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Abstract. In this paper, we study the following Schrodinger equations with potentials
and general nonlinearities

—Au+ V(x)u+Au = |u|T%u + Bf(u),
{/ lu|?dx = ©,

both on RV as well as on domains Q, where (3, C RN is an open bounded convex
domain and r > 0 is large. The exponent satisfies 2 + % <g <2 = % and f: R =+ R
satisfies L2-subcritical or L?-critical growth. This paper generalizes the conclusion of
Bartsch et al. in [4]. Moreover, we consider the Sobolev critical case and L2-critical case
of the above problem.
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1 Introduction and main results

This paper studies the existence of normalized solutions for the following Schrodinger equa-
tions with potentials and general nonlinearities

~Au+V(X)u+Au= |ul""?u+Bf(u), x<€Q,

1.1
/ u2dx = ©,u € HY(Q)), xeqQ, D
Q

where ), C RN is either all of RN or a bounded smooth convex domain, N > 3, 2 + % <
g <2* = 2N the mass ® > 0 and the parameter 8 € R are prescribed. The frequency A is

N—2’
unknown and to be determined.
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Such problems are motivated in particular by searching for solitary waves (stationary
states) in nonlinear equations of the Schrodinger type. Specifically, consider the following
nonlinear Schrodinger equation

4;T:AT—V&W+jQw%T:a (x,t) e RN xR,

¥ = ¥(x, 1), (x,t) €C,

where N > 1. Researchers are interested in finding the existence of standing wave solutions
to the above equations, that is, ¥(x,t) = eMu(x),A € R, and u : R¥ — R, so we get the
equation

—Au+ (V(x) +A)u = Q(u), x € RN,
where Q(u) = f(|u|?)u. For physical reasons, we focus on the existence of normalized solu-
tions for the following problem

—Au+ (V(x)+A)u=Q(u), xRN,

1.2
/ lu|?dx = ©, x € RV, (1.2)
RN

For more physical background about the above equation, please refer to [9,16].

If potential V(x) in (1.2) is constant, we call (1.2) is autonomous. In this case, recalling
paper [21], Jeanjean developed an approach based on the Pohozaev identity which has been
used successfully in recent years. The key to this method is to find a bounded Palais-Smale
sequences by using the transformation s * u(x) = e u(e’x). After that, by weakening the
conditions in [21], Jeanjean [22] and Bieganowski [8] improved these results. Of course, these
articles only consider the problem of a single nonlinear term. Recently, there have been many
studies on mixed nonlinear terms. For example, Soave [26,27] studied normalized solution
of (1.2) with mixed nonlinearity f(|u|)u = plu|72u+ [ulP72u,2 < p <24+ 5 < g < 2" =
2N, Specifically, Soave in [26] obtained many results of existence and non-existence. More
precisely, if 2 < g < p = 2+ %, that is, the leading nonlinearity is L2-critical and a L?-
subcritical lower order term. (1.2) had a real-valued positive and radially symmetric solution
for some A < 0 in RN provided # > 0 and ® > 0 small enough. Moreover, if u < 0, (1.2)
had no solution. If 2 + % = g < p < 2%, that is, the leading term is L2-critical and L2-
supercritical, (1.2) had a real-valued positive, radially symmetric solution for some A < 0 in
RN provided p > 0 and y, © satisfy the appropriate conditions. If 2 < g < 2+ £ < p < 27,
that is, the leading term L2-subcritical and L?-supercritical, (1.2) also had a real-valued positive
and radially symmetric solution for some A < 0 in RN provided ® > 0,y < 0 and y,®
satisfy the appropriate conditions. Soave in [27] considered the Sobolev critical case and
obtained some similar results. In particular, the Sobolev critical case also has been considered
in [1,2,24,25](see also the references therein). It is worth mentioning that many researchers
are also interested in the existence of normalized multiple solutions. In [23], Jeanjean et al.
obtained the existence of normalized multiple solutions for Sobolev critical case in (1.2). For
more results on this aspect, please refer to [5-7,10,29] and its references.

If (1.2) is non-autonomous, Ikoma and Miyamoto in [19] considered question (1.2) with
V(x) € C(RN),0 # V(x) <0,V(x) — 0(|]x| — o), they obtained some existence and non-
existence results. After that, Ding and Zhong in [14] proved the existence of normalized
solutions to the following Schrodinger equation

—Au(x) + V(x)u(x) + Au(x) = g(u(x)), x € RNV,
0 <u(x) € HY(RN), N > 3,
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where g satisfies:
(G1) ¢:R — Ris C! and odd.

(G2) There exists some (x, B) € R% satisfying 2 + & < & < B < 225 such that
S
aG(s) < g(s)s < BG(s) with G(s) = / 2(t)dt.
0

(G3) The functional defined by G(s) := 1g(s)s — G(s) is of class C! and
G'(s)s > aG(s),¥s € R,
where « is given by (G2).

Note that, (G3) plays a crucial role in the uniqueness of t,(see [14] or [21, Lemma 2.9]). How-
ever, we do not need this condition, since we directly perform scaling and complex calcula-
tions on energy functionals. Recently, Bartsch et al. in [4] considered following Schrodinger
equations with potentials and inhomogeneous nonlinearities on large convex domains

—Au+V(x)u+ Au = |u|Tu+ Blu|P2u,
/ lu|?dx = ©,

they developed a robust method to study the existence of normalized solutions of nonlinear
Schrodinger equations with potential. Under the stimulation of [4], our goal is to generalize
its conclusion to general nonlinear terms and the Sobolev critical case.

In order to state our main results, we introduce some notations. Set s; = max{s,0},
s— = min{s,0} for s € R. The Aubin-Talenti constant [3] is denoted by S, that is, S is the
best constant in the Sobolev embedding DV?(RN) — L2 (RYN), where D?(RN) denotes the
completion of C2°(RYN) with respect to the norm ||u||p12 := || Vu/|2. It is well known [28] that
the optimal constant is achieved by (any multiple of)

N-2

£ ) ,  e>0,ycRY, (1.3)

N-2
u =[NIN=-2)] 7 | 57—
) = NN =2 (i
which are the only positive classical solutions to the critical Lane-Emden equation
—Aw = wz*_l, w > 0in RV.

Let Cyn s be the best constant in the Gagliardo—Nirenberg inequality

s 25s—N(s—2) N(s—2) N
[ulls < Cnsllull, 2 ([Vull 2, 2<s<2%

For some results, we expect that V' is C! and consider the function
V:RN 5 R, V(x)=VV(x)-x.

For Q c RN and r > 0, let
Qr:{rxe]RN:xGQ}
and

Si0:=SeNH}(Q,) = {u c H Q) : HMH%Z(Q,) = @}.

From now on we assume that Q C RY is a bounded smooth convex domain with 0 € Q.
Our assumptions on V are:
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(Vo) V € CH{RN)N L2 (RYN) is bounded and IV-lly <S.

(Vo) V€ CYRN)NLY(RV) is bounded and ||V ||y < M-tz 2NR-2dg

2
(Vo) V€ CHRN)NLE(RY) is bounded and [[V- ||y < (1- Y355 )s.
1 1s of class C*,lim, |, V(x) = 0, and there exists p € (0,1) such that
Vi) Visofcl C11'|| \% 0 d th ists p 0,1 h th

liminf inf (x-VV(y))e™ >0 foranyt > 0.
|x|-c0 yEB(xp|x|)

Remark 1.1. In order to obtain the existence of normalized solutions in RY by taking Q = By,
the unit ball centered at the origin in RN, and analyzing the compactness of the solutions u, g
established in Theorems 1.3, 1.4 and 1.5 as r tends to infinity, we require the condition (V;).

Now, we make the following assumptions on the nonlinearity f:
(fi) f€CYR,R)and f is odd.

(f2) There exists some (p1, p2) € R? satisfying 2 < p, < p1 <2+ g such that
T
p2E(T) < f(T)T < prF(T) with F(T) = / F(H)dt.
0

(f2) There exists some (py, p2) € R2 satisfying 2 < py < p1 = 2 + % such that
p2F(7) < f(1)T < p1F(7).

Remark 1.2. If f(u) = Y7, a;{u|%2u, where 4; > 0 and 2 < 0; < 2+ %, then the assump-
tion (f1) can be weakened to f € C(R,R) and f is odd. In order to ensure the bounded-
ness of Palais—-Smale sequence under constraint conditions in Lemma 3.3, we need to slightly
strengthen the conditions for the nonlinear term f, that is, f € C}(R,R).

The main results of this paper are as follows. Firstly, we consider the Sobolev subcritical
case, that is, 2 + % <g <2

Theorem 1.3 (case f < 0). Assume V satisfies (Vp), is of class C' and V is bounded, f satisfies
(f1)—(f2). There hold:

(i) For every ©® > 0, there exists rg > 0 such that (1.1) on Q, with r > re has a mountain pass
type solution (A,@,ure@) with u,@ > 0 in O, and positive energy I, (u, @) > 0. Moreover,
there exists Cg > 0 such that

lim sup max u, @(x) < Ce.
r—oo  x€(),

(ii) If in addition HV*—”% < 28, then there exists © > 0 such that

lirr_1>inf/\r,@ >0 forany0<© < O.
r—0o0
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Theorem 1.4 (case > 0). Assume V satisfies (Vp), f satisfies (f1)—(f2) and set
11 % 4-N(p;-2) (-2)-
. 1—|v_|ys1]? [q(4— N(p: —2))} ) [N(q —2) —4] S =0 |

2N(q = p1) CNg aBCN,py

Then the following hold for 0 < ® < Qy:

(i) There exists rg > 0 such that (1.1) on Q), with r > rg has a local minimum type solution
(Aro,Ur@) with u,@ > 0 in Q), and negative energy I, (u, @) < 0.

(ii) There exists Co > 0 such that

lim sup max u, ¢ (x) < Co, liminfA, g > 0.
r—oo  xeQ) r—o0

Theorem 1.5 (case § > 0). Assume V satisfies (Vy), is of class C' and V is bounded, f satisfies
(f1)=(f2). Set

N 2)—4
-2

N(g—
~ 1 N\ 2 <CN Cn aBqgCn 2N(9—p7)
Oy == (1-|IV_|lxS! e Iy "’) < da ,
v=5(1-Ivollys™) S HAnat = T

where
(1—2)(N(q—2)—4)
(p1—2)(4—=N(p1—2))

pr =

Then the following hold for 0 < ® < @y:

(i) There exists 1@ > 0 such that (1.1) in Q) admits for v > re a mountain pass type solution
(Aro,ure) with u,e > 0 in Q, and positive energy I, (u, o) > 0. Moreover, there exists
Ceo > 0 such that

lim sup max u,(x) < Ce.
r—oo  xeQ),

(ii) There exists 0 < © < Oy such that

liminfA,e >0 forany0<©® < ©.
r—0o

If O = RY, (V) is significant for obtaining the following results.

Theorem 1.6 (case B > 0). Assume V satisfies (Vo)—(V1). Then problem (1.1) with Q = RN admits
forany 0 < ® < Oy, where Oy is as in Theorem 1.4, a solution (Ae, ue) with ug > 0, e > 0, and
I (u@) < 0.

Theorem 1.7 (case B > 0). Assume V satisfies (Vo)—(V1). Then (1.1) with Q = RN admits for
0<® < 0,0 > 0as in Theorem 1.5 (ii), a solution (Ae, ue) with ug > 0,Ag > 0, and I(ug) > 0.
Moreover, limg_, [ (1g) = oo.

Theorem 1.8 (case B < 0). Assume V satisfies (Vo)—(V1), and HVJFH% < 2S. Then problem (1.1)
with Q = RN admits for 0 < @ < ©,0 > 0 as in Theorem 1.3, a solution (Ae, ue) with ug >
0,Ae >0, and I(ug) > 0. Moreover, limg_ I (1g) = .

For the Sobolev critical case, that is 4 = 2*, we have the following results.
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Theorem 1.9 (case > 0). Assume V satisfies (Vp), f satisfies (f1)—(f2). Set
1 NG AY N N
= — 1— ||V - 22N
o= (e, ) Iy s
Then the following hold for 0 < ® < Qy:

(i) There exists rg > 0 such that (6.2) on Q) with v > rg has a local minimum type solution
(Ao, @) with u,e > 0 in O, and negative energy Z, (u, @) < 0.

(ii) There exists Co > 0 such that

lim sup max u,@(x) < Co, liminfA, @ > 0.
r—oo  x€Q, r—oo

Theorem 1.10 (case < 0). Assume V satisfies (Vp), is of class C! and V is bounded, f satisfies
(f1)-(f2). There hold:

(i) There exists rg > 0 such that (7.1) on Q), with r > rg has a mountain pass type solution
(Aro,Ure) with u, e > 0 in Q), and positive energy I, (1, @) > 0.

(ii) There exists Cg > 0 such that

lim sup max u, @(x) < Ce.
r—o0  x€Q)

Theorem 1.11 (case B > 0). Assume V satisfies (Vp), is of class C' and V is bounded, f satisfies
(f1)-(f2). Set

4 2[2-2* —N(p1=2)]

2\ T 2p;—N(p1-2) 2 (@*=2)2p1 ~N(p1 -2)]
_ aBCy, ST\ 1N S3 1\ s nen
Oy = <A;’> e (1= IVolly $71) (@4, +1)

where

A 4(2* - 2)
P N(p—2)(4—N(p1 - 2))

Then the following hold for 0 < ® < Oy:

(i) There exists 1@ > 0 such that (8.1) in O, admits for v > re a mountain pass type solution
(Ao, Ure) with u, g > 0 in Q), and positive energy I, (1, @) > 0.

(ii) There exists Cg > 0 such that

lim sup max u, ¢ (x) < Ceo.
r—oo  xeQ),

For the L2-critical case, that is p; = 2 + % org=2+ %, we have the following results.

