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Abstract. This paper considers the existence of multiple normalized solutions of the
following (2, q)-Laplacian equation:

— Au— Agu = Mu+h(ex)f(u), inRY,
/ lu|?dx = a?,
RN

where 2 < g < N,e > 0,4 > 0 and A € R is a Lagrange multiplier which is unknown,
h is a continuous positive function and f is also continuous satisfying L?-subcritical
growth. When € is small enough, we show that the number of normalized solutions is
at least the number of global maximum points of & by Ekeland’s variational principle.
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1 Introduction

This paper is devoted to the existence of multiple normalized solutions, with X := H'(RN) N
DY(RYN), of the following (2, q)-Laplacian equation:

—Au — Agu = Au+ h(ex)f(u), in RN (1.1)

under the constraint
|u?dx = a?, (1.2)
]RN

where €,a > 0, Aju = div(|Vu|172Vu) is the g-Laplacian of u, 2 < g < N and A € R is
a Lagrange multiplier which is unknown. The continuous function f satisfies the following
conditions:

(f1) fisodd and lim;_ SO — & > 0 for some pe(22+ %);

[H]P=1
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(f2) There exist some constants ¢1, ¢c; > 0and p; € (q,9+ Zﬁq) such that | f(t)| < c1 + cat]P1 71,
Vt € R;

(f3) the mapping t — % is a non-decreasing function when t > 0.

Hereafter, the continuous function / satisfies the following assumptions:
(h1) 0 < hy=inf,cgn h(x) < max,cgy h(X) = Imax;

(h2)  heo = limyy 1 oo h(X) < hmax;

(h3) W '({hmax}) = {e1,€2,...,e} with e; = 0 and ej # ey when j # k.

In particular, since restriction of (1.2), we are seeking normalized solutions to (1.1), which
corresponds to seek critical points of the following functional

_1 2 1 idx —
Ie(u) = z/RN Vul2dx + q/RN Vulidx /]RNh(ex)F(u)dx
on the sphere
S(a) := {u € X := H'(RN)NDY(RN) : |uff = /N lul*dx = az}, (1.3)
R

where |- |; denotes the usual norm on L7(RVN) for T € [1,4+00) and DY(RN) := {u €
LT (RN) : Vu € LI(RN)} with semi-norm [ullpragryy = [[Vull,.  Moreover, [ju|x =
4] ppr vy + |l pragwy - It is well known that I € C'(X,R) and

/ _ [ q-2 _
(IL(u), @) = /]RN VuV(pdx%—/]RN |[VulT=*VuV pdx /]RNh(ex)f(u)(pdx

forall u, ¢ € X.
The equation (1.1) is related to the general reaction-diffusion system

otu — Apu — Aqu = f(x,u). (1.4)

The system has wide range of applications in physics and related sciences, such as bio-
physics, chemical reaction and plasma physics. In such applications, the function u de-
scribes a concentration, the (p,q)-Laplacian term in (1.4) corresponds to the diffusion as
div [(|VulP~2 4 |Vu|772) Vu] = Ayu + Agu, whereas the term f(x,u) is the reaction and re-
lates to sources and loss processes. Another model related to the (p, g)-Laplacian operator
concerns the Lavrentiev gap phenomenon, which involved variational functions with non-
standard (p, q) growth conditions, e.g., in [9,30].
The stationary version of equation (1.4)

—Apu—Agu = f(x,u), x€RVN

has been extensively studied. Where N > 3,1 < p < g < N, C.]. He et al. in [11] proved the
existence of solution by mountain pass theorem and the concentration—compactness principle
when f does not satisfy the Ambrosetti-Rabinowitz condition and they derived the regularity
of weak solutions in [12]. Furthermore, when nonlinear function f is discontinuous and
satisfies the Ambrosetti-Rabinowitz condition, the authors in [31] showed the existence of
solution by mountain pass theorem and the concentration-compactness principle. Moreover,
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some researchers had studied the existence results for the nonlinear function f involving the
critical Sobolev exponent in a bounded domain. G. B. Li et al. [21] studied f = |u|P" ~2u +
#|u|""2u and obtained infinitely many weak solutions by genus theorem when 1 < r < g <
p < N,u > 0. Later on, in [28], the authors proved multiplicity of positive solutions by
using the Lusternik—-Schnirelman category theorem where p < r < p*. [13] proved some
nonexistence results where N > 2,1 < g < p < Nand 1 < r < p*. Finally, we refer the
interested readers works [8,29] for a development of the existence theory for various problems
of the (p, q)-Laplacian.
In literature, the following equation

— Au+ Au = |ulP~2u, in RV,

/ lu|?dx = a?
RN

has been widely studied by many researchers. In the L?-subcritical problem, namely 2 < p <
2+ %, it is well konwn that the functional

(1.5)

