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1 Introduction

Systems of three second-order ordinary differential equations emerge naturally from the ap-
plication of Newton’s laws in modeling three body interaction: each equation represents the
acceleration of a body in response to the forces exerted by the other two bodies. Such systems
have a vital role in modeling problems of mechanics and oscillations.

In this paper, we investigate the interval of the existence of (strictly) positive solutions, i.e.
we determine real positive τ for which at least one positive solution exists, for the following
system of nonlinear second-order differential equations

x′′i (t) + fi(t, x1(t), x2(t), x3(t)) = 0, t ∈ (0, τ), i = 1, 2, 3, (1.1)

coupled with nonlocal boundary conditions

xi(0) = φi[xi] + ai, xi(τ) = ψi[xi] + bi, (1.2)
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where ai, bi ≥ 0, fi : [0, τ] × [0,+∞)3 → [0,+∞) are continuous, φi[x] =
∫ τ

0 x(t)dΦi(t) and
ψi[x] =

∫ τ
0 x(t)dΨi(t) are linear functionals defined via Riemann–Stieltjes integrals, where

Φi, Ψi : [0, τ] → R are functions of bounded variation.
We write φi[Id] and φi[τ] to denote φi applied to the identity function and constant func-

tion with value τ, respectively. The notation |A| denotes the determinant of a square matrix
A. Throughout the paper, we assume that

(A1) 0 ≤ φi[Id], 0 ≤ φi[τ − Id] ≤ τ and 0 ≤ ψi[τ − Id], 0 ≤ ψi[Id] ≤ τ,

(A2) 0 < Di =

∣∣∣∣τ − φi[τ − Id] −φi[Id]
−ψi[τ − Id] τ − ψi[Id]

∣∣∣∣,
are valid for every i = 1, 2, 3.

By a positive solution of problem (1.1), (1.2) we understand (x1, x2, x3) ∈
(
C2[0, τ]

)3, which
satisfies system of differential equations (1.1), boundary conditions (1.2) and positive coexis-
tence condition, i.e. xi(t) > 0 for all t ∈ (0, τ) and every i = 1, 2, 3.

We do not assume φi[xi] ≥ 0 and ψi[xi] ≥ 0 for all xi ≥ 0, but we allow dΦi and dΨi to
be signed measures. For details on signed measure and Riemann–Stieltjes integrals we refer
reader, for instance, to [17–19]. But we require φi[xi] ≥ 0 and ψi[xi] ≥ 0 for corresponding
component of the positive solution (x1, x2, x3).

The term “coexistence” was introduced by Lan [11] in context of fixed points in product
Banach spaces. Coexistence fixed point denotes a fixed point with all the components different
from zero. The common approach to obtain solutions of operator equation is to seek the
fixed points. The best-known fixed point theorems for positive solutions are Krasnosel’skiı̆’s
fixed point theorem in cones [10] and its generalizations, for instance, Krasnosel’skiı̆–Benjamin
fixed point theorem [1], where conditions are weakened, and Guo–Krasnosel’skiı̆ fixed point
theorem [3], where considered region is more general. But, as it was mentioned in [12,13,15],
these theorems cannot guarantee the coexistence fixed point. Motivated by this, Precup [12,
13] established (2-dimensional) vector version of Krasnosel’skiı̆’s fixed point theorem, which
allows to localize fixed point in the component-wise manner. Recently, Rodríguez-López [15]
showed an alternative proof via fixed point index theory. As it was pointed out in [15], the
result by Precup remains valid for n-dimensions. For multiplicity result of positive solutions
by vector version of Krasnosel’skiı̆’s fixed point theorem we refer reader to [8, 14].

Generalized version of problem (1.1), (1.2) with τ = 1 and i = 1, 2, was studied by Hen-
derson and Luca [5, 6]. In [5] was considered problem (in our notations)

(ai(t)xi(t)′)′ − bi(t)xi(t) + λi pi(t) fi(t, x1(t), x2(t)) = 0, t ∈ (0, 1), i = 1, 2, (1.3)

αixi(0)− βia(0)x′i(0) = φi[xi], γixi(1) + δia(1)x′i(1) = ψi[xi], (1.4)

and sufficient conditions on λi and fi were given such that non-negative solutions of problem
(1.3), (1.4) exist. The result was based on Guo–Krasnosel’ski fixed point theorem. In [6] by
applying fixed point index theory results on existence and multiplicity of positive solutions
were obtained for the slightly modified problem (1.3), (1.4): the functions fi depended on only
one unknown xj 6=i, i.e. fi(t, xj 6=i(t)).

In this paper, we apply two methods that allow us to obtain an interval of the existence of
positive solutions for the problem (1.1), (1.2). First we find τ by solving system of inequalities,
which is based on Green’s functions of problem (1.1), (1.2) and behavior of functions fi. To
prove that for these τ there exist positive solutions we apply vector version of Krasnosel’skiı̆’s
fixed point theorem, or Krasnosel’skiı̆–Precup fixed point theorem. Let us recall this result
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here. A nonempty closed convex subset K ⊂ X of normed space (X, ‖ · ‖) is called a cone if
λx ∈ K for every x ∈ K and for all λ ≥ 0, and K ∩ (−K) = 0.