Theorem 1.12 (case > 0 and p; = 2+ ;). Assume V satisfies (Vo), f satisfies (f1) and (f2). Set

oz

~ [ N(g—p2)—4
Ov = {N“ﬁ(q—Pz)CN]

Then the following hold for 0 < ® < ®y:
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(i) There exists 7@ > 0 such that (1.1) in Q. admits for v > re a mountain pass type solution
(Ao, ure) with u,e > 0 in Q, and positive energy I, (u, o) > 0. Moreover, there exists
Ceo > 0 such that

lim sup max u, ¢ (x) < Ce.
r—oo  xeQ),

(ii) There exists 0 < © < Oy such that

liminfA,e >0 forany0<©® < ©.
r—00

Theorem 1.13 (case B < 0 and p1 = 2+ ). Assume V satisfies (Vp), is of class C* and V is
bounded, f satisfies (f1) and (f2). Set

N[z

(N—-2)g—-2N
2Nuap(q — p2)Cn

Oy =

Then the following hold for 0 < © < Oy:

(i) There exists rg > 0 such that (1.1) on Q. with r > rg has a mountain pass type solution
(Aro,ure) with u,e > 0 in Q, and positive energy I, (u, o) > 0. Moreover, there exists
Ceo > 0 such that

lim sup max u, ¢ (x) < Ce.
r—oo  x€Q),

(i) If in addition ||V ”% < 28, then there exists © > 0 such that

lirginf/\T,@ >0 forany0<© < O.
r—00

Theorem 1.14. (case p > 0 and q = 2 + ) Assume V satisfies (Vo), f satisfies (f1)~(f2) and set

N
N+4+2)\2
o= (12)F)

Then the following hold for 0 < ® < Qy:

(i) There exists rg > 0 such that (1.1) on Q) with r > rg has a global minimum type solution
(Aro,ur@) with u, @ > 0 in Q), and negative energy I, (u, @) < 0.

(ii) There exists Co > 0 such that

lim sup max u, e (x) < Co, liminf A, g > 0.
r—oo  xeQ), r—oo

Remark 1.15.

(i) Theorems 1.3-1.11 are valid if 2 = p, < p1 < 2+ % in (f2). Moreover, the proof of
Theorems 1.6-1.8 is very similar to [4], so we omit it in this paper.

(ii) Our conclusion also applies to p1 = pp =2+ 5 if 2+ & < g < 2%, such as f(u) = || N,
Therefore, our results cover certain conclusions in [26].
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Remark 1.16. Theorems 1.4 and 1.9 (resp. Theorems 1.5 and 1.11) both require some limi-
tations on Oy (resp. @V), although their values are different, they all stem from changes in
the geometric structure of the energy functional. In addition, there are still some unknown
results for the Sobolev critical case, that is, liminf, ,. A, @ > 0 may not necessarily hold when
B > 0or B <0. In fact, the methods and techniques in Theorem 1.4 (or Theorem 1.5) cannot

(N=2)a=2N _ (y thys g > 0 cannot be obtained

be applied to the Sobolev critical case since =,

0<O<0O.

Remark 1.17. In this paper, whether in subcritical or critical situations, the monotonicity trick
in [20] is one of the keys to get the conclusion. Proposition 3.2 does not ensure the existence
of a mountain pass solution for the original problem obtained when s = 1. However, it gives
the existence of a sequence s, — 17, with a corresponding sequence of mountain pass critical
points u,, of I, , constrained on S,@. We aim to show that u,,, strongly converges to a
constrained critical point of I,. For this purpose, it is sufficient to prove that u, s, is bounded
in H& (Q);), thanks to Proposition 3.1 in [15].

The structure of this paper is arranged as follows. In section 2, we provide some ideas in
the proof of main theorems. In section 3, we obtain the mountain pass type positive solution
in the case < 0 and have completed the proof of Theorem 1.3. If B > 0, there are two
situations, that is, Theorems 1.4 and 1.5. We get the two results in sections 3 and 4 by using
different geometric analysis. After that, we consider the Sobolev critical case. Finally, we
consider the L?-critical case and give some comments.

2 Preliminary

Consider the problem
—Au+V(xX)u+Au= |u|"?u+Bf(u), x€Q,

2.1
/ lul?dx = ®,u € H}(Q),), x € Q, @1
o,

where N > 3,2+ % <g<2= %, the mass ® > 0 and the parameter B € IR are prescribed.

The frequency A is unknown and to be determined. The energy functional I, : H}(Q),) — R
is defined by

I(u) = 1/ |Vul?dx + 1/ V(x)utdx — 1/ |u|9dx — ,B/ F(u)dx (2.2)
2 Q, 2 O, q O, Q,
and the mass constraint manifold is defined by
_ 1 12 —
Syo = {u € H}(Q)) : ||u]} = ©}. (2.3)
If O = RY, the energy functional I : H} (Q);) — R is defined by
I(u) = 1/ ]Vu]zdx—i—l/ V(x)u?dx —1/ |u|Tdx — ,B/ F(u)dx (24)
2 JRN 2 JRN q JRN RN )
and the mass constraint manifold is defined by

So = {u e H}(RY): |[ul} = ©}. (2.5)
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The proof idea of Theorem 1.3 is as follows. In order to find a mountain pass type solution
(Ar@,ur@), we first need to analyze the geometric structure of the energy functional corre-
sponding to the equation (3.1). In Lemma 3.1, we perform precise geometric analysis on the
energy functional corresponding to (3.1) and know that the energy functional I, s has a global
maximum. Next, we obtain the bounded Palais-Smale sequence by using [11, Theorem 1] and
get a solution (A, 1) for (3.1). Finally, we consider Lagrange multiplier and establish an a
priori estimate for the solutions of (1.1). Theorem 1.4 is relatively simple because the energy
functional has a local minimum, which can be proved using the method of constrained mini-
mization. The proof of Theorem 1.5 is similar to Theorem 1.3, but the geometric structures of
the two cases are significantly different and require refined estimate of energy.

Note that, there are some differences between the proof of Lemma 5.3 and Lemma 3.4, and
we cannot directly use the method of Lemma 3.4, even if g can be reduced to p; according to
condition (f2) and p2 < 2+ 5 < g < 2*. More precisely, it then follows from g > 0 and (f2)
that

1 240 — L 20y n)do — - Ol
N/Q,VL[| dx N BQV\Vu] (x-n)do N Q,(VV x)u“dx
_ (q;q‘z)s/Qy\u|‘idx—|—s/0r(‘§f(u)u—ﬁF(u))dx

p2 2 1/ 2 1 / 2
> 1= | = — — .
< , |Vu|~dx + r Vucdx — m,s(©)

Consequently, we have

p2—2 >P2—2 1/ 2 1/ 2 1 2
5 mys(©) > 5 (2 QV\Vu| dx+2 Q,VM dx N QV\Vu| dx

1 2 1 2
+2N/a0,|vu| (x n)da—l—ﬂ Qr(VV x)u“dx

_ N(p2—2)—4

- 4N

1 -2
/Q|w|2dx—®(m||vv-x||w+”24 ||V||oo).

However, this method is useless because N(W%NZ)% < 0, we cannot obtain that fQ |Vul?dx is

uniformly bounded in s and r.

3 Proof of Theorem 1.3

In this section, we assume < 0 and the assumptions of Theorem 1.3 hold. In order to obtain
a bounded Palais-Smale sequence, we will use the monotonicity trick inspired by [20]. For
% <'s <1, we define the functional I, : S, @ — R by

S

1 1
Ls(u) = E/Q ]Vu|2dx—|—§/0 Vuldx — p

/Qr |u]‘7dx—[3/0r1-"(u)dx. (3.1)

Note that if u € S, ¢ is a critical point of I, then there exists A € R such that (A, u) is a
solution of the equation

{Au + Vu+ Au=s|ulT?u+ Bf(u), x€Q,
(3.2)

/Q udx = ©,u € HY(Q)), x € Q.
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Lemma 3.1. For any © > 0, there exist rg > 0 and u,ul € Ste,@ such that

(i) Ls(u') < Oforanyr > rgands € [%,1],

2 (1 s ) 0 T oy
2

0 2
|va|2 < [N(q_z)cw

and

(N(g=2)—4) (1- [V ||y $7!)
2N(q—2)

Ls (u°) < —
N(q —2)Cn,®" Miyz2l

4
29 (1= V-[lys7") ] Mo

(ii) If u € S, @ satisfies

4

q(N—-2)-2N | N(7-2)—4
2g (N-2) ]»1

2 . -1
IVull = | e (1= 1v-1ys7) @’

then there holds

N L B Gl 1 ' [ 2? (1= Ivolys) ] -

7

N(g-2) N(g —2)Cy,0 ¢
(iii) Set
mys (@) = inf sup Ls(y(t))
v€l0 tE[O,l]
with
To= {’y € C([0,1],5.0) : 7(0) = u®,y(1) = ul}.
Then

29 (1= V-[lys7")
N(qg—2)Cn,0 4

(N(g—2)—4) (1- [V [|ly$7!)
N(q—2)

where h(Te) = max;er+ h(t), the function h : R* — R being defined by

(9-2)
] S mr,s(®) S h(TG))/

1 “1\ 2 r NP1 ) N(p1-2) Zq N(q
E(1+Hvy|%s )t@@—rxﬁCNm®26 } —26 Ik

h(t) = He

Here 0 is the principal eigenvalue of —A with Dirichlet boundary conditions in Q), and Q)| is the
volume of Q).

Proof. (i) Clearly, the set S, is path connected. Since v; € S1¢ be the positive eigenfunction
associated to 0 and note that 6 is the principal eigenvalue of —A, then

/Q Vo2 dx = 6. (3.3)

By the Holder inequality, we know that

o= /(')|vl(x)|2dx < </Q ]vﬂx)\"dx)g 107,
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which implies
/Q o1 (x)]7dx > ©F - |02 (3.4)

According to (f2), there exists a constant & > 0 such that
F(7) < ath. (3.5)

For x € Q% and t > 0, define v;(x) := t%vl(tx). Using (3.3), (3.4), (3.5) and % < s < 1,itholds

1 o1 s . )
I (vr) < Z/Q,’vm dx+2/0r Vvtdx_Zq/Q,|vt| dx—oc,B/Qr|vt| Ydx

N(p1-2)

1 1 2 2p1—N(p1—2) 2
§§<1—|—HVH¥S )/Qr]Vvt\ dx —aBCnp©® % </Qy|Vvt] dx)

1

_— 4
29 Jo, orfdx

N(p1—-2)

]. 1 2 2 2p;—N(p1-2) 2 2
< (1+IVIys) /Qywl\ dx — afCy @ 1 (t /Q\wly dx

_lti(qz—z) / o1 |7 dx

21] [9)

1 _ p1 N(p1—2) N(p1-2) 1 Ng-2 g 2-q
§§<1+HVII%S 1) 60 — apCy,, @30 1 -t et ol
=: h(t). (3.6)

Note that since 2 < p; < 2+ % < g < 2" and B < 0 there exist 0 < Tg < tp such that
h(to) =0,h(t) <O forany t > to,h(t) >0 forany 0 < t < tp and h (Te) = max;cr+ h(t). As a
consequence, there holds

Ir,s <Z)t0) = 17 s (Uto) < h (to) =0 (37)

o’

=)

for any r > % and s € [3,1]. Moreover, there exists 0 < t; < Tg such that

4

29 (1= v-fys7t) |7

. (3.8)
7—N(7-2)

N(q - Z)CN,q@

(N(g=2)—4) (1- [V ||y $7!)
2N(7—2)

h(t) <

for t € [0,t1]. On the other hand, it follows from the Gagliardo-Nirenberg inequality and the
Holder inequality that

Ls(u) > ;/Qr ]Vu|2dx+;/0r Vuzdx—;/Qy\qux

L Vo5 Cyy @7 g2
> ( : ) / |Vu|*dx — b </ \Vu\zdx> : (3.9)
2 Q, q Q,
Define
1 Cng® 7 o
= _ -1) 4 _ ’ e
g(t) ._2(1 IV-llys )t . £
and

=

2q . -1
[t (11557 e

q(NZ)ZN:| N(g—2)—4
I
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it is easy to see that g is increasing on (0, f) and decreasing on (f, ), and

4
— (1-2)—
29 (1= V-[lys7) ] 4
| .

N(g—2)Cn,0 ¢

- (N@-2)-4) (1-v-llysT)
8= 2N(g—2)

For r > 7o := max {%,\/@}, we have v, € S, and
e}

° 7o

12 )
Vol = (5 ) 19003

4

Moreover, there holds
Ly s <v%> <h (%) <h(t). (3.11)
Setting u’ = v%, ul = vy, and
re = max {tlo,?@} . (3.12)

Combining (3.7), (3.8), (3.10) and (3.11), (i) holds.
(ii) By (3.9) and a direct calculation, (ii) holds.
(iii) Since I, (u!) < 0 for any 7y € T, o, we have

IV (0)I3 <F< VA (D)3

It then follows from (3.9) that

Lo(7(H) > ot
max s(r(t) > g(t)

(N(g—2)—4) (1= |[V-]|y57")
2N(g-2)

29—N(g—2

4
29 (1= v-fys7t) |7
N(g —2)Cn, @5

for any y € I'; @, hence the first inequality in (iii) holds. Now we define a path € I', g by

y(T)(x) = <Tt0 +(1- T),%) : v <<Tt0 +(1- T),}%) x>

for T € [0,1] and x € Q),. Then by (3.6) we have m,;(®) < h(Tg), where h(Tg) = max;cr+ h(t).
Note that Tg is independent of r and s. O

By using Lemma 3.1, the energy functional I, s possesses the mountain pass geometry. To
obtain bounded Palais—Smale sequence, we recall a proposition from [11,13].

Proposition 3.2 (see [11, Theorem 1]). Let (E,(-,-)) and (H,(-,-)) be two infinite-dimensional
Hilbert spaces and assume there are continuous injections

E< H<— E.
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Let
|ull* = (w,u), |u|*= (u,u) foru€eE,

and
Sy={u€kE:|u=u}, TSy ={v € E:(u,0) =0} forpe (0,+0c0).