E(u) = ;/RN yw|2dx—;/w lu[Pdx, u € H'(RN)

is bounded from below on the set {u € H'(R") : ||u||§ = [rv ul*dx = a*}, so we can found
a solution as a global minimizer on the sphere, see [24]. While in the L?-supercritical prob-
lem, namely 2+ & < p < 2, E |s(a) is unbounded from below. One of the main difficulties
in dealing with normalized solutions is proving the Palais-Smale condition, as a compact-
ness property. Jeanjean in [14] got one normalized solution by a mountain pass structure
for an auxiliary functional. Furthermore, in [5], the authors obtained infinitely many nor-
malized solutions by using linking geometry for a stretched functional. More results about
L?-supercritical problem can be found in [6,15]. Regarding the critical case, we cite the arti-
cles [7,23]. Furthermore, in a recent paper, Yang and Baldelli [27] considered the following
equation
— Au— Agu+ Au = |ulP~u, in RV,

/N lu|?dx = a?
R

in all the possible cases, where 2 < p < min{2*,4*} and 1 < q¢ < N. They showed a
ground state solution by using Ekeland’s variational principle in L?-subcritical case, while in
L?-critical case, they proved existence and nonexistence results, at last, they get a solution by
using a natural constraint approach in L2-supercritical case.

In addition, the multiplicity of normalized solutions has been wildly researched. For
example, Jeanjean and Lu [18] studied the following problem

—Au = Au+h(u), in RY,
u>0, / lu|?dx = a?,
RN
they obtained multiple normalized solutions by the variational methods and genus theory.
More information about multiplicity of normalized solutions by using genus theory and de-

formation arguments, see [2,16,17]. Particularly, without use of the genus theory, the authors
[19] studied the following problem

—Au+ Au = (I  [h(ex)|u] N h(ex)|u| ¥ ~2u + ulul"2u, xeRY,

/N lu|?dx = a®.
R
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They showed multiple normalized solutions by Ekeland’s variational principle when € small
enough, y,a >0, 2 < q <2+ 4, A € Rand h is a continuous positive function satisfying
(h1)-(hs).

This paper is devoted to study the problem (1.1)-(1.2), which has not been studied in
our knowledge. In order to get the existence of multiple normalized solutions for (1.1), we
will follow the variational methods in [19]. Moreover, since the workspace is X = H!(RN) N
DY (RRN), it will be more complicated to obtain the strong L?(RN) convergence of the selected
Palais-Smale sequence in X.

The main result of this paper is the following:

Theorem 1.1. Assume that f satisfies (f1)—(f3) and h satisfies (hy)—(h3). Then, there exists €q such
that (1.1) has at least | couples weak solutions (u;, A;) € X x R for 0 < € < eg. Moreover, Aj < 0
and Ie(u;) < 0forj=1,2,...,1L

Now, we will give the outline about this paper. In Section 2, we prove a compactness
theorem in the autonomous case. In Section 3, we use the compactness theorem to study the
non-autonomous case. Finally, we give the proof of Theorem 1.1 in Section 4.

2 The autonomous case

Firstly, we consider the existence of normalized solution (1,1) € X x R, where X = H!(RN) N
DY (RN), for the problem below

— Au— Agu = Au+ puf(u),
/ lu|?dx = a?,
RN

where 4,4 > 0, A € R and f satisfies (f1)-(f3). It is well known that the critical point of the
functional

(2.1)

_1 2qx 4 1 g _/
Ju(u) = 2/1RN\Vu| dx + q/RN |VulTdx ]RNyF(u)dx

is a solution to the problem (2.1), which is restricted to the sphere S(a), where F(t) =
fot f(s)ds. Next, we will show that problem (2.1) has a normalized solution.

Lemma 2.1 ([20, Lemma 2.7]). Assume that k > 1, Q is an open set in RV, a,p > 0and © €
C(Q x RN, RN) satisfying

(1) [ < O(x,8)¢, V(x,§) € Ax RY,

(2) 10(x,&)] < BIGI,V(x,8) € A x RN,

(3) (O(x,8) —O(x,1)(¢ —n) >0, Y(x,8) € QxRN with § # 1,
(4) O(x,9E) = 7|7 20(x, &), V(x,&) € QxRN and v € R\ {0}.

Consider (uy,),u € WYK(Q), then Vu, — Vu in LK(Q) if and only if

lim [ (©(x, Vuu(x)) — O(x, Vu(x))) (Vu,(x) — Vu(x))dx = 0.

n—oo JO

Lemma 2.2. The functional |, restricts to S(a) is bounded from below.



Multiple normalized solutions for (2,q)-Laplacian equation problems 5

Proof. From the conditions (f1)—(f2), we can infer that there exist some constants C;,C, > 0
such that
|E(t)| < Ci|t]P + CoJt|P', VieR.