Theorem 1.1 (Krasnosel’skiı̆–Precup, [12, 15]). Let (X, ‖ · ‖) be a normed space, K1, . . . , Kn cones
in X, K = K1 × · · · × Kn, r = (r1, . . . , rn), R = (R1, . . . , Rn), with 0 < ri < Ri for i ∈ {1, . . . , n},
and

Kr,R = {x = (x1, . . . , xn) ∈ K : ∀ i ∈ {1, . . . , n} ri ≤ ‖xi‖ ≤ Ri}.

Assume that T = (T1, .., Tn) : Kr,R → K is a completely continuous map and for each i ∈ {1, .., n}
there exists hi ∈ Ki \ {0} such that one of the following conditions is satisfied in Kr,R:

(i) Tix + µhi 6= xi if ‖xi‖ = ri and µ > 0, and Tix 6= λxi if ‖xi‖ = Ri and λ > 1;

(ii) Tix 6= λxi if ‖xi‖ = ri and λ > 1, and Tix + µhi 6= xi if ‖xi‖ = Ri and µ > 0.

Then T has at least one fixed point x ∈ K with ri ≤ ‖xi‖ ≤ Ri, i ∈ {1, . . . , n}.

Conditions (i) and (ii) are called compression type and expansion type condition, respectively.
To satisfy compression and expansion type conditions various authors considered asymp-

totic behavior of f /x at zero and infinity. This approach is widely used in case of one differ-
ential equation or systems in which all fi depend on only one unknown xj 6=i (see, for instance,
[2, 6, 7, 9, 18, 19]). The idea is to use limits

lim
x→0

sup
t

f (t, x)
x

, lim
x→∞

sup
t

f (t, x)
x

lim
x→0

inf
t

f (t, x)
x

, lim
x→∞

inf
t

f (t, x)
x

.

In [9] the case where the above limits were zero or infinity was studied. In [2, 7] the limits
were allowed to be small or large enough, in a sense that necessary inequalities hold. In the
case of systems of differential equations in which fi depend on all unknowns many authors
require additional assumptions on fi to construct similar limits. For instance, fi is monotone
with respect to xj, see [12, 13], or bounded with respect to xj, see [4].

If we let φi ≡ 0 and ψi ≡ 0, then boundary conditions (1.2) become Dirichlet boundary con-
ditions. For such problem we compare the theoretical result with the result based on built-in
functions of program Mathematica [20]. The numerical result is obtained by shooting method:
we consider the initial value problem for system of differential equations and determine τ.

The outline of the rest of the paper is as follows. In Section 2, we rewrite boundary value
problem (1.1), (1.2) as an equivalent system of integral equations by constructing the Greens
functions and show the estimations of Greens functions. We prove the existence of positive
solutions by applying Krasnosel’skiı̆–Precup fixed point theorem in Section 3 and formulate
main result of this article in Theorem 3.7. Finally, in Section 4, we compare theoretical and
numerical results for problem (1.1) with the boundary conditions xi(0) = ai, xi(τ) = bi.

2 Construction and estimation of Green’s functions

Standard approach is to rewrite problem (1.1), (1.2) as an equivalent system of integral equa-
tions via corresponding Green’s functions. Results of this section are well-known and for
details we refer reader to [16, 18, 19].
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The Green’s function G0 corresponding to problem x′′(t) + h(t) = 0, x(1) = 0 = x(τ), is
given by

G0(t, s) =
1
τ

{
s(τ − t), 0 ≤ s ≤ t ≤ τ,

t(τ − s), 0 ≤ t ≤ s ≤ τ.
(2.1)

We denote Gφi(s) =
∫ τ

0 G0(t, s)dΦi(t), Gψi(s) =
∫ τ

0 G0(t, s)dΨi(t) and in addition to (A1) and
(A2) we assume

(A3) Gφi(s) ≥ 0 and Gψi(s) ≥ 0 for all s ∈ [0, τ] and every i = 1, 2, 3.

Recall that Di is given by (A2) and |A| denotes the determinant of a square matrix A.

Proposition 2.1. A triple (x1, x2, x3) is a solution of boundary value problem (1.1), (1.2) if and only
if (x1, x2, x3) is a solution of the system of integral equations

xi(t) =
∫ τ

0
Gi(t, s) fi(s, x1(s), x2(s), x3(s))ds + gi(t), t ∈ [0, τ], i = 1, 2, 3, (2.2)

where

Gi(t, s) =
1

Di

∣∣∣∣∣∣
τ − t τ − φi[τ − Id] −ψi[τ − Id]

t −φi[Id] τ − ψi[Id]
G0(t, s) −Gφi(s) −Gψi(s)

∣∣∣∣∣∣ (2.3)

and

gi(t) =
1

Di

∣∣∣∣∣∣
τ − t τ − φi[τ − Id] −ψi[τ − Id]

t −φi[Id] τ − ψi[Id]
0 −ai −bi

∣∣∣∣∣∣ . (2.4)