Let I C (0, +00) be an interval and consider a family of C* functionals ®, : E — R of the form
(1) = Alu) — pB(w), forp e,
with B(u) > 0 for every u € E, and
A(u) = +oo  or B(u) = 4o asu € Eand |ul| = +oo. (3.13)

Suppose moreover that ®;, and &g are T-Holder continuous, T € (0, 1], on bounded sets in the following
sense: for every R > 0 there exists M = M(R) > 0 such that

@) = @ 0)|| < Mllu =0 and | @) (u) = @ (0)| < Mju— o] (3.14)
for every u,v € B(0, R). Finally, suppose that there exist wy, wy € S, independent of p such that

cp = }Yrg fél[oa,)l(] D, (y(t)) > max {®, (w1), P, (w2)} forallpel,

where
I ={yeC(0,1],S) : 7(0) = wy,¥(1) = wy}.

Then for almost every p € I, there exists a sequence {u,} C Sy such that
(i) @, (un) — cp,

(ii) @) (un) =0,

51‘
(iii) {uy,} is bounded in E.

Lemma 3.3. For any © > 0, let r > rg, where rg is defined in Lemma 3.1. Then problem (3.1) has a
solution (Ays, ty,s) for almost every s € [%,1]. Moreover, uys > 0 and I,s (1rs) = mys(©).

Proof. By Proposition 3.2, it follows that

F(u)dx and B(u):l/ |u|9dx.

1 2, 1 24,
A(u)—z/QV|Vu| dx—l—z/QrV(x)udx B o, 7)o,

Note that the assumptions in Proposition 3.2 hold due to B < 0 and Lemma 3.1. Hence, for
almost every s € [1,1], there exists a bounded Palais-Smale sequence {u,} satisfying

Iis (un) — m,(©) and I (uy)

Tun Sr,@ - O,

where T,,S, @ denotes the tangent space of S, g at u,. Then

1 2 2
=g ([ IVuafax+ [ Viendax—p [ nnd—/ﬂd)
@(QV‘ Uy |~ dx + o (x)usdx ﬁQrf(u)u x sQr|u| x

is bounded and
I (un) + Apuy =0 in H1(Q,). (3.15)



14 J. Wang and Z. Y. Yin

Moreover, since {u, } is a bounded Palais-Smale sequence, there exist 1o € H} ((;) and A € R
such that, up to a subsequence,

Ay — A InR,
U, — ug in Hé(Qr),

u, — ug in L'(Q,) forall 2 < t < 2%,
where 1 satisfies

—Aug + Vug + Aug = s |uo|‘7*2 up+ Bf(up) inQ,
up € Hy (Q), er \uglz dx = 0.

Using (3.15), we have

I;s(un)uo-H\n/ Uptpdx — 0 asn — oo
: o

and
I (un) iy +Ay©® — 0 as n — oo.
Note that
r}grolo o, V(x)uZdx = /V V(x)ujdx,
r}i_r)glo/oyf(un)undx: /Qrf(ug)uodx,
nlgr(}o/nrf(un)uodx: /ny(uo)uodx,

so we get u, — ug in H}(Q),), hence L s(up) = m1,,5(©).

Now, we show that u,s > 0. In order to obtain it, we only need to modify the proof of
Proposition 3.2. In fact, for almost every s € [%, 1] , the derivative mils with respect to s is well
defined since the function s — m, is nonincreasing, where m,; denotes m, s(®) for fixed ©.
Let s be such that m; ¢ exists and {s,,} C [%, 1] be a monotone increasing sequence converging
to s. Similar to the proof of Proposition 3.2, there exist {y,} C I';@ and K = K (m, ) such
that:

(@) i Irs (yu(8) > mps — (2= m} ) (s —su), then [o) [V (t)]>dx < K.

(ii) max;epoy) Irs (7n(t)) < mps — (2 —m) (s —su).
Letting 7,,(t) = |7x(t)| for any ¢ € [0,1], it follows that {},} C I'se. Observe that ||V |u||} <
| Vul|3 for any u € H'(RN). Now we have:

(I) if 11’,5 (’7n(t>) Z mrls - (2 - m,’,[s) (S - Sn), then Iy,s (’)’n (t)) Z mrls - (2 - m;[s) (S - Sn). By
(i), there holds ny \V’yn(t)|2 dx < K, and hence er VY (t) ]2 dx < K. Thus (i) also holds
for vy,.

(ID) maxe(o) Irs (Yu(t)) < maxiepo ) Irs (v (t)) < mrs — (2—myg) (s —sn).

By replacing 7y, with %, in the proof of Proposition 3.2, we obtain a nonnegative bounded
Palais-Smale sequence {u, }. Consequently, there exists a nonnegative normalized solution to
(3.1) for almost every s € [%, 1} as above. O



Normalized solutions for Schrodinger equations with potential and general nonlinearities 15

In order to obtain a solution of (1.1), we need to prove a uniform estimate for the solutions
of (3.1) established in Lemma 3.3.

Lemma 3.4. If (A5, urs) € R X S, @ is a solution of (3.1) established in Lemma 3.3 for some r and s,
then

2)—4| 2

where the constant h(Tg) is defined in (iii) of Lemma 3.1 and is independent of r and s.

AN 2 1o -2
27, < q 1
/n, Vudx < o= [ W(To) +© <2Nuvy|oo+ . ||V|\oo>},

Proof. For simplicity, we denote (A5, urs) as (A, u) in this lemma. Since u is a solution of (3.1),
we have

/ ]Vu]de—i—/ Jutdx —s/ \u]qu—l—ﬁ/ f(u udx—/\/ |u|?dx. (3.16)
The Pohozaev identity implies

1 1
Vul?dx + —— \Y d(7+— 2dx+ - | Vutd
/ | |“dx TN | u|?(x - n) N V(x)udx 2 Jo u-dx

= |u]2dx+f/ |u|‘7dx+ﬁ/ F(u)dx
o, qJo, o,

where n denotes the outward unit normal vector on 9(),. It then follows from B < 0 and (f2)
that

1 24y - L _ b 2
N/ |Vul“dx N \Vu] (x-n)do N (VV x)u“dx

g2k /\|qu+/ ) — BF(u))dx
> / |u|Tdx + ———= (q 2) /QrF(u)dx

2q
_1-2 1/ ]Vu]zdx—i—f/ Vuldx — m,s(©)
2 \2Jo, 2 Jo, e ‘

Consequently, we have

q-—2 >‘7_2 1/ 2 1/ 2 _1/ 2
5 mys(@) > 5 (2 o |Vul dx+ 3 o, Virdx ) — Qr|Vu| dx

1 1
+ﬁ |Vu| (x- n)d(7+2N

—2
4N /Qr Vul'dx - © (2NH I 4 Ivi ) ’

(VV-x)ude

where the last inequality holds since x - n(x) > 0 for any x € 0Q), due to the convexity of (),.
Using Lemma 3.1, we have

N(g—2)—4 ¢ 0y 1 qg—2 qg—2
= = I oo + ||Vl ) <
o /s>,|v”| dx =0 (5 IVV xllo+ 15V ) < 1550(To),

which implies

4N -2 1, ~ -2
24,0 < q 4 q
1w < 2 11 20me) + @ (I le + 22V )]

This completes the proof of lemma. O
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Now, we obtain a solution of (1.1) by letting s — 1.

Lemma 3.5. For every © > 0, problem (1.1) has a solution (A, u,) provided r > rg where rg is as in
Lemma 3.1. Moreover, u, > 0 in ).

Proof. By using Lemma 3.3, there is a nonnegative solution (A, s, ;) to (3.1) for almost every
s € [%, 1] . In view of Lemma 3.4, {u,,} is bounded. By an argument similar to that in Lemma
3.3, there exist u, € S, @ and A, such that, going if necessary to a subsequence,

Ms—> Ay and U — u, in Hé (Qy) ass—1
Hence u, is a nonnegative solution of problem (1.1). O

Next, we will consider the Lagrange multiplier. we first establish an a priori estimate for
the solutions of (1.1).

Lemma 3.6. If {(A,, u,)} is a family of nonnegative solutions of (1.1) such that ||u,|| ;1 < C with
C > 0 independent of r, then limsup,_, |1y ||, < oo.

Proof. Using the regularity theory of elliptic partial differential equations, we know that u,
C(Q)y). Assume to the contrary that there exist a sequence, for simplicity denoted by {u,},
and x, € (), such that

M, := maxu,(x) = u, (x,) = c0 asr — oo.
xeQ),

Suppose without loss of generality that, up to a subsequence, lim,_,« ";—:‘ =(1,0,...,0). Set

vr(x):ur(x;wm forx e ¥ := {xe]RN:xr—i—TerQ,},
v

2
where 7, = M,2 . Then 7, — 0 asr — oo, Hvr||Loo(Z,) < 1, and v, satisfies

—Av, + T2V (% + Tx) 0 + A0 = 0,7 20, + BM) T F(Myv,)  in X (3.17)
In fact, since u, is a nonnegative solution of (1.1), we obtain

— Auy (X + Tx) + V(% + TX) ur (X + TX) + Aty (X + TX)
- ‘u;’ (xr + Trx) ’qiz Uy (xr “I’ Trx) “l’ ﬁf(ur (xr + Trx)) il’l Qr,

then by a direct calculation and the definition of v,(x), 7,, we know that (3.17) holds. In view
of (1.1), the Gagliardo-Nirenberg inequality and ||u,||;n < C with C independent of r, we
infer that the sequence {A,} is bounded. It then follows from the regularity theory of elliptic
partial differential equations and the Arzela—Ascoli theorem that there exists v such that, up
to a subsequence

v, v H)Z) and v, — 0o in Cllzc(Z) for some B € (0,1),

where ¥ := lim 7.
r—00

Similar to the proof of [4, Lemma 2.7], we have

liming S8 00 el =l S o

r—00 T r—00 Tr
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where y, € 9Q), is such that dist (x,,0Q);) = |y, — x| for any large r. As a result, by letting
r — o0 in (3.17), we obtain that v € H}(X) is a nonnegative solution of

—Av=|v|"7% inX,

where .
RN if liminf 812 _ o
— r—00 ) T
{x e RN :x; > —d} if liminf 3220 ¢

r—00 Tr

It then follows from the Liouville theorems (see [17]) that v = 0 in H}(X), which contradicts
v(0) = lim;,0 v,(0) = 1. O

Clearly, the proof of Lemma 3.6 does not depend on S.

Lemma 3.7. Let (A, g, ur@) be the solution of (1.1) from Lemma 3.5. If HVA]% < 28, then there

exists ©® > 0 such that
liminfA,e >0 for0<® < O.
T o0

Proof. Let (A, p,u,@) be the solution of (1.1) established in Theorem 3.5. By the regularity
theory of elliptic partial differential equations, we have u,g € C (Q),). Using Lemma 3.6, it
holds

lim sup max u, g < co.
r—00 Q,

Setting

Q(®) = liminfmaxu, g,

r—0o0 "

we claim that there is ®; > 0 such that Q(®) > 0 for any 0 < ® < ©;. Assume to the contrary
that there exists a sequence {©®y} tending to 0 as k — oo such that Q (®,) = 0 for any k, that
is,

lim inf nbax u,e, =0 forany k. (3.18)

r—o0 "

As a consequence of (iii) in Lemma 3.1, for any r > rg,, we have
I (uy9,) = my1 (Of) = 0 ask — co. (3.19)

For any given k, it follows from (3.18) and u, e, € S, e, that, up to a subsequence,

5s—2

o dx = | |ure | |ure, [ dx < |maxu,o| O =0 asr— oo (3.20)
Q, O, O,

for any s > 2. Hence, for any given large k, there exists 7 > rg, such that

< my1 (®k)

‘Z] /Q \ur@,|7dx + B /Q fluro,)dx for any r > 7.

In view of (3.19) and I (u,,9,) = m, 1 (©k), we further have

2 My (O)
/Qr |\Vu,e, | dx + /Qr V(x)u%@kdx > ’T

It follows from (3.18), (3.20) and (3.21) that there exists r, > 7, with r, — o0 as k — oo such
that

for any large k and r > 7. (3.21)

lim maxu, @, =0, (3.22)
k—o0 e
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s—2
/ka |y, 0,|" dx < %ix Ur, 0, Or -0 ask — coforanys > 2 (3.23)
and
/Qrk |Vurk,@k|2 dx + /Qr Vufk@kdx — 00 ask — co. (3.24)
By (1.1), (3.23) and (3.24), we have
Ar,@, — —0 ask — 0. (3.25)

Now (1.1) implies

_Aurk/®k + V(x)urk/Gk + Ayk1®ku7kr®k = |urk/®k |q_2u7k/®k + :Bf(urk@k)/

SO

Ar® A @ _
—Auy 0, + <HVH°° + sz k> U@ = _%u’k@k + |”Tk,®k|q 2 Un,0, 5f(“rk,®k)-

Using (3.25) and (3.22), it follows that

Ar®
—Aup o, + (HVHOO + r; k> Ur,e, = 0

for large k. Let 6, be the principal eigenvalue of —A with Dirichlet boundary condition in
0, and v, > 0 be the corresponding normalized eigenfunction. It follows that

A
(00 + IVl + 252 ) [ w0005 20
Tk

Since erk U, ©,0r,dx > 0, we have

A
O, + 1|V |oo + =57 > 0,

which contradicts (3.25) for large k. Hence the claim holds, that is, there exists ®; > 0 such
that
Q(O®) = lim infrrbax Ure >0 (3.26)

r—0o0 "

forany 0 < © < ;.