By the L7-Gagliardo-Nirenberg inequality [1, Theorem 2.1], we get that
lul; < CIVulfuly ™, vu e DYRN) N L2(RY) (2.2)

for some positive constant C > 0, where v;; = %,l €(2,q"= NN—fq) Hence,

1
VYulldx — (1=vpq)p Vul?
Ju(u) > p /N] u|7dx — CCya'* Vs </N] u| dx)

Vp1.4P1

— CCpatvralr (/ ]Vu|‘7dx>
RN

Asp e (22+ %), p € (qq9+ Zﬁq)’ clearly v, 4p,vp, 4p1 < q, which ensures the boundedness
of ], from below. If ], is not bound from below, then there is u such that

, vp.qP Yp14P1
q q
f/ |Vu|‘7dx—C</ |Vu|”/dx> —C(/ \vuvidx) oo,
g JRN RN RN
which is a contradiction since vy 4p, vp, g1 < - O
This lemma ensures that 1, (a) := inf, cg(,) Ju(u) is well defined.

Lemma 2.3. Let y,a > 0, then m,(a) < 0.

PE(t)

Proof. By (f1), we can deduce lim; ,o =~ = & > 0, which implies that, for some J > 0,
pE(t) _ «
R (2.4)

forall t € [0,8]. Let 0 < ug € S(a) N L®(RN), we set
H(ug,r)(x) = e%ug(erx), Vx € RN, Vr € R.

It is well known that
/ |H (up,7)(x)[*dx = a®.
IRN

Furthermore, by a direct calculation, we have

/ F(H (o, ) (x))dx = e N7 / F(e¥ u(x))dx.
RN

RN
Then, for r < 0 and |r| big enough, we have

Nr

0<ezug(x) <4, Vxe RN,

Furthermore, by (2.4), we derive

o (p=2)Nr
p
/N F(H (uo, r)(x))dx > T /N |uo(x)[Pdx,
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so,

(p—2)Nr

821' ) e@-ﬁ-rg—rN pae 2
Ju(H(uo, 7)) < 7/]RN |Vug|“dx + #/RN |VuplTdx — 2P/]RN lug(x)|Pdx.
Since g > 2,p € (2,2 + %), increasing || if necessary, we get that

(p—2)Nr

e2r ) e¥+rqer . e )
T/IRNWHM dx+f/]RN|Vuo| dx—zp/RNluo(xﬂ dy = A, <0,

then

Ju(H(up, 1)) < Ay <0,
showing that m,(a) < 0. O
Lemma 2.4. If uy > 0, a > 0, then

(i) a— my(a) is a continuous mapping;

(ii) if ay € (0,a) and ay = y/a? — a2, we have my,(a) < my(ar) + my(az).

Proof. (i) Leta > 0 and (a,) C (0, +o0) such that a, — a, we need to prove that m,(a,) —
my(a). There exists u, € S(a,) such that my(a,) < Ju(ux) < my(a,)+ L for every n € N*.
Firstly, we deduce from Lemma 2.3 that my(un) < 0. Then by Lemma 2.2, we can get that
(un) is bounded in X. Now considering vy, := ;-u, € 5(a), since the boundedness of (u,) and
a, — a, we have

my (a) < Ju(on)

1/ a? 2 1/a%
= - —= — - — — q
]”(u”)+2<a2 1) /w'v”"' dx + 0]<aq 1) /]RN |Vu,|dx

n n

+ /]RN (yl—"(un)dx - yP(aa—nun)>dx
= Ju(un) +0,(1).

Let n — 400, we can get m(a) < lim, ;o infmy(a,). In the same manner, let (w,) be a
bounded minimizing sequence of m,(a) and z, := “2w, € S(a,), then we have

my(an) < Ju(zn) = Ju(wn) +0,(1) = Lim supmy(a,) < my(a),

n——+0o
so we get my,(a,) — my(a).
(ii) For any fix a1 € (0,a), we first claim that
my(0a1) < 0%my(ar), VO > 1. (2.5)

Let (u,) C S(a1) be a minimizing sequence for m,(a1), then 1, (07N x) € S(6ay). Since 6 > 1
and 2(1\][\,_”7) < 2(1\11\]—2) < 2, we have

iy, (0a1) — 07Ty (1) < Ju (1 (67 Fx)) — 62, (1)

2(N-2) 2(N—q)
6~ — 62 , 0N — 2
= ——— |Vl + ———

5 |Vu,|d <o0.
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As a consequence my,(0a1) < 6%my(ar). If my,(0a1) = 6°my(a1), we will have |Vu,|3 — 0 and
\Vun|g — 0 as n — 400, which can indicates that f]RN F(u,)dx — 0 by inequality (2.2). Then,

0> my(ar)
:nl_i)rfw]y(un) Engrfw/ |Vun|2dx+ 11m/ |V, |Tdx — 11m/ uF (u,)dx

which is a contradiction. So we get m,,(6a1) < 62m,(a1). In the same manner, we can get

my (0az) < 0*my,(az), VO > 1. (2.6)
Finally, apply (2.5) with 6 = % > 1 and (2.6) with 6 = a”—z > 1 respectively, we get
a? a a3 a
my(a) = a—;m}, <ala1> + a%m” <azaz> < my(ar) +my(az). O

Next, we will show the compactness theorem on S(a) which is useful for studying the
autonomous and the nonautonomous case.