Proof. Let (x1, x2, x3) be a solution of boundary value problem (1.1), (1.2). For every i = 1, 2, 3,
integrating (1.1) twice from 0 to t and applying boundary conditions (1.2), we get

xi(t) =
∫ τ

0
G0(t, s) fi(s, x1(s), x2(s), x3(s))ds +

t
τ
(bi + ψi[xi]) +

τ − t
τ

(ai + φi[xi]). (2.5)

Let us denote (Fxi)(t) =
∫ τ

0 G0(t, s) fi(s, x1(s), x2(s), x3(s))ds. Applying φi and ψi to (2.5), we
get

φi[xi](τ − φi[τ − Id])− φi[Id]ψi[xi] = τ φi[Fxi] + bi φi[Id] + ai φi[τ − Id],

ψi[xi](τ − ψi[Id])− ψi[τ − Id]φi[xi] = τ ψi[Fxi] + biψi[Id] + aiψi[τ − Id].
(2.6)

We rewrite (2.6) in matrix form(
τ − φi[τ − Id] −φi[Id]
−ψi[τ − Id] τ − ψi[Id]

)(
φi[xi]

ψi[xi]

)
=

(
τ φi[Fxi]

τ ψi[Fxi]

)
+

(
φi[τ − Id] φi[Id]
ψi[τ − Id] ψi[Id]

)(
ai
bi

)
.

By assumption (A2), Di > 0 and it follows(
φi[xi]

ψi[xi]

)
=

1
Di

(
τ − ψi[Id] φi[Id]
ψi[τ − Id] τ − φi[τ − Id]

)(
τ φi[Fxi]

τ ψi[Fxi]

)
+

1
Di

(
τ − ψi[Id] φi[Id]
ψi[τ − Id] τ − φi[τ − Id]

)(
φi[τ − Id] φi[Id]
ψi[τ − Id] ψi[Id]

)(
ai
bi

)
.

(2.7)
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Substituting φi[xi] and ψi[xi] from (2.7) in (2.5), we get

xi(t) = (Fxi)(t)−
t

Di

∣∣∣∣τ − φi[τ − Id] −ψi[τ − Id]
−φi[Fxi] −ψi[Fxi]

∣∣∣∣+ τ − t
Di

∣∣∣∣ −φi[Id] τ − ψi[Id]
−φi[Fxi] −ψi[Fxi]

∣∣∣∣
− t

Di

∣∣∣∣τ − φi[τ − Id] −ψi[τ − Id]
−ai −bi

∣∣∣∣+ τ − t
Di

∣∣∣∣−φi[Id] τ − ψi[Id]
−ai −bi

∣∣∣∣
=

1
Di

∣∣∣∣∣∣
τ − t τ − φi[τ − Id] −ψi[τ − Id]

t −φi[Id] τ − ψi[Id]
(Fxi)(t) −φi[Fxi] −ψi[Fxi]

∣∣∣∣∣∣+ 1
Di

∣∣∣∣∣∣
τ − t τ − φi[τ − Id] −ψi[τ − Id]

t −φi[Id] τ − ψi[Id]
0 −ai −bi

∣∣∣∣∣∣
=

∫ τ

0
Gi(t, s) fi(s, x1(s), x2(s), x3(s))ds + gi(t),

where Gi is given by (2.3) and gi is given by (2.4).
Now, let (x1, x2, x3) satisfy system of integral equations (2.2). It follows that each xi also

satisfies (2.5). By differentiating (2.5) twice, it is easy to see that (x1, x2, x3) satisfies (1.1), (1.2)
and (x1, x2, x3) ∈

(
C2[0, τ]

)3.

Remark 2.2. Note that Gi ≥ 0 and gi ≥ 0 for every i = 1, 2, 3. Indeed, expansion of (2.3) and
(2.4) along the first column is

Gi(t, s) =
τ − t

Di

∣∣∣∣−φi[Id] τ − ψi[Id]
−Gφi(s) −Gφi(s)

∣∣∣∣− t
Di

∣∣∣∣τ − φi[τ − Id] −ψi[τ − Id]
−Gφi(s) −Gφi(s)

∣∣∣∣+ G0(t, s)

=
τ − t

Di

∣∣∣∣ φi[Id] τ − ψi[Id]
−Gφi(s) Gφi(s)

∣∣∣∣+ t
Di

∣∣∣∣τ − φi[τ − Id] ψi[τ − Id]
−Gφi(s) Gφi(s)

∣∣∣∣+ G0(t, s)
(2.8)

and

gi(t) =
τ − t

Di

∣∣∣∣−φi[Id] τ − ψi[Id]
−ai −bi

∣∣∣∣− t
Di

∣∣∣∣τ − φi[τ − Id] −ψi[τ − Id]
−ai −bi

∣∣∣∣
=

τ − t
Di

∣∣∣∣φi[Id] τ − ψi[Id]
−ai bi

∣∣∣∣+ t
Di

∣∣∣∣τ − φi[τ − Id] ψi[τ − Id]
−ai bi

∣∣∣∣ .
(2.9)

By assumptions (A1)–(A3), and ai, bi ≥ 0, and fact that G0, given by (2.1), is non-negative,
determinants in last parts of (2.8) and (2.9) are non-negative for all (t, s) ∈ [0, τ]× [0, τ] and
t ∈ [0, τ], respectively.