We consider H!(Q),) as a subspace of H'(RY) for any r > 0. It follows from Lemma 3.4
that the set of solutions {u,@ : 7 > rg} established in Lemma 3.5 is bounded in H!(RY), so
there exist ug € H'(RY) and Ag € R such that up to a subsequence:

Ar,@ — A@z
U@ — g in H(RN),
ure — g in LE (RN) for all 2 < k < 27,

Ure — U a.e.in RN
and ug is a solution of the equation

—Au+V(x)u+ Ao = |ul"?u+ Bf(u) inRY.



Normalized solutions for Schrodinger equations with potential and general nonlinearities 19

Hence,
/ Vil dx+/ u®dx+}\@/ W dx = /RN AL dx—l—,B/]RNf(u@)u@dx (3.27)
and the Pohozaev identity gives
N-2 2 Ao 2
N s |Vug| dx+ / Vuddx + = / xX)uddx + 7/1[{1\’ ugdx
1
— q
- /}RN | dx—i—ﬁ/]RN F(ug)dx. (3.28)

It follows from (3.27), (3.28), (f2), the Gagliardo—Nirenberg inequality and the fact f < 0 that

3 Veldx+ s [ Vb
= <;—1>/ |u®!qu+ﬁ/ f(ue)ue — 2F (ug))dx

29—N(g—2) N(q-2)
C -2 4
< Cngla =2) </ uédx) </ |Vu@|2dx>
2q RN RN

By using the Holder inequality, we have

L VST g e L uoara V(x)udd
NN /]RN’ ug|”dx / ] u@| x+2N (x)ugdx.

Therefore,

AN 2
<N_2N /]RN|Vu@| dx

29—N(q-2) N(g—2)
C -2
S N,q(q ) </ uédx)
2q RN

If ug # 0, Using ||V || y < 25, we obtain that

(2— 174 llyS ) N2 S2) 2w
© Na-2-4
NCN,q(q 2)

/ | Vug|*dx > (3.29)
R

Next, it follows from (3.5), (3.27), (3.28), (3.29), (f2) and 2 + % < g < 2* that

L 2gp= (N=2_1 2ax+ 2 [ Tl
<q 2) A@/]RNu@dx— ( N 6]) /]RN|Vu@\ dx+2N IRNV(x)u@dx

+(370) o vedar =2 [ (gF (o) ~ fluo)ue)) dx

< (N—2)g—-2N 9=2)|Vle
2Ng 2q

( : N(Piﬂ)
— 2p1—N(p1—2
. 5(11 pZ)aCN,p]G) P1 4271 </ |VM@|2 dx)

q RN

— —00 as® — 0,

2, WVleg
/]RN|Vu@| dx + N O+
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since % < 0. Therefore, if ug # 0 for ® > 0 small there exists ®y > 0 such that Ag > 0

for 0 < ® < Qy.

In order to complete the proof, we consider the case that there is a sequence @ — 0 such
that ug, = 0 for any k. Assume without loss of generality that ug = 0 for any ® € (0,0;). Let
xr@ € () be such that u, e (x,0) = maxq, Ure. In view of (3.26), there holds |x,g| — oo as
r — oo. Otherwise, there exists xop € R such that, up to a subsequence, x, @ — X, and hence
ue(xo) > de > 0. This contradicts ue = 0. We claim that dist(x,@,d(;) — o0 as r — oo.
Arguing by contradiction we assume that liminf, . dist(x,@,9Q,) = | < co. It follows from
(3.26) that [ > 0. Let wy(x) = u,9(x+ x,9) forany x € &' := {x € RN : x + x,9 € O}
Then w, is bounded in H!(RY), and there is w € H'(RY) such that w, — w as r — co. By
the regularity theory of elliptic partial equations and liminf, , ;0 (X,0) > de > 0, we infer
that w(0) > de > 0. Assume without loss of the generality that, up to a subsequence,

1- xr,@ o
im =e.
r—yo0 ’xr@‘

Setting
Z:{xe]RN:x-el<l}:{erRN:x1<l},
we have ¢(- — x,,9) € CP(Qy) for any ¢ € C*(X) and r large enough. It then follows that
/Q Vu,oVe (- —x,0)dx + /Q Vu,op (- — xr0)dx+ Ao /Q e (- —x.0)dx
= [ lol" us0p (- = x0) dx+ B [ Flun0)p (- —x.0) dx. (3.30)

Since |x,@| — o0 as ¥ — oo, it holds

‘/Q Vu,op (- — xr0) dx

< [Vt x0) gl dx
Supp ¢

2
N N
<ol lglle ([ 1V C+300) ¥ )
Supp ¢
2
N
<Mool gl | [ IviFax
> rii* 2 IRN\B‘XV,@‘
2
—0 asr— oo. (3.31)

Letting » — oo in (3.30), we obtain for ¢ € CZ(X):

/ Vw - Vedx + Ae / wedx = / |1 2wpdx + ﬁ/ f(w)pdx.
b3 > b2 >
Thus w € H}(X) is a weak solution of the equation
—Aw + Aow = |w|T?w + Bf(w) inZ. (3.32)

Hence we obtain a nontrivial nonnegative solution of (3.32) on a half space which is impossible
by the Liouville theorem (see [17]). This proves that dist (x, @, 9Q);) — co0 as ¥ — co. A similar
argument as above shows that (3.32) holds for & = RN. Now we argue as in the case ug # 0
above that there exists ®; such that Ag > 0 for any 0 < © < ©,.

Setting ® = min {@p, ©1, @}, the proof is complete.

Proof of Theorem 1.3. The proof is an immediate consequence of Lemmas 3.5, 3.6 and 3.7. [
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4 Proof of Theorem 1.4

In this section, we assume that the assumptions of Theorem 1.4 hold. Since § > 0,

1 C @2%%4*2) N(g-2)
i) = 5 (1= 1Vl s ) [ Valar = 0 (| vuax)
2 2 Q, q Q,
( : N(p1-2)
2p1—N -2
— 4fCy @ (/ yW|2dx>
o,
= (t),
where
1 C @21;—1\2(»;_2) N(g-2) 2p1-N(p1-2) N(pj-2)
- p1—N(p1— P1—
i (1) ==2(1—HVHI;S‘1)t2—N’qqt T 0Bl @ T
Np-2) |1 inp) Cn @ N
- - - —-P
= D (1 vy s T D e
2 2 q
_ OCﬁCN,m@ZPrN‘l(p] -2) tN(P{2)
Consider

2g—N
1 4Np-2)  Cng©O 2 Nap)
R

()= 5 (1= Ivollys™) e

Note that ¢ admits a unique maximum at

F

2
_qm—Mm—mwrﬂwwwl)”””®waa
B 2N(q = p1)Cnyg

By a direct calculation, we obtain

N(q—p1)
1= |V ||y S 1Ne23 o f g N
f) = [ Iv-Ily ] [q(‘l N(p1 2))] T NG —2) 4.

ZN(q - pl) CN,q
Hence,
_ 2p1—N(p1—2)
ll)(t) > lXﬁCN’rh@M
as long as
_ N 4-N(p1-2) N(g—2)—
o, = |1 IV-lysT [q(‘l— N(p1 —2))} EGo [1\7(51—2)—4] e
2N(q — p1) Cng aBCN,p,
Now, let 0 < ® < Oy be fixed, we obtain
2p1=N(p1~2)

l[)(f) > DéﬁCN,pl@

21

(4.1)

and hi(f) > 0. In view of 2 < p; < 2+ 3 < g < 2* and (4.1), there exist 0 < Ry < T < R,
such that 111 (t) < 0 for 0 < t < Ry and for t > Ry, hi(t) > 0 for Ry < t < Ry, and Iy (Te) =

max;cr+ hi(t) > 0.
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Define
Vie=4{u€Se:|Vul3<T5}.

Let 6 be the principal eigenvalue of operator —A with Dirichlet boundary condition in (), and
let | Q)| be the volume of Q).

Lemma 4.1.
(i) If r < YL, then V, 0 = @.
(ii) If

2

ma [(0(1+]V]|xS7t) . L\ Ve

r > max

T@ ! 20(1,3

then V, @ # © and

ere = inf I(u) <0
ueV,,@

is attained at some interior point u, > 0 of V,@. As a consequence, there exists a Lagrange
multiplier A, € R such that (Ay,u,) is a solution of (2.1). Moreover liminf, . A, > 0 holds
true.

Proof. (i) The Poincaré inequality implies there exists a positive constant C (only depending

on ) such that
[ 19ufx = 1/ Vuldx > C/ uf2dx = €2
Q, 2 Ja 2 Ja r2

for any u € S, . Since Tg is independent of r, there holds V, ¢ = @ if and only if r < %.
(ii) Let v; € 51,0 be the positive normalized eigenfunction corresponding to 6. Setting

2
. Ny -2+
veo [0(1+Ivies™) o
r@ = max To ' 2018 0270 (4.2)

Now, we construct for v > rg a function u, € S, such that u, € V, g and I, (u,) < 0. Clearly,

2

7y -2
/|V01|2dx:9®, @:/ 012 dx < (/ yvl\mdx>”2 0% .
QO QO QO

Define u, € S, @ by u,(x) = 2o (r~1x) for x € Q,. Then

(2=p) -
/ IVu,|*dx = 7200 and / \ur|"’2dx2rmzp2 ®p72|0|2% (4.3)
Q, O,
According to (f2), there exists a constant a7 > 0 such that
F(t) > aqth. (4.4)

By (4.2), (4.3), (44),2 < pp <2+ % and a direct calculation we have u, € V, g and

1 (2=pp) -
L () <5 (14 V]5571) 200 -y = 0% o #*

< 0.
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It then follows from the Gagliardo-Nirenberg inequality that

1 _ 2p1—N(p1-2)
() > 5 (1= V- y57) /Qr|Vu\2dx—CN,p1ﬁ®4 </Q |Vu|2dx>
N(g-2)

- Na-2)
- Z”’@”N“ (/ \Vuy2dx) t (4.5)

As a consequence I, is bounded from below in V, @. By the Ekeland principle there exists a
sequence {u,,} C V, @ such that

I (up,) — [mf L(u), I(un,)

r,0

|T,,,5,6 — 0 asn— co.

Consequently there exists u, € H}(Q,) such that u,, — u, in H}(Q,) and
Upy — Uy in Lk(Qr) forall2 <k < 2*.

Moreover, HVu,HZ < liminf, e HVuner < T3, that is, u, € V, . Note that
/ VuZ dx — / Vuldx as n — oo,
Q, ! Q,

hence
ero < I;(u,) <lminf [, (u,,) = e, 0.
n—oo

It follows that u,, — u, in Hé (), so I,(u;) < 0. Therefore u is an interior point of V, g
because I,(u) > hi(Te) > 0 for any u € 9V, g by (4.5). The Lagrange multiplier theorem
implies that there exists A, € R such that (A;, u,) is a solution of (2.1). Moreover,

Ar®:/ \u,|qu+/3/ f(ur)urdx—/ ]Vurlzdx—/ Vutdx

—/ |ur|‘7dx—|—[3/ f(ur)uy x—f/ ]ur\qu—2ﬁ/ (uy)dx — 21 (uy)
> 2L(uy) = —2e,0. (4.6)

It follows from the definition of e, g that e, is nonincreasing with respect to r. Hence,
ero < g0 <0foranyr >rgand 0 < ® < Oy. In view of (4.6), we have liminf, ,,, A, > 0.
Finally, the strong maximum principle implies u, > 0. O

Proof of Theorem 1.4. The proof is a direct consequence of Lemma 4.1 and Lemma 3.6. O

5 Proof of Theorem 1.5

In this subsection we assume that the assumptions of Theorem 1.5 hold. For s € [1,1], 8 >0,
we define the functional [, : S, — R by

Jrs(u 2/ |Vul?dx + = /Vuzdx—s< / |u]‘7dx+ﬁ/ )

Note that if u € S, is a critical point of ], then there exists A € R such that (A, u) is a
solution of the problem

{Au +Vu+Au=slulT?u+spf(u), x€Q,,

51
ul?dx = ®,u € H)(Q),), x ey, &)
0
Qr
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Lemma 5.1. For0 < © < @)V where @)V is defined in Theorem 1.5, there exist g > 0 and u ul e
Se,0 such that

(i) Forr >7gand s € [3,1] we have ], s (u') < 0and

N(q-2)

oy (21 Vel s)\ o
2 4 :
]rzs(”0)<N(q 4) ( (N(q—2)2 ) AT Nq2®qu 2
where
A= (CN#(" —2)(N(g—2)—4) N CN,,,>
g1 —2)A—N(p1—-2)) ¢
Moreover,
. [2(1=Ivelys )] LS
HVMOHZ < (q Z)A N(g—2)—4
and
4
1112 2 (1 — ||V_||% 571) W21 S
Hvu HZ = N(q _ Z)A N(g-2)—4
(ii) If u € S, @ satisfies
4
2 2 (1 - ||V—||g 5’1) I e
[Vullz = N(g—2)A NG-24
then there holds
lel(q;)2>4
oy a4 |2(1—=||V-|IxS 7-2)- N
Jrslu) 2 T 42) : ( N(!—!)g >] A4*N4(1H>®Az<f((qquz>)fz44.
(iii) Let
ms(©@) = inf sup Jrs(y(t)),
T€lv0 tefo,]
where
rr,G) = {’)’ eC ([0, 1],57,,@) : 7(0) — MO,’)/(1> _ Ml} .
Then -
oy a2 (1= v qus) M N
mrs(©) 2 ~ 42) - ( N(! —!)2 >] AN @N(Zq e
and
71 q—2)—
Nig—2)—4 (¢ (L+IVIyS .
< Z —4 4 N 2=

where 0 is the principal eigenvalue of —A with Dirichlet boundary condition in Q).
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Proof. Let v; € S1@ be the positive normalized eigenfunction of —A with Dirichlet boundary
condition in Q) associated to 8, then we have

/Q |V01|2 dx = 00. (5.2)
By the Holder inequality, we know
| len)iax > 0% o, (5.3)

Setting v;(x) = t2 v;(tx) for x € By and t > 0. Using (4.4), (5.2), (5.3) and 1 < s < 1, we get
g ! g 2 g

1 7 2+
Ja(o) < 5 (14 Vs ) P00 — Bayt™3 ol Nk
where
1 1\ 2 1 Ng-2 g 2
hz(t)—§<1+||V||%S >t9®—2qt el jal7.