Proposition 2.5. Assume that (u,) C S(a) is a minimizing sequence of my(a). Then, for some
subsequence, either

(i) (uy) is strongly convergent,
or

(ii) there exists a sequence vy(-) = u(- + yu) with |y,| — +o0 and (y,) C RN, which is strongly
convergent to a function v € S(a) with ], (v) = my(a).

Proof. It is easy to obtain the boundedness of sequence (u,) by Lemma 2.2, then there is a
subsequence u,, — u in X, which is still denoted as itself. For the case of u # 0 and |u|, = b,
by the Brézis-Lieb lemma in [26], we can deduce that b € (0,4) and

’“n’% = ’“‘% + Jun — “‘% +0n(1),
[Vun|5 = [Vul5 + |V (uy — u)]5 + 0u(1).

Moreover, according to the assumption of f, we can deduce

/ F(un)dx:/ dx+/ n—u)dx +o0,(1).
RN RN
Now, we will prove Vu, — Vu a.e. on RN, up to subsequences. Choose ¢ € CS"(]RN ) satis-
fying 0 < ¢ < 1in RV, ¢(x) = 1 for every x € B1(0) and (x) = 0 for every x € RN \ B,(0).
Take R > 1 and define r(x) = ¢(x/R). Using the (J, (1), ¢) withu = u, and ¢ = (un —u) g,
we get
/N [Viy — Vi + |V |17 2Vu, — |Vu|T2Vu] (Vu, — Vu)prdx
R
= <];¢(un)r (un - u)l/)R> - /IRN vununvq)RdX - /]RN IVun]q’ZVunuanJRdx
+ / 0f (1t )t pRAX + / Vitau Vg + / |V 1|12V 11,10V
RN RN RN
- /IRN wf(uy)uprdx — /]RN Vu,Vuprdx — /RN |VulT2VuVu,prdx.

q 2
+ ./IRN IV u|Tprdx + /]RN Vu|2prda.
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Since, (uy) C S(a) and (Juls()) (un) — 0, we have (]}, (un), (un — u)pr) — Oasn — oo,
Moreover, combining with the definition of ¢ and u, — u in X, we can get, as n — oo,

/ Viu,u, Viprdx — / Vu,uViprdx — 0,

RN RN

/ \Vun]quunuth/JRdx —/ \Vun]q’ZVuanldex — 0,
RN RN

/RN pf () unPprdx — /]RN if (un)uprdx — 0,
/}RN |Vu|'1—2VuVun1dex — /]RN |Vu|Typrdx,

/]RN Vu,Vuprdx — /]RN |Vu|21dex.
So,
lim (Vi — Vu+ |V |72V, — |Vu|72Vu] (Vu, — Vu)prdx =0,

n—oo JRN

which is equivalent to

lim N(Vun — Vu)*prdx =0, nlggo /]RN(Vun — Vu)iyprdx = 0.

n—oo JIR

Then, by Lemma 2.1 for ©(x, &) = |&[F~2¢ with k = 2,k = g, we have Vu,, — Vu in L?(B(0))
and L7(By(0)), which ensures that Vu, — Vu a.e. on RY, up to subsequence. Now, applying
Brézis—Lieb lemma in [26] again, we obtain

Vgl = [Vul] + |V 1t — )]+ 0u(1).

Let v, = u, —u and |v,|p = d;, — d, we can get that a?> = b> +d? and d,, € (0,a) for n big
enough. So,

my(a) +0u(1) = Ju(un) = Ju(u) + Ju(0n) 4+ 0n(1) > my(dy) + my(b) + 0, (1).
By the continuity of a +— m,,(a) (see Lemma 2.4(i)), we have
my(a) > my(d) +my(b),
which is contradicted to the conclusion of Lemma 2.4(ii), where a?> = b? + d2. This asserts that
’u‘ZC_orL;bining with |uy|2 = |ula = a, uy — uin L2(RN) and L?(IRYN) is reflexive, we can get
u, — uin L2(RYN). (2.7)

Combining with the inequality (2.2) and (f1) — (f2), we get

/ F(un)dx—>/ F(u)dx. (2.8)
RN RN

nwwzhww+wuﬁ#ﬂm+hwa+wmzQWW@+;ww%www+wm,

which indicates | Vo, [3,| Vo, | < 04(1). So we have v, — 0 in X, which means u, — u in X.
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Let us assume u = 0, i.e., u, — 0 in X. Then, for some ¢, > 0 and {y,} C R", we have

[, luldx = ¢ ¥y € RY. 2.9)
r\Yn

Otherwise we must have u, — 0 in L*(RN), Vk € (2,2*), which implies F(u,) — 0 in L' (RN).
But it contradicts to the fact that
0 > my(a) 4+ 0,(1) = Ju(un) > — /RN F(uy)dx.