Let m(t) = min {t/τ, 1 − t/τ}. It is known that Green’s function G0 satisfies

m(t)G0(s, s) ≤ G0(t, s) ≤ G0(s, s), (t, s) ∈ [0, τ]× [0, τ].

Proposition 2.3. Green’s function Gi, given by (2.3), satisfies

m(t)Hi(s) ≤ Gi(t, s) ≤ Hi(s), (t, s) ∈ [0, τ]× [0, τ],

where

Hi(s) =
1

Di

∣∣∣∣∣∣
τ τ − φi[τ − Id] −ψi[τ − Id]
τ −φi[Id] τ − ψi[Id]

G0(s, s) −Gφi(s) −Gψi(s)

∣∣∣∣∣∣ .
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Proof. Expansion of Gi(t, s) along the first column is given by (2.8). We replace τ − t with τ in
first determinant, t with τ in second determinant, G0(t, s) with G0(s, s) in third determinant
and get Hi(s). Therefore, Hi ≥ 0 by the same argument as Gi ≥ 0.

We get inequality Gi(t, s) ≤ Hi(s) by estimating τ − t ≤ τ, t ≤ τ and G0(t, s) ≤ G0(s, s).
It is clear that 1 − t/τ ≥ m(t) and t/τ ≥ m(t) for all t ∈ [0, τ]. We get inequality Gi(t, s) ≥

m(t)Hi(s) by estimating τ − t ≥ m(t)τ, t ≥ m(t)τ and G0(t, s) ≥ m(t)G0(s, s).

Observe that if ai = bi = 0, then gi ≡ 0. By (2.9), it is easy to see that gi(t) is a polynomial
with degree at most one. Hence gi is concave. Concavity of gi implies

gi(t) ≥ m(t) gi(t0), (t, t0) ∈ [0, τ]× [0, τ]. (2.10)

For every c ∈ (0, τ/2) inequality τc ≤ m(t) holds for t ∈ [c, τ − c]. As it was mentioned
in [18, 19], for Green’s function G0 optimal constant is c = τ/4. Optimal in a sense that
inf {

∫ τ−c
c G0(t, s)ds : t ∈ [c, τ − c]} is maximal.

3 Theoretical result on the existence of a positive solution

Consider Banach space C[0, τ] endowed with the norm ‖x‖ = max{|x(t)| : t ∈ [0, τ]}. We
define cone ki by

ki =

{
u ∈ C[0, τ] : u(t) ≥ 0 for t ∈ [0, τ], min

t∈[τ/4, 3τ/4]
u(t) ≥ 1

4
‖u‖, φi[u] ≥ 0, ψi[u] ≥ 0

}
.

Let K = k1 × k2 × k3, x = (x1, x2, x3) and T = (T1, T2, T3) : K → (C[0, τ])3 be an operator
defined by

(Tix)(t) =
∫ τ

0
Gi(t, s) fi(s, x1(s), x2(s), x3(s))ds + gi(t), (3.1)

where Gi is given by (2.3) and gi is given by (2.4).
Observe that T is a completely continuous operator. Indeed, gi is obviously completely

continuous and Tix − gi is completely continuous by application of Arzelà–Ascoli theorem.
Boundary value problem (1.1), (1.2) has a non-negative solution if and only if operator T has a
fixed point in K. To prove that maximal value of each xi is positive, and hence the solution is
positive, we apply Krasnosel’skiı̆–Precup fixed point theorem (Theorem 1.1). Now, we show
that T maps K into itself.

Proposition 3.1. Operator T, given by (3.1), satisfies T(K) ⊂ K.

Proof. It is obvious that Tix ≥ 0 for each i = 1, 2, 3.
Let Tix achieve maximum value at point t0, i.e. (Tix)(t0) = ‖Tix‖. By Proposition 2.3 and

(2.10), for every t ∈ [τ/4, 3τ/4] we have

(Tix)(t) =
∫ τ

0
Gi(t, s) fi(s, x1(s), x2(s), x3(s))ds + gi(t)

≥ m(t)
∫ τ

0
Hi(s) fi(s, x1(s), x2(s), x3(s))ds + m(t)gi(t0)

≥ 1
4

(∫ τ

0
Gi(t0, s) fi(s, x1(s), x2(s), x3(s))ds + gi(t0)

)
=

1
4
‖Tix‖.
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Next, consider

φi[Txi] =
∫ τ

0

(∫ τ

0
Gi(t, s)dΦi(t)

)
fi(s, x1(s), x2(s), x3(s))ds + φi[gi].

By (A1)–(A3), we get
∫ τ

0 Gi(t, s)dΦi(t) ≥ 0 and φi[gi] ≥ 0. Hence φi[Txi] ≥ 0. Similarly
ψi[Txi] ≥ 0. Therefore, T(K) ⊂ K.

Now, we briefly describe the main result. First, we show that if certain conditions on
fi hold, then Ti satisfies compression type condition (i) or expansion type condition (ii) of
Krasnosel’skiı̆–Precup fixed point theorem (Theorem 1.1). Then we choose r and R such that
each Ti satisfies either condition (i) or (ii) for all x ∈ Kr,R. Finally, we conclude that at least
one positive solution of problem (1.1), (1.2) exists.

