→ P1 ↪→ P0 ↪→ P2, it follows that ∥G1(D, u)∥P2 < ∞. We also
note that ∥G2(D, u)∥P0 < ∞. Altogether these two estimates imply that ∥G(D, u)∥P2×P0 < ∞,
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i.e. G : Q0 × P1 → P2 × P0 is a continuous operator. Since f̂ ∈ C1(RI)I , then by definition of
F (u) and Fréchet derivative, we obtain

⟨Du∗ F(u), v⟩ =
∫

Ω

〈[
f̂ (u∗(t, x) + θ(t, x))− f̂ (u∗(t, x))− Ψ(u∗(t, x), θ(t, x))

]
, v(x)

〉
I

dx

=
∫

Ω
⟨Du∗ f̂ (u(t, x)), v(x)⟩I dx, (3.7)

for a.e. t ∈ S, u, θ ∈ V and v ∈ W. By (3.7), it follows that DuF ∈ L(V; W) exists as C(S) ↪→
Lp(S). Now, since H1,p(Ω) ↪→ C(Ω) ↪→ H1,q(Ω)∗, the restriction F|P1 is Fréchet differentiable
with DuF|P1 ∈ L(P1; P2) for all u ∈ P1. Therefore, ⟨DuF, v⟩ exists in (3.2).

Step 2: We note from definition 2.1.1 that the Fréchet derivative of a linear operator T is T
itself. Since, ∂t, A : FI

p → P2 are linear and B can be treated as a constant w.r.t. u ∈ FI
p, therefore

the Fréchet derivative of G1 will yield

Du∗G1(D, u) = ∂tu∗ + A(D, u∗)−Du∗F (u) ∈ P2.

This concludes (3.3). Likewise, (3.4) follows with similar arguments. Furthermore, by step 1,
we know DuF|P1 ∈ L(P1; P2). This implies DuG1 ∈ L(Q0 × P1; P2), i.e. DuG1 : Q0 × P1 → P2

exists, i.e. G1(D, u∗) ∈ P2 is Fréchet differentiable on Q0 × P1.

Step 3.: We have obtained the continuity of one of the partial derivative (DuG1(D, .)) of a
total of two and the existence of DuG2(D, u∗), we obtain the existence of DG(·, ·). Now the
estimate

∥DuG2(D, u∗)∥P2
= ∥u∗

0∥P2 ≤ C∥u∗
0∥Lp(S;V0) ≤ C∥u∗

0∥P1 < ∞,

by the definition of function spaces and a straightforward imbedding of P1 ↪→ P0 ↪→ P2. This
implies the continuity of DuG2. Hence, the continuity of both DuG1 and DuG2 imply the
continuity of DG.

Step 4: Let ( f , g) ∈ P2 × V0. In order to verify (3.6) it remains to show that the problem:

Find (D, u∗) ∈ Q0 × P1 with (3.8)

∂tu∗ + A(D, u∗) = Du∗F (u), u∗(0) = g, (3.9)

has a unique solution. The operator A(D, u∗) possesses the maximal parabolic regularity
property on P1 in the Lp-sense (cf. [21]). From [21], it follows that (3.8)–(3.9) is uniquely
solvable. Upon combining the steps 1 to 4, all the three conditions of implicit function theorem
(Lemma 2.9) satisfied. Therefore, there exists an open neighbourhood of D, U(D) ⊂ Q0 such
that G(D, u) = 0 for all D ∈ U(D). Moreover, the size of the neighbourhood U(D) can
be estimated, however this will be addressed somewhere else. Now, for the positivity, we
multiply the PDE (1.5) with −u−

i (−1× negative part of ui) and integrate over Ω−
i (support

of u−
i ) for all i = 1, 2, . . . , I and for a.e. t ∈ S. We use the fact that u(0) ≥ 0 which eventually

yields the positivity of the solutions via Gronwall’s inequality.

Remark 3.1. Although we did not show the size of this neighbourhood in which the diffusion
coefficient must lie, in [6] an idea regarding that is mentioned and recently in [14] has been
shown that this can be further refined and a rather general neighbourhood can be chosen.
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