Then (2.9) holds. Since u = 0, combining with the inequality (2.9) and the Sobolev embedding,
we can infer that (y,) is unbounded. Then we consider v,(x) = u(x + y,), which is easy to
check that (v,) is also a minimizing sequence of m,(a) and (v,) C S(a). So, there holds
v, — vin X, where v € X\ {0}. According to the proof of the first part, we deduce that
vy — vin X. ]

Lemma 2.6. Assume (f1)—(f3) hold, y > 0. Then, problem (2.1) has a positive radial solution u and
A <O.

Proof. We can assume that there is a bounded minimizing sequence (u,) C S(a) of m,(a) by
Lemma 2.2. Then, applying Proposition 2.5, we can deduce m,(a) = J,(u), where u € S(a).
Thus, we can get that there exists a constant A, € R such that

Ji(u) = A¥'(u) in X7, (2.10)
where ¥ (u) := [ |1[*dx. Then, according to (2.10),
—Au—Agu = Aqu+pf(u), x€RY,

and

/]RN |Vu|2dx+/]RN |Vu|‘7dx—/]RN /\auzdx—/]RNyf(u)udxzo.

By (f3), it is easy to obtain gF(t) < f(t)t when t > 0, furthermore, since m,(a) = J,(u) <0,
we get

1 2 q 2
0>]H(u)—q</]RN|Vu| dx+/RN|Vu| dx—/RNAau dx—/]RNyf(u)udx)
11 o1 o, 1
= (2—(])/]RN|VL¢| dx—f—q/]RNAau dx+q/]RN],tf(u)udx—/]RNyF(u)dx
21 A uldx,
q JRN

which implies that A, < 0.
Next, we will show that u is positive. From the definition of ], (u), we have ], (|u|) = J,(u).
Moreover we can get |u| € S(a). Then, we deduce

my(a) = Ju(u) = Ju(lul) = my(a).

Then we have J,(|u|) = my(a). Therefore, we replace u by |u|. If u* is the Schwarz’s Sym-
metrization of u [22, Section 3.3], we have

/ |Vu|2dx2/ |Vu*|?dx, / |Vu|‘7dx2/ |Vu*|9dx
RN RN RN RN
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and

/]RN P(u)dx:/ F(u*)dx.

RN
It is easy to check that u* € S(a) and ], (u*) = my,(a). Thus, we replace u by u*.

Next, we prove u(x) is positive for all x € RN. Firstly, we assume that the conclusion is
false, then there is xyp € RN satisfying u(xg) = 0. Furthermore, we can assume that there is
x; € RN satisfying u(x;) > 0 by u # 0. Thus, we can find a ball with a sufficiently large radius
R > 0 such that x¢, x; € Bg(0). Then, combining with the Harnack Inequality ([10, Theorem
8.20]), we can infer there is a constant C > 0 such that

sup u(y) <C inf u(y),
y€BR(0) y€Br(0)

which contradicts to the fact that

sup u(y) > u(x;) >0 and inf u(y) = u(xp) =0. O
y€Br(0) Yy€Br(0)

The next corollary is obtained by Lemma 2.6.
Corollary 2.7. Fixa > 0 and let 0 < py < pp. Then, my,(a) < my, (a) < 0.

Proof. Let uy, € S(a) satisfy J,, (u,,) = my, (a), then

My, () < Jpp (thpy) < Ty () = my, (a). O

3 The nonautonomous case

Next, we will show some properties of I : X — R,
1 ’ 1
= — - q —
Ie(u) 2/1RN |Vul“dx + q/IRNWu] dx /RNh(ex)P(u)dx,

which is restricted to S(a).
Firstly, we define Imax, I : X — R as

Imax (1) = 1/ |Vu|2dx+1/ |Vu|‘7dx—/ i F (1) dx
2 JR¥ g JRN JRN
and 1 1
= 2 - Idy —
Too (1) 2/RN\W\ dx + q/RN\Vu] dx /]RNhooF(u)dx.
Moreover, Lemma 2.2 guarantees that

moo(ﬂ) - ueilg(fu) IOO(u)/ mE(a) - ueil:gl(fa) Ie(u)/ mmax(ﬂ> B uérSI{u) Imax(u)-

Then, according to Corollary 2.7 and /e < hmax, we can immediately get
Mmax(a) < Meo(a) < 0. (3.1)
Now, we fix 0 < p1 = (1Mo (@) — Mmax(a)).
m

Lemma 3.1. lim, o+ me(a) < mmax(a). Hence, there exists g > 0 such that me(a) < meo(a) for all

0 <€ < egp.
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Proof. Let uy € S(a) satisfying Imax(140) = Mmax(a). A simple calculus gives that
— 1 2 1 q
me(a) < L(ig) = E/RN Vo) dx—i—q/]RN Vio|7dx — /]RNh(ex)F(ug)dx.