Let us introduce notations

Ai = inf
t∈[τ/4, 3τ/4]

∫ 3τ/4

τ/4
Gi(t, s)ds, Bi = sup

t∈[0,τ]

∫ τ

0
Gi(t, s)ds.

To prove the following Lemma 3.2 (and Proposition 3.6) we use standard techniques. See, for
instance, [2, 7, 9, 18, 19].

Lemma 3.2. Operator Ti satisfies compression type condition (i) if there exist constants 0 < q < Q
such that

q < min
t∈[τ/4, 3τ/4]

xi∈[q/4, q]
xj 6=i∈[q/4,Q]2

fi(t, x) · Ai and max
t∈[0,τ]

x∈[0,Q]3

fi(t, x) · Bi + ‖gi‖ < Q, (3.2)

and Ti satisfies expansion type condition (ii) if there exist constants 0 < q < Q such that

Q < min
t∈[τ/4, 3τ/4]
xi∈[Q/4, Q]

xj 6=i∈[q/4,Q]2

fi(t, x) · Ai and max
t∈[0,τ]

xi∈[0, q]
xj 6=i∈[0,Q]2

fi(t, x) · Bi + ‖gi‖ < q. (3.3)

Proof. Let Kq,Q = {x ∈ K : q ≤ ‖xi‖ ≤ Q, i = 1, 2, 3}. We show a proof for compression type
condition. Proof for expansion type condition is similar.

Let ‖xi‖ = Q and Ω = [0, τ]× [0, Q]3. We show that ‖Tix‖ ≤ ‖xi‖. It is known that this
implies Tix 6= λxi for λ > 1. Consider

‖Tix‖ ≤ max
t∈[0,τ]

∫ τ

0
Gi(t, s) fi(s, x1(s), x2(s), x3(s))ds + ‖gi‖

≤ max
(t,x)∈Ω

fi(t, x) · Bi + ‖gi‖ < Q = ‖xi‖.

Now, suppose to contrary that there exists xi with ‖xi‖ = q such that Tix + µh = xi for
µ > 0 and h : t 7→ 1. Since x ∈ Kq,Q, we have

xj(t) ≥
1
4
‖xj‖ ≥ 1

4
q, t ∈ [τ/4, 3τ/4], j = 1, 2, 3.
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Let ω = [τ/4, 3τ/4]× [q/4, q]× [q/4, Q]2. We get

xi(t) =
∫ τ

0
Gi(t, s) fi(s, x1(s), x2(s), x3(s))ds + gi(t) + µ

≥
∫ 3τ/4

τ/4
Gi(t, s) fi(s, x1(s), x2(s), x3(s))ds + gi(t) + µ

≥ min
(t,xi ,xj 6=i)∈ω

fi(t, x) · Ai + gi(t) + µ

> q + gi(t) + µ,

which gives contradiction.

Let us show examples of fi, i = 1, 2, 3, that satisfy (3.2) and (3.3) for sufficiently small q
and sufficiently large Q, i.e. there exist qi < Qi such that fi satisfies (3.2) or (3.3) for 0 < q ≤ qi
and Qi ≤ Q < +∞. The ability to choose such q and Q is used to define proper Kr,R in the
proof of the main result.

Let us define

uw
ij =

{
u, i = j,

w, i 6= j.

We use notation uw
ij to denote that i-th element of a triple (uw

i1, uw
i2, uw

i3) is u and j-th element
(j 6= i) is w, e.g. (uw

11, uw
12, uw

13) = (u, w, w) and (u0
21, u0

22, u0
23) = (0, u, 0).

Example 3.3. Let fi be non-decreasing with respect to all xi, i = 1, 2, 3. Function fi satisfies
(3.2) for sufficiently small q and sufficiently large Q if

1 < lim
u→0+

inf
t∈[τ/4, 3τ/4]

fi(t, u, u, u)
u

· Ai

4
, lim

u→+∞
sup

t∈[0,τ]

fi(t, u, u, u)
u

· Bi < 1,

and satisfies (3.3) for sufficiently small q and sufficiently large Q if ai = bi = 0 and

∀w ∈ [0,+∞) lim
u→0+

sup
t∈[0,τ]

fi(t, uw
i1, uw

i2, uw
i3)

u
= 0,

1 < lim
u→+∞

inf
t∈[τ/4, 3τ/4]

fi(t, u0
i1, u0

i2, u0
i3)

u
· Ai

4
.

(3.4)

For proof see Proposition 3.6.

Example 3.4. Let fi be bounded with respect to xi and non-decreasing with respect to every
xj 6=i, j = 1, 2, 3. Function fi satisfies (3.2) for sufficiently small q and sufficiently large Q if

1 < lim
w→0+

inf
t∈[τ/4, 3τ/4]

u∈[0,+∞)

fi(t, uw
i1, uw

i2, uw
i3)

w
· Ai

4
, lim

w→+∞
sup

t∈[0,τ]
u∈[0,+∞)

fi(t, uw
i1, uw

i2, uw
i3)

w
· Bi < 1,

and satisfies (3.3) for sufficiently small q and sufficiently large Q if ai = bi = 0 and (3.4).