A simple computation shows that h,(tp) = 0 for

o= [(1+IV]|yS7) g007" |0 }W

and hy(f) < 0 for any t > to,hp(t) > 0 for any 0 < t < to. Moreover, hy(t) achieves its
maximum at

to =

2

41] (1_|_ HVHMS—1> 0 - 2 N(7-2)—4

2 @7 0" .
N(g—2)

This implies
Jrs(0) = J1 (v1y) < ha(to) =0 (5.5)

t

o

for any r > % and s € [%, 1]. There exists 0 < f; < tg such that for any t € [0, 1],

N(q-2)

N{g-2)—4
N(q—Z)—4 2(1_HV*H%S> - N . I\Iil(q72)—2q
(—2)-4
hz(t) < 1 ( N(C] — 2) A+NG2 @ N . (5.6)

On the other hand, it follows from (3.5), the Gagliardo-Nirenberg inequality and the Holder
inequality that

1 Cn @4 e
L 2 Nyg 2
) 2 3 (1= 1Vl 7)) Ve 2492 ([ ufa)

N(p1—-2)

_ - 4
— 4PCy @ ( /Q |Vu|2dx> . (5.7)
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Define

29—N(9-2)
1 CN,K]® 4 N(7-2) 2p1-N(p1-2) N(p1-2)
E — 4 t 4

a1(t) ::5(1—||v_||g5*1)t . 5 —apCyy©

Np-2) |1 +-Np-2)  C G)Zq_hil(q_z) N(g—py)
p1— —Np1— q—p
— ¢ §<1—HVng5_l>f p2  bNgY ' en

q

2p1=N(p1=2) N(p1-2)
I 4

—apCn,p,©

Inviewof2 < p <2+ % < g < 2* and the definition of C:)V, there exist 0 < [; < Iy < I such
that ¢1(f) <Oforany 0 <t <Iljandt > 1, gi(t) >0forly <t <l and g1 (Im) = maxgl( ) >

0. Let

4

f = <0‘,BqCN,p1 (Pl — 2) (4 - N(pl — 2))> N(g—p1) ®¥
Cnglq—=2)(N(g—2) —4)

Then by a direct calculation, we have g7 (t) < 0 if and only if t > t,. Hence

= t).
max 81(t) = tg[}%)gl()

Note that for any t > tp,

29—N(q-2)

1 . Cng® 1 Ne-2) 21 -N(p1-2) N(py-2)
g1(t):§(1—HV—H§S )t—qt T —afCnp @ b

1 1 (g=pD(N=2) _29-N(g-2) N(p1-2)
:E(l—HV,H%S )t—aﬁcN,m@ @

B Cqu®w tMTz)

q
C —2)(N(g—2)—4 C _N(g— _

21(1—|!V_|\N51>t—< Ng(7—2)(N(g—2)—4) N,q)@)W.tN(ZZ)

2 2 q(p1—2)(4—N(p1—2)) q
=: g2(t). (5.8)

Now, we will determine the value of ®y. In fact, €1 (Im) = maxser+ g1(t) > 0 as long as
gz(tz) > (, that is,

4
1 _ xBqCn N(g-p1) _N-2 Cn, Cn
) ==(1—]V_ 51<"’”> @N—< —A,  +—1).0
galt) =5 (1= 1V-llys7) ey 2.2 S At
(ocﬁqCN,m)qqm
CN/ququ
>0,
where
(—2)(N(g—2)—4)
Apig

Hence, we take

Nz
N\
K
B
S
=
)
+
@)
Z
-
N———
I
7N
=
=
=
@)
z
=
N————
E
=

&y =5 (1 [V [lys™)
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Let
A <CN,q(q—2)(N(q—2) —4) Cw)
9P —=2)(4=N(p1—-2)) ¢
and \
_ -1\ Na-2-4
2(1—|[v-|lys™) o2

N(g—2)A

so that t;, > t; by the definition of Oy, maX;e(r, ) §2(t) = g2(tg) and

t) > t
maxgit) = max ()

N(q9-2)

2 (1= V-l s)] MR e
A4NG-2) @ N@G-2)-4 |

_(N(g—=2)-4)
4

N(q-2)

Set 7o = max {%, \ /%}, thenv, € S, g for any r > 7e, and
e

4
_ N(—2)—4
HV 2 <1 >2HV I3 <t 2 (1 IVl s )1 ol (59)
v = v = e .
% 2 77@ Hi g N(q_z)A
Moreover,
1
o <v_1> < <> <y (k). (5.10)
e} 1’@

Letu’ =v. ,u' = vy, and
Ke)

~ 1
Te = max{,f’@}.
to

Then the statement (i) holds by (5.5), (5.6), (5.9), (5.10).
(ii) holds by (5.8) and a direct calculation.
(iii) In view of J, s (u') < 0 for any 7y € I', o and the definition of ty, we have

IVY(0)II3 < tg < V(D)5
It then follows from (5.8) that

trél[gﬁ Jrs (r)’(t)) > 82 (tg)

N(g—2
— (-2)—
Ng-2 -4 [2(1 -Vl )] Moz

4

4
AT NG 2@ N2 2
N(g—2)

for any 7 € I', @, hence the first inequality in (iii) holds. We define a path  : [0,1] — S, ¢ by

U1 <<Tto+ (1 —T);@) x) .

Then v € I', g, and the second inequality in (iii) follows from (5.4). O

Nz

1
7)) : Q= R, X (Tto +(1- T)7®>
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Lemma 5.2. Assume (0 < © < @)V where @)V is given in Theorem 1.5. Let r > T, where Tg is defined

in Lemma 5.1. Then problem (5.1) admits a solution (A, uy) for almost every s € [%, 1]. Moreover,

there hold u,s > 0 and J, s (uys) = m,(©).
Proof. The proof is similar to the Lemma 3.3. We omit it here. ]
Lemma 5.3. For fixed ® > 0 the set of solutions u € S, g of (5.1) is bounded uniformly in s and r.

Proof. Since u is a solution of (5.1), we have

/ |Vu\2dx+/ Vuldx = s/ |u|‘7dx+sﬁ/ f(u)udx—/\/ lu|*dx.
QO Q O, Q, Q,
The Pohozaev identity implies

N -2 X 1 X 1 [ =, 5, 1 )
—_— dx + — ‘n)do + — %4 = Vusd
N Qr|Vu| X+ 55 ao,|vu| (x-n) o+ 55 o, (x)u +3 o, u“dx

- —% A ]u\zder;/Qr u|7dx + 5B /le-"(u)dx.
It then follows from B > 0 and (f2) that

1 2qy - L 20y . _1 )2
N/Qr|Vu| dx— 5 f 1P (e m)de — o [ (VV - x)udx

=28 [ i es [ (Bt pron)a

q—2 1/ 2 1/ 24 5(?2_‘7)/
> 5 (2 Qr|Vu\ dx—|—2 QrVu dx —m (@) ) +s 5 QrF(u)dx.

Using Gagliardo—-Nirenberg inequality, (3.5) and (iii) in Lemma 5.1, we have

-2 >N(P2—2)—4/ 2 o L . p2 —2
2p1—N(p1-2) w
2 Q,
Since2 < p; <2+ %, we can bound er |Vu|?dx uniformly in s and . O

Lemma 5.4. Assume 0 < © < @)V, where @V is given in Theorem 1.5, and let r > 7, where Tg is
defined in Lemma 5.1. Then the following hold:

(i) Equation (2.1) admits a solution (A, e, @) for every r > Tg such that u,g > 0 in Q).
(ii) Thereis 0 < ® < Oy such that
liminfA,@ >0 forany 0 <® < ©.
r—00
Proof. The proof of (i) is similar to that of Lemma 3.5, we omit it. As be consider H} (Q),) as

a subspace of H!(RYN) for every r > 0. In view of Lemma 5.3, there are Ag and ug € H!(RY)
such that, up to a subsequence,

U — g in H(RN) and li_>m Ao — Ae.
T oo
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Arguing by contradiction, we assume that Ag, < 0 for some sequence @, — 0. Let 6, be the
principal eigenvalue of —A with Dirichlet boundary condition in (), and let v, > 0 be the
corresponding normalized eigenfunction. Testing (2.1) with v,, it holds

(6, + )\r,®n)/ U, @,vrdx +/ Vu, @,vdx > 0.
Q, o,

In view of er u;@,vrdx > 0and 0, = r—26;, there holds

max V + A, 9, + r=26, > 0.
x€RN

Hence there exists C > 0 independent of n such that |[Ag,| < C for any n.
Case 1. There is subsequence denoted still by {®,} such that ug, = 0. We first claim that
there exists d, > 0 for any n such that

liminf su ut, dx > d,. 5.11
e B Jp(e rentt = e

Otherwise, the concentration compactness principle implies for every n that
U@, — 0in L'(RY) asr — oo, forall2 <t < 2%

By the diagonal principle, (2.1) and |A, @, | < 2C for large r, there exists r, — oo such that

/ |Vu,m@n|2dx <C
O,

for some C independent of n, contradicting (iii) in Lemma 5.1 for large n. As a consequence
(5.11) holds, and there is z, g, € Q, with |z, ¢,| — oo such that

d

2 n
U, o dx > —.
/B(Zf,@)n’]‘) "On o 2

Moreover, dist (z,0,,0();) — 00 as r — co by an argument similar to that in Lemma 3.7. Now,
for n fixed let v,(x) = Uy, (x+zr0,) for x € & := {x e RN : x + 2,9, € O, }. It follows
from Lemma 5.3 that there is v € H!(RN) with v # 0 such that v, — v. Observe that for every
¢ € CZ (RVN) there is r large such that ¢ (- — z,,9,) € C () due to dist (z,@,,90Q) — o as
r — oo. It follows that

/Q Vi, e,V (- —z9,)dx + /Q Vu,e,¢ (- —z19,) dx + Arp, /Q ure,9 (- — zr,9,) dx

= [ ur0, " 0,8 (- 210, dx+B [ fl1:0,)¢ (- ~ 210, dx. (512)

Using |z,@,| — o as r — oo, it follows that

‘\/(; Vuy,@n(l) ( - Z7’/®n) d'x

<[V (z0,)vpldx
Supp ¢
7

N
> / V| ¥dx
]RN\B ‘Zr,@)n‘
Fugul

—0 asr— oco.

< [lor[l.

¢
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Letting r — oo in (5.12), we get for every ¢ € C®°(RN) :

/RN Vo Vdx + e, /RN opdx — /RN 10]920dx + B /RN F(0)gdx.
Therefore v € H!(RN) is a weak solution of the equation
~Av+Ag,v = Bf(v)+ |07 % inRN

and
/]RN |Vo|?dx + Ag, /]RN v|2dx = ﬁ/]RNf(v)vdx—%/]RN |v|7dx.
The Pohozaev identity implies
2N IR|vyd+ /|v|dx ,B/ dx+/|v|dx
hence

Ae,

- lv|2dx

= ﬁ(Z\ZII\; 2)/ {NZN2F( ) — f(v)v] dx+—2N _quE’Z;]_Z) /]RN |v|Tdx

B(N—2) [ 2N 2N — (N - 2)
= N <N—2_p1>/RNF(v)dx+2Nq/nw|v|qu'

We have A, > 0 because of 2 < p; <2+ 5 < g < 2*, which is a contradiction.

Case 2. ug, # 0 for n large. Note that ug, satisfies
—Aug, + Vue, + Ao, e, = Bf (uo,) + |ue, " ue,.

If v, 0, == u;0, — Ue, satisfies

lim sup max /( r@ dx =0,
B

r—oo  z€RN z,1)

(5.13)

(5.14)

(5.15)

then the concentration compactness principle implies 1, e, — U@, in L'(RY) for any 2 < t <

2*. It then follows from (2.1) and (5.14) that

/Q,, |Vu,e, |2 dx +OnAre, = B /Qr f(ure,)ur0,dx + /Qr ur@, |L7 dx — /Q, Vu%@ndx

' 2
—>ﬁ/IRNf(u@n)ur,@ndx+/]RN lue, |" dx /]RN Vug dx

— /IRN |Vu®n|2dx—|—)\@n /IRN uéndx.

Using Ao, — A@, as r — oo, we further have
/ Vi, e |2dx+®n}\@ —>/ |Vue |2dx—|—}\@ / ué dx asr— oo.
Qr 'Yn n RN n n RN n
Using (5.16), (iii) in Lemma 5.1 and |Ag,| < C for large n, there holds

/]RN |Vug, |*dx — 0o asn — co.

(5.16)
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By (5.14) and the Pohozaev identity

N-2 2 1 74,2 1 2 Ao 2
N e |Vue, | dx+ﬁ/]RN Vu®ndx+§/IRN V(x)u@ndx—FT/]RN ug, dx

1
=2 Tax+p [ Flue,)dx.
o leonl T [ Fuo, )i

It holds that
0< 2=9)Ae, / u2, dx
2q RN "
(N—?-)q—?-N/ 2 1V oo (4 —=2)[[V]le
<~ 77
< 2Ng i |\Vue,|”dx + N 0, + 2 CH

— —00 asn — o0,

Therefore (5.15) cannot occur. Consequently there exist d, > 0 and z, 9, € Q) with |z, g, | — o

as r — oo such that
2
Ve dx > d,.
/B(z,,@n,n rOn !