Letting ¢ — 0" and applying (h3) we can get

limsup me(a) < lIim (1) = Imax(140) = Mmax(a).
e—0+ e—0*

According to (3.1), we obtain m¢(a) < me(a) for € small enough. O
The following two lemmas will be used to prove (PS), condition for I, at some levels.

Lemma 3.2. Assume that (u,) C S(a) is a minimizing sequence with Ic(u,) — c and ¢ < Mmmax(a) +
p1 <O0. Ifu, = uin X, then u # 0.

Proof. Firstly, we assume the conclusion is false, i.e., u = 0. Then, we have
c=me(a) = Ie(uy) + 0n(1) = Io(1y) + /RN (hoo — h(€x)) F(uy)dx + 0,(1).
According to (h), there exist some constants ¢, R > 0 such that
heo > h(x)—¢, |x| > R.

Thus, we have the following estimate

c = Ie(uy) +0,(1) > Lo (uy) (hoo — h(€ex)) F(u,)dx — é/B

F(un)dx + 0,(1).
Bre(0) )

%/e(o
Recalling that (u,) is bounded in X, then for some constant C > 0, there holds

Ypgpb Yp14P1
q q
/ F(uy)dx < C; </ ]Vu\qu> + G (/ \Vu\”’dx) <C.
RN RN RN
By the fact of u, — 0in L'(Bg,.(0)) when I € [1,2*), one has
¢ =I(up) +0,(1) > Ieo(uty) — EC > meo(a) — EC 4+ 04(1),
which combines with the arbitrariness of ¢ > 0, we can get
c > me(a),
which contradicts to the fact that ¢ < mmax(a) + p1 < Mme(a). So, we can get that u # 0. O

Lemma 3.3. Assume that (u,) C S(a) is a (PS). sequence of I. satisfying u, — ue in X when
c< mmax(u) +p01 < 0, that is, as n — o0,

Ie(utn) = ¢ and |||y ()| — 0.

Then there holds

.. 2
liminf|uy —uel; > B,

where u, —+ ue in X and B > 0 independent of € € (0, €p).
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Proof. Firstly, defining the functional ¥ : X — R with ¥(u) = } [n [u[*dx, we can see
S(a) = Y1 ({a?/2}). According to [26, Proposition 5.12], there exist (A,) C R such that

NI (uy) — A ()|l — 0 asn — +o0.

(u,) is bounded in X since I, is bounded from below and coercive as J,, which ensures that
(M) is bounded, then there exists A such that A, — A, as n — +o0. Thus, we have

I(ue) =AY (ue) =0 in X/,

and
12 (vn) — A¥ (0,) || — 0 as n — +o0,

where v, := u, — tte. According to (f3), we can get gF(t) < f(t)t when t > 0. Then we have

n——+400 n——+4o0

0 > 1 + Mmax(a)>c = liminf I (u,) = lim inf <I€(un) — ;(Ié(un),u,o + ;/\ncﬂ) > ;/\eaz,

which implies that
(1 + Mmax(a))
22

limsup Ae < q < 0.

e—0

Then, there is a constant A* satisfying Ae < A* < 0, which is independent of €. Therefore,

2 q o 2 _
/]RN Vo, dx—i—/]RNan\ dx AE/RN |Uy | dx—/H{Nh(ex)f(vn)vndx—kon(l),
and
2 q _gx 2
/]RN | Vo, dx—l—/IRN |Vo,|7dx — A /]RN |vy|*dx < /]RN h(ex)f(vy)v,dx + 0,(1).

According to (f1), we get f(t) < et,Ve > 0 if t small enough, which combines with (f,) to
give
/ f(vn)vndx < Cz/ |Un’pldx+£/ |vn|2dx < C2/ |o, |Prdax.
RN RN RN RN

So, we obtain

/ |an|2dx+/ |vUn|qu+c0/ o |?dix
RN RN RN

< hmax/ f(vn)vndx < Cthax/ ‘Un’pldx + On(l)
RN RN

for some constant Cp > 0 independent of € € (0,€p). Since v, - 0 in X, we can assume that
liminf, st [|on]|x > C > 0. Thus, there holds

. . pl >
l;r_r&gﬂvn]m > C3 (3.2)
for some constant C3 > 0. By (2.2), we can deduce
Cs < liminflonlp; < C(liminf[on]y)( e K, (3.3)

where K > 0 is independent of € € (0, €p) with ||v,|| < K for all n € IN. Then, combining with
(3.2), and (3.3), we achieve the proof. O
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Next, we consider 0 < p < min{%,aé2 (Meo(a) — Mmax(a)).