Example 3.5. Let fi be bounded with respect to every xj 6=i, j = 1, 2, 3. Function fi satisfies (3.2)
for sufficiently small q and sufficiently large Q if

1 < lim
xi→0+

inf
t∈[τ/4, 3τ/4]
xj 6=i∈[0,+∞)2

fi(t, x1, x2, x3)

xi
· Ai

4
, lim

xi→+∞
sup

t∈[0,τ]
xj 6=i∈[0,+∞)2

fi(t, x1, x2, x3)

xi
· Bi < 1,
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and satisfies (3.3) for sufficiently small q and sufficiently large Q if ai = bi = 0 and

lim
xi→0+

sup
t∈[0,τ]

xj 6=i∈[0,+∞)2

fi(t, x1, x2, x3)

xi
· Bi < 1, 1 < lim

xi→+∞
inf

t∈[τ/4, 3τ/4]
xj 6=i∈[0,+∞)2

fi(t, x1, x2, x3)

xi
· Ai

4
.

Proposition 3.6. Function fi from Example 3.3 satisfies inequalities (3.2) and (3.3) for sufficiently
small q and sufficiently large Q.

Proof. First, we show that fi satisfies (3.2). Let us denote

f0 = lim
u→0+

inf
t∈[τ/4, 3τ/4]

fi(t, u, u, u)
u

, f∞ = lim
u→+∞

sup
t∈[0,τ]

fi(t, u, u, u)
u

.

Choose ε > 0 and δ > 0 such that

1 < ( f0 − ε)Ai/4 and ( f∞ + δ)Bi < 1.

Then there exist positive constants r and p such that

fi(t, u, u, u) ≥ ( f0 − ε)u, (t, u) ∈ [τ/4, 3τ/4]× (0, r] ,

fi(t, u, u, u) ≤ ( f∞ + δ)u, (t, u) ∈ [0, τ]× [p,+∞).

We denote M = max { fi(t, u, u, u) : t ∈ [0, τ], u ∈ [0, p]}. Then

fi(t, u, u, u) ≤ M + ( f∞ + δ)u, (t, u) ∈ [0, τ]× [0,+∞).

We choose q ∈ (0, r], define

Q =
Bi M + ‖gi‖

1 − Bi( f∞ + δ)
+ q

and let Kq,Q = {x ∈ K : q ≤ ‖xi‖ ≤ Q, i = 1, 2, 3}. Observe that

max
t∈[0,τ]

x∈[0,Q]3

fi(t, x) · Bi + ‖gi‖ ≤ max
t∈[0,τ]

fi(t, Q, Q, Q) · Bi + ‖gi‖ ≤ Bi M + Bi( f∞ + δ)Q + ‖gi‖

= (Bi M + ‖gi‖) +
(Bi M + ‖gi‖)Bi( f ∞

i + δ)

1 − Bi( f∞ + δ)
+ q Bi( f∞ + δ)

=
Bi M + ‖gi‖

1 − Bi( f∞ + δ)
+ q Bi( f∞ + δ) < Q

and

min
t∈[τ/4, 3τ/4]

xi∈[q/4, q]
xj 6=i∈[q/4,Q]2

fi(t, x) · Ai ≥ min
t∈[τ/4, 3τ/4]

fi(t, q/4, q/4, q/4) · Ai ≥ Ai( f0 − ε)q/4 > q.

Now, we show that fi satisfies (3.3). Recall that ai = bi = 0 implies ‖gi‖ = 0. Let us denote

f∞ = lim
u→+∞

inf
t∈[τ/4, 3τ/4]

fi(t, u0
i1, u0

i2, u0
i3)

u
.
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Choose ε > 0 such that ( f∞ − ε)Ai/4 > 1. Then there exist positive constants r and p such
that

fi(t, uw
i1, uw

i2, uw
i3) ≤ B−1

i u, (t, u, w) ∈ [0, τ]× (0, r]× [0,+∞)2,

fi(t, u0
i1, u0

i2, u0
i3) ≥ ( f∞ − ε)u, (t, u) ∈ [τ/4, 3τ/4]× [p,+∞),

We choose q ∈ (0, r], Q ∈ [4p + q,+∞) and let Kq,Q = {x ∈ K : q ≤ ‖xi‖ ≤ Q, i = 1, 2, 3}.
Observe that

max
t∈[0,τ]

xi∈[0, q]
xj 6=i∈[0,Q]2

fi(t, x) · Bi ≤ max
t∈[0,τ]

fi(t, qQ
i1, qQ

i2, qQ
i3) · Bi < q

and

min
t∈[τ/4, 3τ/4]
xi∈[Q/4, Q]

xj 6=i∈[q/4,Q]2

fi(t, x) · Ai ≥ min
t∈[τ/4, 3τ/4]

fi

(
t, (Q/4)0

i1, (Q/4)0
i2, (Q/4)0

i3

)
· Ai ≥ ( f∞ − ε)AiQ/4 > Q.