Then 9,9, := v, (- + 2r0,) — Vo, # 0, and g, is a nonnegative solution of
~Av+Ag,v = Bf(v)v+ 9|7 %0  in RN

In fact, we have liminf, . dist (z,@,,0();) = oo by the Liouville theorem on the half space.
It follows from an argument similar to that of (5.13) that Ag, > O for large n, which is a
contradiction. O

Proof of Theorem 1.5. The proof is a direct consequence of Lemma 5.4 and Lemma 3.6. O

6 Proof of Theorem 1.9

In this section we assume that the assumptions of Theorem 1.9 hold. Define the functional
Z,: S0 — Rby

T, (u) = ;/Q |Vu\2dx+;/0 Vuzdx—zl*/Q |u|2*dx—,8/Q F(u)dx. (6.1)

Note that if u € S, is a critical point of Z, s, then there exists A € R such that (A, u) is a
solution of the equation

{Au +Vu+ A= |u* 2u+Bf(u), xcQ,
6.2)

/ lu|?dx = ©,u € H}(Q),), x € Q.
0,
Since 8 > 0,
1 1 7
> (1_1v -1 24, / 2
T, (u) > 5 <1 IV-lly S >/Or |Vu|*dx P < o |Vul dx)

N(p1—-2)

—N(p1-2)
_alBCN,m@ZPl e (/Q |Vu|2dx>

= Iy (1),
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where

1
2. 8%

2p1—N(p1-2) N(p1-2)
2

-1 2 2%
(1= lv-llys™) - £ — aBCy,,©®

N[ =

h(t) =

Consider

o~

1 1 ;
) =2 (1—||V_|[xS7!) - .
B0 =5 (1= IVllysT) - =

Note that ¢ admits a unique maximum at
~ 217
F= [(1 - ||V_||¥S‘1) 57} T

By a direct calculation, we obtain

Nz

N
2

B0 =5 (1= IVl s) st

Hence
' 2p1—N(p1-2) N(p1-2)
t 2

ib\(/t) > aﬁcN,Pl S

as long as

4

1 2p1—N(p1-2) N N 4-N(p;-2)

O = (e ) (1l ) ST,
N“ﬁcN,pl 2

Now, let 0 < ® < Oy be fixed, we obtain

2p1—N(p1-2) N(p1-2)
2

$(f) > apCn,, @

and El(ﬂ > 0. Inviewof2 < p; <2+ % < 2*, there exist 0 < R; < Tg < Ry such thatﬁl(t) <
0for0 <t < Ryand fort > Ry, hi(t) > 0for Ry <t < Ry, and hy(Te) = max;er+ h1(t) > 0.
Define

—~2
Vo = {u €S0 ||Vul? < To }

Let 6 be the principal eigenvalue of operator —A with Dirichlet boundary condition in (), and
let |Q)| be the volume of Q).

Lemma 6.1.

(i) Ifr < —VT@, then V, o = @.
(C]
(ii) If
N2
=2

0(1+[|V]xS7! -
Ve (C(+ VIS ap

7 > max —,
T® 20(1[5

then V, o # @ and
ére:= inf Z,(u) <0
MEV,,@
is attained at some interior point u, > 0 of ]7r,@. As a consequence, there exists a Lagrange
multiplier A, € R such that (Ar,u,) is a solution of (6.1). Moreover liminf, . A, > 0 holds
true.
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Proof. (i) The proof is similar to the Lemma 4.1. (ii) Let v; € S; @ be the positive normalized
eigenfunction corresponding to 6. Setting

2
9 1+ V 7571 B ) N(pp—2)+4

r@ = max — 2w1p (6.3)

Te

Now, we construct for r > rg a function u, € S, g such that u, € ]72 o and Z, (u,) < 0. By (6.3),
(4.3), (44),2<p2 <2+ % and a direct calculation, we have u, € V, g and

2/ Vi, > dx + = /Vude——/ it |* dx—oqﬁ/ |1, |P? dx

<> (1+ VIS ) 200 — a1

T’Q|T
< 0.

It then follows from the Gagliardo-Nirenberg inequality that

N(p1—-2)

1 _ 2p1—N(p1-2)
T (u) > 5 (1= V- llys™) /Qr|Vu|2dx—CN,pl,B®4 (/Qr|Vu|2dx>

2*
2
o - </ |Vu\2dx> : (6.4)
2¥.S7 \JO

As a consequence Z, is bounded from below in V. 0. By the Ekeland principle there exists a
sequence {u,,} C V, g such that

Tr(uny) = inf T(u), Zy(tns)|T,, .56 — 0 asn — oo (6.5)

MEVV,@
Consequently there exists u, € H(Q),) such that
U, — u,  in HY(Q)

and
Upy — Uy in Lk(Qr) forall2 <k < 2*. (6.6)

We claim now that the weak limit u#, does not vanish identically. Suppose by contradiction
that u, = 0. Since {u,,} is bounded in H'(Q),), up to a subsequence we have that | Vi, ||3 —
¢ € R. Using (f2), (6.5), (6.6), we have

(L) (uny), i) = / ’V”n,r‘z dx + / Vu%z,rdx - / ’”n,rlz* dx — .B/ f(thn,r )t rdx
Q, Q, Q, Q,
— 0,

hence

||”n,r 2* = ||V”nr||2 —

as well. Therefore, by the Sobolev inequality ¢ > S/ #, and we deduce that either £ = 0, or
¢>S%. Letus suppose at first that £ > SN/2, Since Z,(u,,) — ¢, < 0, we have that

0>e,0+o0(l) = Ir(unr)

/|Vunr] dx + - /Vunrdx /]un,] dx—ﬁ/ (uny)d

V4
= NHV”n,er +o(1) = N +o0(1),
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which is not possible. If instead ¢ = 0, we have ||u; ||+ — 0, ||V, |2 — 0 and F(uy,,) — O.
But then Z,(u,,) — 0 # €0, which gives again a contradiction. Thus, u, does not vanish
identically.

Since {uy,} is a bounded minimization sequence for Z,(uy)|s,, there exists {A,} C R
such that for every ¢ € H'(Q),),

/Q Vi, -V + /Q Viky, @ + At @ — Bf ()@ — ’”m’z*_z unr@ = 0(1)|l]| (6.7)

as n — oo, by the Lagrange multipliers rule. Choosing ¢ = u,,, we deduce that {A,} is
bounded as well, and hence up to a subsequence A,, — A, € IR. Moreover, passing to the limit
in (6.7) by weak convergence, we obtain

—Auy + Viy + Mty = |ue|* 72u, + Bf (1), x € Q.
Recalling that v, , = u,, —u, — 0in Hé(Qr), we know
IVttns 13 = 1 Vurll3 + | VoI5 +o(1).
By the Brézis-Lieb lemma [12], we have

= [Jur |3 + l[ows |3+ o0(1).

Moreover,
=2
V|5 < liminf || Vi, |3 < To
n—oo

that is, u, € ]7r,@. Note that

/ Vu2 dx —>/ Vuldx asn — o,
Q, ’ Qr

hence
||Unr||2* = ||an,r||% — 4

as well. Therefore, £ > S¢#, and we deduce that either £ = 0, or £ > S%. Let us suppose at
first that £ > SN/2. Since Z,(vy,r) — 0, we have that

0(1) = Z(vny)
2/ Vou,Pdx+ 5 /vadx 3 [ Jonsl dx=p [ Flond
2IV0ul3+0(1) = 1 +0(1)

N

which is not possible. If instead ¢ = 0, we have that u,, — u, in Hé (Qy), so Z,(u,) < 0.
Therefore u is an interior point of V, e because Z,(u) > hi(Te) > 0 for any u € 9V, g by
(6.4). The Lagrange multiplier theorem implies that there exists A, € R such that (A, uy) is a
solution of (6.1). Moreover,

x 2 5
/\rG):/ ]ur|2 dx—f—[%/ f(ur)uralx—z—*/Q |uy|? dx—Zﬁ/Q F(uy)dx — 21, (uy)

_ 2* / I, 2 dx+ﬂ/ (i, )uy — 2F(u,))dx — 21, (uy)
> —ZL(ur) = —2¢, 0. (6.8)
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It follows from the definition of ¢, that ¢, is nonincreasing with respect to r. Hence,
ere < €0 < 0forany r >rgand 0 < © < Qy. In view of (6.8), we have

IiminfA, > 0.
r—00
Finally, the strong maximum principle implies u, > 0.

Proof of Theorem 1.9. The proof is a direct consequence of Lemma 6.1 and Lemma 3.6. O

7 Proof of Theorem 1.10

In this subsection, we assume < 0 and the assumptions of Theorem 1.10 hold. Consider the
following equation

{Au +Vu+Au = |u* 2u+Bf(u), xcQ,

7.1
/ lu|?dx = ©,u € H{(Q),), x € Q. @D
Q,
For % <5 <1, we define the functional Z, s : S, — R by
Trs(u) = 1/ |Vu|2dx+1/ Vudx — i/ lu|? dx —,B/ F(u)dx. (7.2)
2 Jo, 2 Jo, 2% Ja, O,

Note that if u € S, @ is a critical point of Z,,, then there exists A € R such that (A,u) is a
solution of the equation

{Au +Vu4Au=slul> 2u+Bf(u), x€Q,
(7.3)

/Q lul?dx = ©,u € H}(Q),), x € Q).

Lemma 7.1. For any © > 0, there exist rg > 0 and u,ul e Sye,0 such that
(i) Z,s(u') <0 foranyr >rgands € [3,1],

N-2

IVl < (1= vl ™) © sE < || val|[
2 5 2

and N
1 1\ 2 N
Lo (W) < 5 (1= Iv-llys71) " s,
(ii) If u € S, g satisfies
N-2
1)z N
IVl = (1= |Iv-llys7) * 8%,
then there holds N
1 1\ 2 N
Tos(u) = — (1= [[V-lly $7) " st
(iii) Set
mrs(®) = inf sup Zps(y(t))
1€le tefo,1]
with

Fro={7€C(0.1],S,0) : 7(0) =" 4(1) = u'}.
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Then

oz

N
2

1 .
N (= IVllys7) 7 8% < rs(©) < hho),
where h(hg) = max;cr+ h(t), the function h : R* — R being defined by

1
2

2 er . |07

P NP1 2) (P%*Z) 1

h(t) = (1—|—||VH%S_1)t29®—ucﬁCN,p1 Ll BT

Here 0 is the principal eigenvalue of —A with Dirichlet boundary conditions in O, and |Q)| is the
volume of Q).

Proof. (i) By the Holder inequality,
| @ dr = 0% -0 (7.4)

For x € Q% and t > 0, define v;(x) := t%}l(tx). Using (3.3), (7.4), (3.5) and % < s < 1, it holds
1 _ Pl N( Pl 2) N(p1-2)

Ty, (@) < 5 (1+IV]xS7) #60 — apCy,, @207+ 1

5 '12* tN(z;—z) @% ‘

—: h(t). (7.5)

and B < 0 there exist 0 < hg < tp such that

Note that since 2 < p; < Z—i-% <q =
h(t) > 0forany 0 < t < tp and h (hg) = max;cg+ h(t). As

h (tp) = 0,h(t) < 0 for any t > t,
a consequence, there holds

q
t)

Ts (04) = Ty o (0) <h (o) =0 (7.6)

for any r > % and s € [%, 1]. Moreover, there exists 0 < #; < hg such that

1 1 % N
h(t) < (1=fv-flysT) s? (7.7)

for t € [0,f1]. On the other hand, it follows from the Sobolev inequality and the Holder
inequality that

2%

1 _ 1 z
Tow) = 5 (1-V-llys 1)/0r|Vu|2dx—2*'SZ; (/Qr]VuFdx) . (78)
Define , .
(1 _ -1\, z
gl =5 (1 IVollyst) 1= =t
and

N-2

P= (1 — V-l 5*1) 7 sy,

it is easy to see that g is increasing on (0, f) and decreasing on (,00), and

~ 1 N\ N
gf) =~ (1-IIV-flys™) " s
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For r > g := max { , \/@} we have v1 € S, and
"®

2 _
Vo, 3= (&) IVerl < (1-Iv-ys7) 5%, 79)
Moreover, there holds
T, s <U%> <h (%) <h(h). (7.10)
Setting u” = v%, ul = vy, and
ro = max {tlo,’f@} . (7.11)

Since (7.6), (7.7), (7.8) and (7.9), then (i) holds.
(ii) By (7.8) and a direct calculation, (ii) holds.
(iii) Since Zys (u') < 0 for any 7 € I'; o, we have

IV ()3 << V(D)3
It then follows from (7.8) that

1

N
Zoo(v() > g(f) = — (1—|[V_|[xS!)* 82
max Tr.(7(t) 2 () = 5 (1= [V-[ly571) " s

for any 7 € T, @, hence the first inequality in (iii) holds. Now we define a path y € T, ¢ by

N
2 1

v ((Tto +(1- T)N) x>
Te

for T € [0,1] and x € Q,. Then by (7.5) we have 1,5(®) < h(hg), where h(hg) =
max;cr+ h(t). Note that hg is independent of r and s. O

(1) (x) = (no . ﬂ%)

Using Proposition 3.2 to Z, 5, it follows that

2 dx.

A(u) = ;/Q ]Vu]zdx—l—;/ﬂ V(x)uzdx—ﬁ/Q F(u)dx and B(u)= 21*/0 |u

1

Hence, for almost every s € [Q,

fying

1], there exists a bounded Palais-Smale sequence {u,} satis-

Tos (un) = 1 5(®)  and I (uy) — 0.

Tu n Sr,@
Next, we are devoted to proving compactness.

N
2

S22, where

2~

Lemma 7.2. If B < 0 and the assumptions of Theorem 1.10 hold, then i, s(©) <
(= s*ﬁ.