Lemma 3.4. Assume that 0 < € < €9 and ¢ < Mmax(a) + p. Then, I restricted to S(a) satisfies the
(PS), condition.

Proof. Firstly, we can get that (u,) is bounded by Lemma 2.2, then let (u,) C S(a) be (PS),
sequence of I. with u, — u., where 1, # 0 by Lemma 3.2 and ¢ < mmax(a) + p. Set v, =
Uy — ue. If v, — 0 in X, the proof is complete. If v, - 0in X and |uc|, = b, by Lemma 3.3, we
have

lim inf 0,3 > B (34)

for some $ > 0 which is independent of € € (0, €p).
Let |vyp =dy — d > 5%, we have a? = b? + d?. From d,, € (0,a) for n large enough, we
can deduce

c+0n(1) = Ie(un) = Le(vn) + Le(ue) + 04 (1) > Moo (dy) + Mmax(b) + 0, (1).
Applying Lemma 2.4(i) and inequality (2.5), letting n — +c0, we get

d? b?
Mmax (@) + 0 > ¢ > Meo(d) + Mmax(b) > a—zmm(a) + a—zmmax(a).

Then
1Y > 7(”%0(“) - mmax(‘l)) > :%(moo(a) - mmax(a))l

which is contradicted to the fact of p < aéz(moo(a) — Mmax(a)). Then, it holds v, — 0 in X, that
is, uy — ue in X, which implies that u. € S(a) and

—Aue — Agute = Aette +h(ex)f(ue), x€ RN, O

4 Multiplicity result

In the following, we do some technical stuff. Let pg, 7o > 0, ¢; be defined in (h3), satisfying:

® By (e;) NBy(ej) =@ fori #jandi,je{1,...,1}.
° U%:l BPo (ei) C Bfo (O)
(ei)-

Set ¥ : RN — RN with

* Ky =Ui=1 B

2

N‘S

(x) X, if |x| <o,
x(x) :=
Toﬁ, if |x| > 7.

Now we consider the function G, : X\{0} — RN with

Colu) = S K (€x)|ul?dx
€ u):.:= f]RN ’u‘2dx 7

Then, we will get the existence of (PS) sequences of I., which is restricted to S(a) by the
next two lemmas.
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Lemma 4.1. Decreasing € if necessary, there exists a positive constant éy < p such that
G€<M) S K%o, Ve € (0,6‘0),

where u € S(a) and I. (1) < Mmmax(a) + do.

Proof. We assume that the conclusion is false, so there exist 6, — 0, u, € S(a) and €, — 0
such that
Ie, (uy) < Mmax(a) + u

and
Gen (un) é KPO .

2
Firstly, we know
Mmax(2) < Imax(Un) < Ie, (n) < Mmax(a) + 6n,
then,

Imax(un) — mmax(a), as n — oo.

We will analyze the following two cases by Proposition 2.5.
(i) uy — uin X, where u € S(a). According to the Lebesgue dominated convergence
theorem, we can deduce that
~Jry K(enx)|un)?dx [ x(0)]u|*dx B

G = — =0 € Kp,
e, (1n) f]RN |11, [2dx fIRN u|2dx 0

which contradicts to Ge, (1) ¢ Koy for n large.

(ii) There exists a sequence v, (-) = u(- +y,) with |y,| — +o0 and (y,) C RV, which is
convergent in X for some v € S(a). Then, we can also study the following two cases:
When |e,1,| — 400, we can deduce that

1 1
L, (1) = 5 /]RN |V, [*dx + P /]RN |Vo,|Tdx — /]RN h(enx + €nyn) F(vy)dx — I (0).

Since I, (uy) < Mmax(a) + 6, there holds
Mmax (a) > Ieo(V) > Moo(a),

which contradicts to (3.1).
When €,y, — y for some y € RN, we get

1 r 1 r
I, (uy) = 5 /]RN Vo, [2dx + 5 /]RN |Vo,|1dx — /]RN h(€nx + €nyn) F(vn)dx — Iy (v),

then we obtain
M) (@) < Mimax (a). 4.1)

If h(y) < hmax, Corollary 2.7 implies that 11,y (a) > max(a), which contradicts to (4.1). Thus,
it holds h(y) = hmax, which means y = ¢; for some i = 1,...,1. Then we have

/Nx(enx)|un|2dx /NK(enx—i—enyn)\vanx /Nk(y)\v\zdx
Gen(un) = R = /R — R =e; € K%o,