Finally, note that constants q and Q could be chosen as small and as large as desired,
respectively.

The main result of this paper is following.

Theorem 3.7. If for every fi, i = 1, 2, 3, exist qi < Qi such that fi satisfies (3.2) or (3.3) for 0 < q ≤ qi
and Qi ≤ Q < +∞, then boundary value problem (1.1), (1.2) has at least one positive solution.

Proof. We denote r = min{qi : i = 1, 2, 3}, R = max{Qi : i = 1, 2, 3} and let

Kr,R = {x ∈ K : r ≤ ‖xi‖ ≤ R, i = 1, 2, 3}.

By Lemma 3.2, each Ti satisfies compression type condition (i) or expansion type condition
(ii) in Kr,R. Therefore, by Krasnosel’skiı̆–Precup fixed point theorem, operator T has a fixed
point in Kr,R, which implies that boundary value problem (1.1), (1.2) has at least one positive
solution.

Let us show applicability of Theorem 3.7 in following example. Here and in Section 4, we
round numbers to three decimal places unless we can calculate the numbers exactly.

Example 3.8. Consider system of differential equations

x′′1 + x2
1(t + x2x3)

3 = 0, t ∈ (0, τ),

x′′2 +
(

x1t + x1/3
3

) exp (−x2) + 1
2

= 0, t ∈ (0, τ),

x′′3 +
80x3t
x3

3 + 1
+ 7 sin (x1 − x2) + 7 = 0, t ∈ (0, τ),

(3.5)

with boundary conditions

x1(0) = 3x1(1/5)− x1(1/2), x1(τ) =
1
2

∫ τ

0
t2 x1(t)dt,

x2(0) = a2, x2(τ) =
∫ τ

0
(τ − t)x2(t)dt + b2,

x3(0) = x3(1/2) + a3, x3(τ) = b3,

(3.6)
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where a2, b2, a3, b3 ≥ 0. Observe that 1/5 and 1/2 appear in the multi-point boundary
conditions in first and third line of (3.6). Hence τ is greater than 1/2.

In this example, the Green’s functions (and intervals where assumptions (A1)–(A3) are
valid) are as follows (recall that G0 is given by (2.1)):

G1(t, s) =
1

τ/10 − τ4/60

∣∣∣∣∣∣
τ − t 1/10 −τ4/24

t −1/10 τ − τ4/8
G0(t, s) G0(1/2, s)− 3G0(1/5, s) −(sτ3 − s4)/24

∣∣∣∣∣∣ , τ ∈ (1/2, 61/3),

G2(t, s) =
1

τ2(1 − τ2/6)

∣∣∣∣∣∣
τ − t τ −τ3/3

t 0 τ − τ3/6
G0(t, s) 0 −(s3 − 3s2τ + 2sτ2)/6

∣∣∣∣∣∣ , τ ∈ (1/2,
√

6),

G3(t, s) =
2
τ

∣∣∣∣∣∣
τ − t 1/2 0

t −1/2 τ

G0(t, s) −G0(1/2, s) 0

∣∣∣∣∣∣ , τ ∈ (1/2,+∞).

Observe that f1(t, x) = x2
1(t + x2x3)3 is non-decreasing with respect to all xi, i = 1, 2, 3, and

a1 = b1 = 0, and

∀w ∈ [0,+∞) lim
u→0+

sup
t∈[0,τ]

u2(t + w2)3

u
= 0, lim

u→+∞
inf

t∈[τ/4, 3τ/4]

u2(t + 0)3

u
= +∞.

We do not need to calculate B1 and A1. But we need A1 > 0, which is true for τ ∈ (1/2, 61/3).
Therefore (see Example 3.3), f1 satisfies (3.3) for τ ∈ (1/2, 61/3).

Next, f2(t, x) = (x1t + x1/3
3 )(exp (−x2) + 1)/2 is bounded with respect to x2, non-

decreasing with respect to x1, x3 and

lim
w→0+

inf
t∈[τ/4, 3τ/4]

u∈[0,+∞)

(
wt + w1/3

) exp (−u) + 1
2w

= +∞,

lim
w→+∞

sup
t∈[0,τ]

u∈[0,+∞)

(
wt + w1/3

) exp (−u) + 1
2w

= τ.

We expand G2(t, s) along the second column and consider

B2 = sup
t∈[0,τ]

∫ τ

0
G2(t, s)ds

= sup
t∈[0,τ]

1
τ2(1 − τ2/6)

∫ τ

0

(
τ t(s3 − 3s2τ + 2sτ2)

6
+ τ

(
τ − τ3

6

)
G0(t, s)

)
ds

= sup
t∈[0,τ]

τ t(τ2 − 12)− 2t2(τ2 − 6)
4(τ2 − 6)

=

{
(144τ2 − 24τ4 + τ6)/(32(τ2 − 6)2), 1/2 < τ < 2,

τ4/(4(6 − τ2)), 2 ≤ τ <
√

6.