Proof. Let U, be defined by U.(x) := (m)¥
centered in the origin, with concentration parameter ¢ > 0, defined in (1.3)). Let also ¢ €
CZ(€)) be a radial cut-off function with ¢ = 1in Bj, ¢ = 0 in BS, and ¢ radially decreasing.
We define

(up to a scalar factor, U, is the bubble

e (x)
|22

ue(x) == p(x)U(x), and v¢(x):=VO
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Notice that u, € C®(Q),), and v, € S, 9. Let us recall the following useful estimates (see
[27, Lemma A.1]):

[Vuell3 = Ky + O (SN’Z) , (7.12)
Ky +0(N), if N >4,
Jug]z = <2 O 2) , (7.13)
Ko +0 (¢%), ifN=3,
&Kz +0 (eN72), if N> 5,
lue|5 = { we?|loge| +0 (€7), if N =4, (7.14)
@ ([3g(r)dr)e+0 (), ifN=3,
lue]| = eN—"270 (K4 ) <8<N—2>q—N>)
if N>4and g€ (2,2"), andif N=3and g € (3,6). (7.15)

as ¢ — 0. Since U, is extremal for the Sobolev inequality, we have that % = S. Therefore,
using % < s <1, we have

t2 12 2 .
T s(tve) < —/ | Vo [*dx + —/ Voidx — S—/ 0e|* dx — apthr / |ve[Prdx
’ 2 Jo, 2 Jo, 2* Jo, Ja,
hs(t)

Clearly, h3(t) > 0 for t > 0 small and h3(t) — —co as t — oo, so h3(t) attains its maximum at
some t, > 0 with h}(t;) = 0. Then, observing that the function

£ ) t2 ) st? .
t— —/ |V dx+—/ vadx——/ | Ve | dx—oc,Btpl/ |ve|Prdx
2 Jo, 2 Jo, 2* Jo, 0

T

is increasing on the interval of

1
—2*aB(p1 = 2)||vellpy | 777
O’ * 2% .
$(2* = 2)|ve |2+

This fact combined with (7.12)-(7.15) implies that there exist J;,J, > 0, independent of ¢ > 0,
such that

0 <te < 0.

Moreover, observing that the function

2 2, st 2
t— —/ |Voe|“dx — —/ |ve|* dx
2 Jo, 2% Jo,

_1
o (1728
4 2* .
s|lvell3-

is increasing on the interval of
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Using (7.12)—(7.15) and the fact that % = S, if N = 3, the same estimate holds eventually,
using ||u¢|3. = Ka + O(?) instead of ||u||3. = Kz + O(eN). Therefore, the maximum level is

t2 o | B 2 st? 2 P
hi(te) < £||Voe|z + = / Vuzdx — / |ve|* dx — aft; / |0 |Prdx
2 2 Jo, 2* Ja, Q,

2% 2

= 2 - iy
1 <vae”%>2 2 + er Vozdx <||vve||%>2 : —"‘5”%”51 <||VU€||%>2 :

= N7z \ el 2 \slo sloell2:
N 2 %
L1 (I o Vi (e IVl )
2 2 *
No=z \ el 057 luell5: uell3
P1
(o= Ve Jluel3 )" @%H%H;@i
_ ok AWVuelly Jluelly . o
§2¥-2 ||”8H2* H”SHZ HMSHZ
B N 1% _4
1 Kro@ )t BRVW v
= Nes | Kt O 2 E
.
_ P Nu Hiﬂl.M
P1 ellp p1-2*
sr [
1 N _
=5 10 (N2) + Cilluel3 + Cauel
Nsz7-2
Nsz-2

as ¢ — 0, where { = s*ﬁ and C; > 0, C; > 0 because of B < 0. In the penultimate equal
sign, we used

N N N
LK+0(E2) 1" 1 (K N-2)|? _ 52 N-2
N | Ko@) _N[K2+O<€ )} = +o(7)
This completes the proof. O

Lemma 7.3. For any ® > 0, let r > rg, where rg is defined in Lemma 7.1. Then problem (7.3) has a
solution (Ays, tiys) for almost every s € [%,1]. Moreover, uys > 0 and Ly (uy,s) = fity,5(®).

Proof. Based on the previous analysis, we know that, for almost every s € [%, 1], there exists a
bounded Palais-Smale sequence {u,} satisfying

Tos (un) = 7i;5(®)  and I (uy) — 0. (7.16)

Tun Sr,@

Then

/\n _ _% </Qr ‘vun|2dx+/0r V(x)u%ldx—‘B/ny(un)undx—S/Qr |un|2* dx>

is bounded and
I} s (up) + Autty —» 0 in H1(Q). (7.17)
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Moreover, since {u,} is a bounded Palais-Smale sequence, there exist 1y € H} (
such that, up to a subsequence,

A — A In R,
U, = up in Hé(Qr),
u, — ug in LY(Q,) forall 2 < t < 2%,

where 1 satisfies

—Aug+ Vug+ Aug = s |u0\2*_2 up+ Bf(up) inQ,
uo € HY (), [, |uol* dx = ©.

Using (7.17), we have

I;S(un)uo—f—/\n/ uyupdx — 0 asn — oo
, o,

and
I () hy +Ay©® — 0 as n — oo.
Note that
r}g{}o o, V(x)utdx = /, V(x)ujdx,
nli_r)glo/oyf(un)undx: /Qrf(”U)”de/
nlgrgo/nrf(un)uodx: /ny(uo)uodx.

O,)and A € R

(7.18)

Now, we show that u, — 1 in H& (Q)). Firstly, note that the weak limit uy does not vanish
identically. Suppose by contradiction that 1y = 0. Since {u,} is bounded in H!(Q),), up to a

subsequence we have that | Vu,|3 — ¢ € R. Using (f2), (7.17), (7.18), we have

<I;,S(un),un> :/Q, |Vun]2dx—|—/ﬂr Vufldx—s/ﬂrmn\z* dx—,B/Qrf(un)undx

— 0,

hence
sllunllz: = |Vl — ¢

as well. Therefore, ¢ > s_zl*Sézl*, and we deduce that either ¢ = 0, or £ > s 7258Y. Let us

suppose at first that £ > s~738% . Since Lis(yn) — M, 5(0) < %5% we have that

%sg > fi1y,5(®) < Ty 5(1tn) + 0(1)

2/ (Vi[> dx + = /Vuzdx——/ 1, |* dx—,B/

*>S 2*227
N — N’

which is not possible. If instead ¢ = 0, we have ||u,

(un)d

2 — 0, ||[Vuul||2 — 0 and F(u,) — 0.

But then I, s(u,) — 0 # i, 5(®), which gives again a contradiction. Thus, u, does not vanish

identically.
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Since {uy,} is a bounded minimization sequence for Z,(uy,)|s,,, there exists {A,} C R
such that for every ¢ € H'(Q),),

| Vit Vot [ Vitnsg+ At = B (0n,)g = s lns P wnrp = o(D)lg] (719

as n — oo, by the Lagrange multipliers rule. Choosing ¢ = u,,, we deduce that {A,} is
bounded as well, and hence up to a subsequence A, — A, € R. Moreover, passing to the limit
in (7.19) by weak convergence, we obtain

—Auy + Vuy + Mty = s|luy|* "2u, + Bf(uy), x € Q.
Recalling that v, = u,, —u, — 0in H&(Qr), we know
IVt 13 = IV r]|3 + |V 0n, 3+ 0(1).
By the Brézis-Lieb lemma [12], we have

2 4 [|onrl3 4 o(1).

Note that
/ Vo2 dx —0 asn— oo,
Q '

hence
.
5||Unr||%* = HVZJMH% =/

as well. Therefore, by the Sobolev inequality ¢ > s~ 7 SY7 2* and we deduce that either ¢ = 0,
or { > s 725%. Letus suppose at first that £ > s ~725%. Since Trs(uy) — 1, 5(0©) < I%Sg
we have that

%S% > 77~’lr,s(®) — er(vn) +0(1)

2/ ]an] dx + - /szdx——/ o |* dx—,B/ (v,)d

— > rFa_

N R

which is not possible. If instead ¢ = 0, we have that u,, — u, in H} (Q)), so Z,(u,) > 0.
Similar to the proof of Lemma 3.3, we also obtain that u,; > 0. O

In order to obtain a solution of (7.1), we also need to prove a uniform estimate for the
solutions of (7.3) established in Lemma 7.3. Similar to the proof of Lemma 3.4 and Lemma
3.5, we obtain the following lemmas.

Lemma 7.4. If (A,u) € R x S, ¢ is a solution of (7.3) established in Lemma 7.3 for some r and s,
then

4N 28 —2 1, =~ 2% -2

2

< — o o ’
|, 1vukix < ot (B 2hthe) + 0 (1P + 2211 ) )

r

where the constant h(hg) is defined in (iii) of Lemma 7.1 and is independent of r and s.

Lemma 7.5. For every ® > 0, problem (7.3) has a solution (A, u,) provided r > rg where rg is as in
Lemma 7.1. Moreover, u, > 0 in Q,.

Proof of Theorem 1.10. The proof is an immediate consequence of Lemmas 7.5 and 3.6. O
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8 Proof of Theorem 1.11

In this subsection, we assume B > 0 and the assumptions of Theorem 1.10 hold. Consider the
following equation

—Au+Vu+Au=ul* 2u+Bf(u), xeQ,
8.1
/Q ul2dx = ©,u € Hi(Q)), x € Q. ®D
For % <'s <1, we define the functional 7,5 : Sy — R by
Trs(u) = 1/ |Vu\2dx+1/ Vu2dx—i/ lu|?dx —s / F(u)dx (8.2)
() =3 J, 2 Jo, > Jo, B o, . :

Note that if u € S, is a critical point of 7,5, then there exists A € R such that (A, u) is a
solution of the equation

{Au + Vu+ Au = slu|* 2u+spf(u), xe€Q,
(8.3)

/Q lu|?dx = ©,u € H}(Q),), x € Q).

Lemma 8.1. For any © > 0, there exist 7g > 0 and u°,u' € S, o such that
Y o

(i) Forr > 7 and s € [%,1] we have J,s (u*) < 0 and

~ NP2 | 2F—2/1\72
Trs (”O)<A 72 <1—||V_H%S 1>2 2|: 5 (2*> ],

where 42 —2) .
A=5% - =
2 [N<pl—z><4—N<m—z>> +z*]
Moreover,
2 2
1 2¥-2 -1 ¥=2
v < (1- IV-1ly S ) HV”1H2 N (1- IV-Ily s ) |
2 2% A ’ 2 2% A

(ii) If u € S, @ satisfies

2

,_ [y s )]
IVullz = = :

2% A
then there holds

2%

o NS | 2F—2 /1\7=
Fralt) 2 A7 (1= V|l ys7')° { 2 <2) ]

(iii) Let
iirs(®) = inf sup Jps(y(t)),
v€l 0 tG[O,l]
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where
Fro = {7 €C([01],5,0): 7(0) = u, (1) =u'}.
Then
N 2o 1\ P2
~ 2%-2
(@) = A2 (1= ||V |ly s7) { : (y)
and
A(I(z*f)n
. _ 0(1+|V MS‘l N(2*—2)-4 .
N(2*—2)—2.2*
. N2F-2)—+4

where 0 is the principal eigenvalue of —A with Dirichlet boundary condition in ()

Proof. (i) By the Holder inequality, we know

/ﬁmuwwxz@%- (8.4)
@)

For x € O); and t > 0, define v(x) := t%m(tx). Using (5.2), (8.4), (4.4) and 5 < s <1, it holds

1 N i
= %(t)’ (8.5)
where
7 _ 1 1\ 2 1 ner-z pr 2-2%
)=} (14 1V1y57) 00— Lot e

A simple computation shows that 1 (fy) = 0 for

o= [(1+IVIys™) 20007 |0 |

;
2% —2)—4

and hy(t) < 0 for any t > to,ﬁz(t) > 0 for any 0 < t < ty. Moreover, hy(t) achieves its

maximum at

o 4. 0% (1 + HV“gg%) 9@% ; v NGF2—4
°- N(2"-2) = '

This implies
Trs(v1,) = ]%,s(vto) < hy(to) =0 (8.6)

forany r > L and s € [3,1]. There exists 0 < t; < tg such that for any t € [0, 1]

a(t) < A7 (1—||V Iy S~ ) [2*22<1>“]. (8.7)

2*
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On the other hand, it follows from (3.5) that

2*
1 o 1 2 o 1 2 2
Toslw) = 5 (1= V- Iy S )/erw - (/Qy|Vu] dx>
N(p1-2)

—N(p1-2)
_aﬁcN%@z"” e ( /Q |w|2dx>

Define
A 1 1 1 2% 2p1—N(p1-2) N(p1-2)
But) = 5 (1 IVely 7)1 = o —rt® —apCyp@ e
N(p1-2) |1 4—N(p;—2) 1 2.2%—N(p1—-2)
=t S (Ve s e e
2 2 2*57

2p1—N(p1—2) N(p;-2)

— DC,BCN,pl@ 1 14

Inviewof 2 < p < 2+ % < g < 2* and the definition of C:)V, thereexist 0 < [1 < Iy < Ip
such that ¢1(t) < Oforany 0 < t < lyand t > I, g1(t) > 0 forj <t < I and g3 (Im) =
max;cr+ g1(t) > 0. Let

4
2% ¥ N 2]
b (*BCunSTN(p = 2) (3= N(p1 =2)) \ 0 oy
42" —2)
Then by a direct calculation, we have g/ (t) < 0 if and only if t > t,. Hence

max ¢1(t) = max ¢y(t).
teR* 1() tG[tz,oo)gl()

Note that for any t > t5,

. 1 1 1 2% 2p1—N(p1—2) N(p;-2)
at) =5 (1=v-|lys )t—Z*‘SZZ*tz — wBCy,, @

1 1 2p1—N(p1-2) N(p1-2) 1 2%

_§<1—y|v,y|%s )t—ocﬁCN,m@ T
4(2% —2 22 NG 2) NGpy-2)

F Y (T AN ) P— Da s

2 : STN(p1—2)(4—N(p1—2))

1 2*

_ 2* .S%tz

1 _ o 4(2% —2) 17 »
> (1—-||V_[[xS ) t=5 — | t2
=2 < V=Ily ) ’ [N(pl —2)(4— N(p1 —2)) t o
= &) (58)