/ |1, |2 dx / |0, *dx / lo2dx
RN RN RN

which contradicts to Ge, (1) & Koy for n large. O
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Next, we introduce some notations:

* 0:={u € 5(a);|Ge(u) —ei|<po},

o 30L:= {u € S(a);|Ge(u) —ei| = po},

o L= inf, cqi Le(u),

o 7 = inf,eoq Le(u).
Lemma 4.2. Let 0 < §) < p < min{3, aﬁz}(moo(a) — Mmax(a)). Then, there holds

nh < mmax(a) +0 and gl <7, Ve € (0,e).
Proof. By Proposition (2.5), we set that
Mmax (@) = Imax (1), Thnax(u) =0,

where u € S(a). Let ul. : RN — R be ul.(x) = u(x —e;/¢€) for 1 < i < . By direct calculation,
we get

. 1 1
Ie(ul (x)) = E/RN |Vu\2dx—|—q/IRN |Vu\‘7dx—/]RNh(ex—i—ei)F(u)dx,

which implies that '
limsup L (u.(x)) < Imax(#) = Mmax(a). 4.2)

e—0

If e — 0T, there holds

/ K(ex)|ul|?dx / K(ex + e;)|ul>dx
RN RN

Ge(ué) = ; = — €.
/ |ul[>dx / |u|>dx
RN RN
Then we can infer that 1’ € 0. when € is small enough. Moreover, by (4.2),

%
4/

Ie(ul(x)) < mmax(a) + Ve € (0,¢€p).

From this, decreasing € if necessary,
; d
ﬂé < mmax(a) + ZOI Ve € (0,60).
Then, ‘
e < mmax(a) +p, Ve € (0,e0),
showing the first inequality.
If there holds u € 96, i.e.,

ueS(a) and |Ge(u)—ei| =po > pz—o,
which implies G¢(u) ¢ K - Then, combining with Lemma 4.1, we have
)

I (1) > mmax(a) + Yu € 00, Ve € (0,e),

E/
and so,
. 5
172‘ Z mmax(a) + EOI ve 6 (0/ 60)/

from which it follows that ‘ ‘
nt <1k, Vee (0,¢e).
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41 Proof of Theorem 1.1

By Ekeland’s variational principle, we can get that there exists a sequence (u!,) C S(a) such
that

Ie(”;) - ’7é
and

. 1 . . .
le(v) = () 2 ——llo—wll, Voebe with v#u,

foreachi € {1,...,1}. Then, we get u, € 6.\ 96. for n large enough by Lemma 4.2.
Given v € T, S(a) = {w € X : [y uwdx = 0}, we can define the path o : (=¢,&) — S(a)
with ,
1
o(t) = (u‘n + tv) /
|uj, + to2

where & > 0. It is obvious to know that o € C'((—¢,&),S(a)) and we have
o(t) € 01\o8:, Vt € (¢, &), o(0) = u, and ¢’ (0) = v.
Then we get
Le(o(6)) ~ 1e(u) >~ lo(t) |
for t € (—¢, &), which implies that
Le(o(t) = 1(0(0))) _ ILe(o(t)) — Le(uj)

t t
51 o(t) —u,
T on t
_ _1e(t) = o(0)
Taking the limit of t — 0™, we have
€ n — °
(), 0) 2 —— |||
Then, we can replace v by —v to deduce
; 1
sup{[ (I (), 0)| : oll <1} < —,

which implies that
Ie(u}) = 5L and Hle|g(a)(u;)|| —0 asn— +oo,

which means (u},) C S(a) is a (PS),: sequence of le. Combining with Lemma 3.4 and nh <
Mmax(a) + p, we can infer that there is u' such that u/, — u' in X. So, we have

u €6, I.(u') =yl and Ig|’5(a)(ui) =0.

According to our assumptions, we have

Ge(ui) € BPo (61'), Ge(u]) € BPo(ej)
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and

Boy(€i) N By, (¢j) = @ for i # j,

which means u' # w/ for i # jwhile 1 < i,j < . Thus, for any € € (0,€), I has at least
nontrivial critical points, i.e.,

—Aut— Agu' = A +h(ex)f(u'), Vie{1,2,...,1},
which ensures

/ |Vui|2dx+/ |Vui|‘7dx—/ )\i|ui|2dx—/ hex)f(u')u'dx = 0.
RN RN RN RN

Combining with I.(u') < 0, we have

0> I(u') — ;(/]RN ]Vui|2dx—|—/]RN ]Vui|‘7dx—/RN Ai|ui|2dx—/]RNh(ex)f(ui)uidx)

= <; — ;) /]RN |Vu|2dx+ZI/RNAi|ui|2dx+;/H{Nh(ex)f(ui)uidx—/]RNh(ex)F(ui)dx
> 1/ Ailut|?dx,
q JRN

which implies A; < 0. This proves the desired result.
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