Now, we will determine the value of ®y. In fact, $1 (Iy1) = max;er+ §1(t) > 0 as long as



Normalized solutions for Schrodinger equations with potential and general nonlinearities

g\z(tz) > 0, that is,

R 1 _ 2 42" -2) L5
t)==(1— ||V |[[xS') =5 > | B
fat) = 5 (1= IV-lly s ) =5 ¥ | i s+ 5| 6
4
2% 22%=N(p1-2) _ _
1 -1 D‘ﬁCNPlS2 W
_ 1 APENpio ° TN 2
3 (=) (25 o
2% %
2" 2% —N(p1— * _ _
_s% (A,,1+21*> (W) L @mEGa
p1
>0,
where 42" —2)
Ar;]_

- N(p1—2)(4-N(p1-2)
Hence, we take

2[2-2* —N(py ~2)]

4 .
_ DCIBCN’ 527 2p1—N(p1-2) 527 - .
®V:<A:]l 5o <1_HVngS 1) (2"Ap, +1)

Let

_|_7

A_c % 4(2% —2) 1 B (1_Hv_Hgsf1> ¥
A=s [N(Pl—Z)(4—N(p1—2)) 2*}'%{ ] ,

so that t;, > t, by the definition of Ay, maX;e(r, ) 82(t) = &2(tg) and

2 [on _ 2
mpch() 2 max 8a() = A7+ (1 V-l 7 {2 (=) }

teERT EREES) 2 2%

Set 7o = max {%, \ /%}, thenv, € S,p for any r > 7, and
S 1’@

_2

2 2 1 Vo|ys )]
1

oo, - (1) VV s )
)

o |2 2*A

Tros (v) <h <1> <h(t).
ey }"@

~ 1
re = max{,?@}.
to

Then the statement (i) holds by (8.6), (8.7), (8.9), (8.10).
(ii) holds by (8.8) and a direct calculation.
(iii) In view of J, ¢ (ul) < 0 for any 7 € I', @ and the definition of t;, we have

Moreover,

Letu’ = v, ,u! = vy, and
e}

IV (0)I3 < tg < V(D)3

(2*-2)2p1 —N(p1-2)]

45

(8.10)
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It then follows from (8.8) that

2 -2 (1

for any v € T, @, hence the first inequality in (iii) holds. We define a path v : [0,1] — S, by

N
1 \? 1
) : Q) - R, x+— (Tt0+(1—f)~ > vl<<rto+(1—r)~> x).
roe re
Then 7y € T, g, and the second inequality in (iii) follows from (8.5). O

Using Proposition 3.2 to Tr,s; it follows that

2/ VulPdx + = / yuldx and B(u 2*/ \u|2dx+ﬁ/

Hence, for almost every s € [%, 1] , there exists a bounded Palais-Smale sequence {u,} satis-
tying

— 0.

‘-77//5 (un> - ﬁrﬁ(@) and k7”’/5 (un> Tun SV,@

Similar to the proof of Lemmas 7.2 and 7.3, we have the following lemmas.

N
2

Lemma 8.2. If B > 0 and the assumptions of Theorem 1.11 hold, then i, s(©) < %S

C = Siﬁ

, where

Z~

Lemma 8.3. Assume (0 < ©® < @v where @V is given in Theorem 1.11, let r > rg, where rg is defined

in Lemma 8.1. Then problem (8.3) has a solution (Ays, 1) for almost every s € [3,1]. Moreover,

Ups > 0and Zf,s (ur,s) = 7717,5<®)'

In order to obtain a solution of (8.1), we also need to prove a uniform estimate for the
solutions of (8.3) established in Lemma 8.3.

Lemma 8.4. For fixed ©® > 0 the set of solutions u € S, @ of (8.3) is bounded uniformly in s and r.

Proof. Since u is a solution of (8.3), we have

/ |vu|2dx+/ Vuzdx:s/ |u|2*dx+s/3/ f(u)udx—/\/ ulPdx.
Q, Qy Qy Q, Q,

The Pohozaev identity implies

N-2

TN ]Vu| (x-n)do + ——

~ 1
|Vu |2dx—|— V(x)u2+f/ Vuldx
o, 2 Jo,

2N 2N

A 2 o

- u dx+—/ ul®dx+s / F(u)dx
Zerl o erl ﬁQy

where n denotes the outward unit normal vector on 9(),. It then follows from B > 0 and (f2)
that

/ |Vul?dx — — |Vu|2(x -n)do — % (VV - x)uldx

gz* ( / Vul2dx + - /Vuzdx—mrs((@))—I—sﬁ(mz_z*)/rlf(u)dx.
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Using Gagliardo-Nirenberg inequality, (3.5) and (iii) in Lemma 8.1, we have

2 -2 N(py—2) —4 5 1 pr—2
> 247" —O( — x|l .
3 s(©) > =P (VP = SV e+ 2V
% 2 N(p1-2)
— 2p1—N(p1—-2
# MR ey, 0 (| vubar)
2 0,
Since 2 < p; < 2+ 3, we can bound er |Vu|?dx uniformly in s and 7. O

Lemma 8.5. Assume 0 < ® < C:)V, where C:)V is given in Theorem 1.11, and let r > T, where Tg is
defined in Lemma 8.1. Then equation (8.3) admits a solution (A, @, u,@) for every r > ¥ such that
ure > 0in Q.

Proof. The proof of lemma is similar to the Lemma 7.5.

Proof of Theorem 1.11. The proof is an immediate consequence of Lemmas 8.5 and 3.6. O

9 Mass critical case

9.1 Proof of Theorem 1.12

This subsection considers the case of p; = 2+ &, so we need to modify the proof of Theo-
rem 1.5.

Lemma 9.1. For 0 < ® < @y where Oy is defined in Theorem 1.12, there exist 1@ > 0 and
u®, ut € S, o such that

(i) Forr > g and s € [%,1] we have ], (u') < 0 and

N(q-2)

N(g—2)—4 4

(N(7—2) =4) (1= | V- ||y $71 — 20pCnOF ) 2 N
29—N(q9-2) '

]’/5 (MO) < N(q—2)

2[N(q —2)]¥a=- Cng® 3
Moreover,
4
T I A S 1 2\ a0y on] NGz
HVLL Hz < [N(Q—Z)CN,q (1 HV—HgS ZDCIBCN@N>@ 1 ]
and
4
2 29 - 2 q(N-2)-2N | N(g-2)—4
1 . B 1
HVu HZ > [N(q ~2)Cny (1 IV-lly$ ZaﬁCNG)N) e 1 }
(ii) Ifu € S, satisfies
4
2 2 (N-2)-2N | N(3-2)—4
2 q —1 2 q(N-2)-2N
= |/ (1—-||V- )
| Vul|5 [N(q —2)Cs ( | ||¥ S oc[%CNQN) ® 1 } )

then there holds
1 2 Nmﬁ NG2a
(N(g=2) =4) (1= |V ||y § ' —2apCr@} ) ’ ] T
%2 -

]I’,S(u> 2 N(q—Z)
2[N(q —2)]¥a2+ Cnqg©@ 1
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(iii) Let
mys(®) = inf sup J.s(y(t)),
T€lv0 1e0,1)
where
Tve = {7€C(0,1],5,0) : 7(0) = u’, 4(1) = u' }.
Then
2\ W2 S
(N(g—2)—4) (1 |[V-|ly S —20pCy@F ) 2y T
mra(®) 2 NG 2NGD)
2[N(q —2)| N2 Cng®@ 4
and
N2
Loy g (01 VIS T I
(@) < 22) 4( ( NG—2) ) (49) 7T Q| Vo T @ N2+

where 8 is the principal eigenvalue of —A with Dirichlet boundary condition in ().

Proof. We only need to modify the proof of Lemma 5.1. There exists 0 < t; < tg such that for
any t € [0,t],

(N(g—2)—4) (1= V-] y §7' — 20pCy@F ) ™™
]’lz(t) < 2

—2

N(q-2)
2[N(g - 2)] 73
On the other hand, it follows from (3.5), the Gagliardo-Nirenberg inequality and the Holder
inequality that

29— N(

4
NG-2)14
2q
— 4“)] . (9.1)
Ny

e ll_HvzHgs_l—wﬁCN@% ||wy|%—w|lvun§“ L
Define
(1) i= [1 — IVl 7 —ucﬁCN®z2v] - Cwﬁq”tH
and

ty = [zq
8 N ([1 - 2)CN,q
it is easy to see that g is increasing on (0, t;) and decreasing on (tg, c0), and

4
q(NZ)ZN:| N(q-2)—4
e a—

7

(1= Iv-]ly s~ —20pcy0F ) ©

Ng2)
(N(g=2) = 4) (1= |[V_ ||y §~' — 2apCy@F ) ™ 7
81(tg) = —
2[N(g —2)] N2

Set 7o = max {%, \ /%}, thenv. € S, g for any r > 7, and
&S V@

2 1 2 )
= (5 ) 190l
2 (€]

s
N(g—2)Cnyq

4

N(G-2)—4
2q
29—N(q-2) :
P

Cng©

o

e

4
q(N—2)—2N :| N(—2)—4

<t = (1= v-|lys7" —20pcn0F ) @ 9.3)
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Then the statement (i) holds by (5.5), (9.1), (5.9), (9.3).
(ii) holds by (9.2) and a direct calculation.
(iii) In view of J, s (u') < 0 for any y € I, o and the definition of ), we have

IV (0)I3 < tg < [V (D)3
It then follows from (9.2) that

max J;s(v(t)) > g1 (tg)

tefo1] "’
-1 3\ T N7
 (NGg-2)-9) (1-\\1/,”%5 —2,xﬁcN@N) 2
- N(g—2) 27-N(-2)
2[N(q —2)]Na-2- Cng® 1

for any v € T, g, hence the first inequality in (iii) holds. We define a path 7 : [0,1] — S, ¢ by

Nz

y(t): Q) = R, X <Tt0 +(1— T);@) o (<Tt0 +(1— T)~1> x) .

re
Then 7 € I', g, and the second inequality in (iii) follows from (5.4). O
Lemma 9.2. For fixed ® > 0 the set of solutions u € S, g of (5.1) is bounded uniformly in s and r.

Proof. We only need to modify the proof of Lemma 5.3. Using the Gagliardo—Nirenberg in-
equality, (3.5) and (iii) in Lemma 5.1, we have

g-2 o [N(p2—2) -4 sap(q—p2) z/ 2
7 mr,s(®)_[ AN 5 CNON Qr]Vu| dx

1 ]92—2
-0 (VY sl + 22V ).

4
Since 0 < ® < Oy, we can bound er |Vu|*dx uniformly in s and . O
Proof of Theorem 1.12. The proof is an immediate consequence of Lemmas 5.4 and 3.6. O

9.2 Proof of Theorem 1.13
Firstly, we modify the proof of Lemma 3.1. Using (3.3), (3.4), (3.5) and % < s <1,itholds

N(g-2) ¢

1 _ 2 1 q 2—q
I, (o) §§<1+HVH%S 1—2a,BCN®N>t29®—2qt el |az

=: h(t).

Note that since 2+ 5 < g < 2* and B < 0, there exist 0 < Tg < to such that h(tg) = 0,h(t) <0
for any t > to, h(t) > 0 for any 0 < t < tp and h(Te) = max;cr+ h(t).

Lemma 9.3. Let (Ao, u,@) be the solution of (1.1) from Lemma 3.5. If ||\7+H% < 2S, then there
exists © > 0 such that
1irr_1>inf/\r,@ >0 for0<O<0.
r—00
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Proof. We only need to modify the proof of Lemma 3.7. It follows from (3.5), (3.27), (3.28),
(329), (f2) and 2+ & < q < 2 that

1.1 A@/ ugdx < (N—2)q—2N_ﬁ(q—p2)thN@Izv/ |Vue|* dx
q RN RN

2 2Ng q
Vle g, (@=21Vle
+ N O+ 2 G

— —o0 as® — 0,
since0<®<@v. ]

Proof of Theorem 1.13. The proof is an immediate consequence of Lemmas 3.5, 3.6 and 9.3. [

9.3 Proof of Theorem 1.14

Similarly, we only need to modify the proof of Theorem 1.4. Since > 0, it follows from the
Gagliardo-Nirenberg inequality and the Holder inequality that

1 1 N 4
I(u) = E/Q |Vu|2dx—|—§/0 V(x)uzdx—2N+4/Q |u|2+Ndx—ﬁ/Q F(u)dx

1 _ N(‘N(:)I%I
> _ — V 1_7 / \V 2
(1 H 7H12/S N ) 7’ I/l| dx

N(p1-2)

—aﬁCN,pl®72pl’lfpl’2> < / |Vu|2dx>
Q,

= hy(t),

where

1 _ NCyOF 2p1-N(p1-2) N(p;-2)
h(t) =:z<l_”v—”2’5 1—NN+2> N

In view of 2 < p; < 2+ %, there exists Tp > 0 such that h;(t) < 0 for 0 < t < Te and
h1(t) > 0 fort > Tp.

Proof of Theorem 1.14. The proof is a direct consequence of Lemma 4.1 and Lemma 3.6. ]

10 Final comments

Some similar result (Theorems 1.3, 1.4, 1.5, but there are subtle changes in the assumptions)
can be proved for the following class of problem

—Au+V(x)u+ Au=w(u) + BlulPu, x€Q,
/ lul?dx = ©,u € H(Q), x e,
0

where Q) C RV is either all of RN or a bounded smooth convex domain, N > 3,2 < p<2+ %,
the mass ® > 0 and the parameter € R are prescribed. Nonlinearity w satisfies:

(W1) w € CY(R,R) and w is odd.

(W) There exists some (p1, p2) € R% satisfying 2+ 5 < p2 < p1 < 2* such that

W (T) < w(t)T < pIW(T) with W(t) = /0 " w(t)dt.
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