Calculations show that τB2 < 1 for τ ∈ (1/2, 1.612). Therefore (see Example 3.4), f2

satisfies (3.2) for τ ∈ (1/2, 1.612).
Next, f3(t, x) = 80x3t/(x3

3 + 1) + 7 sin (x1 − x2) + 7 is bounded with respect to x1, x2 and

lim
x3→0+

inf
t∈[τ/4, 3τ/4]
x1,x2∈[0,+∞)

80x3t
(x3

3 + 1)x3
+

7 sin (x1 − x2) + 7
x3

= 20τ,
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lim
x3→+∞

sup
t∈[0,τ]

x1,x2∈[0,+∞)

80x3t
(x3

3 + 1)x3
+

7 sin (x1 − x2) + 7
x3

= 0.

We expand G3(t, s) along the third column and consider

A3 = inf
t∈[τ/4, 3τ/4]

∫ 3τ/4

τ/4
G3(t, s)ds = inf

t∈[τ/4, 3τ/4]

2
τ

∫ 3τ/4

τ/4

(
τ(τ − t)G0(1/2, s) +

τ

2
G0(t, s)

)
ds

= inf
t∈[τ/4, 3τ/4]

−16t2 − τ(8 − 15τ + 2τ2) + 2t(4 + τ2)

32

=

{
(−12τ + 28τ2 − 3τ3)/64, 1/2 < τ ≤ 2(2 −

√
3) or 2(2 +

√
3) < τ,

(−4τ + 12τ2 − τ3)/64, 2(2 −
√

3) < τ ≤ 2(2 +
√

3).

Calculations show that 1 < 5τ A3 for τ ∈ (1.197, 8.877). Therefore (see Example 3.5), f3

satisfies (3.2) for τ ∈ (1.197, 8.877).
Finally, we consider interval

(1/2, 61/3) ∩ (1/2, 1.612) ∩ (1.197, 8.877) = (1.197, 1.612).

Each fi satisfies either (3.2) or (3.3) for sufficiently small q, sufficiently large Q and τ ∈
(1.197, 1.612). Therefore, by Theorem 3.7, boundary value problem (4.3), (4.4) has at least one
positive solution for τ ∈ (1.197, 1.612).

4 Numerical result for Dirichlet boundary conditions

In this section, we consider problem (1.1) with boundary conditions

xi(0) = ai, xi(τ) = bi, (4.1)

and show examples where is compared theoretical estimation of τ with result obtained nu-
merically. Note that here Gi = G0, Ai = τ2/16 and Bi = τ2/8 for every i = 1, 2, 3.

For numerical result let us consider the initial conditions

xi(0) = ai, x′i(0) = ci ∈ R, i = 1, 2, 3. (4.2)

Let c = (c1, c2, c3) and xc = (xc
1, xc

2, xc
3) be a solution of initial value problem (1.1), (4.2). We

denote by t1(c) > 0 the positive argument for which xc(t1(c)) = (b1, b2, b3) holds for the first
time. Such t1(c) exists if and only if boundary value problem (1.1), (4.1) has a solution for
t1(c) = τ. Thus set of values of the map c 7→ t1(c) determines values of the τ. We assume that
if there is no c such that t1(c) = τ > 0, then t1(c) = 0.

In case of one equation this method is known as the shooting method. We do the following
in our case. We fix c1 and consider t1(c1, ·, ·). If problem (1.1), (4.1) has a solution for t1(c) = τ,
then t1(c1, ·, ·) is everywhere zero except one point.

To obtain the result we are using “brute force”, i.e. go through all possible choices. To
make count of choices less, we consider meshes with step sizes θi for ci, i = 1, 2, 3. To make
sure to “shoot somewhere”, we consider weakened conditions(

x2(t1(c))− b2

)2
+

(
x3(t1(c))− b3

)2
< ε2.
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Thus for every c1 there exists a set Ωε ⊂ R2 such that t1(c) > 0 for (c2, c3) ∈ Ωε. We denote
tM(c1) = max{t1(c) : (c2, c3) ∈ R2}. Numerical result is a discrete plot c1 7→ tM(c1).

In the following examples we compare the results. Examples emphasize that Theorem 3.7
gives sufficient conditions.

Example 4.1. Consider system of differential equations

x′′1 + (x1t3 + x3)
1/2 x1/3

2 = 0, t ∈ (0, τ),

x′′2 + (x1t3 + x1/2
3 )

exp (−x2) + 1
10

= 0, t ∈ (0, τ),

x′′3 +
162x4

3 + x3

1 + x3
3

(
2 + sin (x1t + x2)

)
= 0, t ∈ (0, τ),

(4.3)

with boundary conditions
x1(0) = 0.2, x1(τ) = 0,

x2(0) = 0, x2(τ) = 0.2,

x3(0) = 0, x3(τ) = 0.

(4.4)

Here f1(t, x) = (x1t3 + x3)1/2 x1/3
2 is non-decreasing with respect to all xi, i = 1, 2, 3, and

lim
u→0+

inf
t∈[τ/4, 3τ/4]

(ut3 + u)1/2 u1/3

u
= +∞, lim

u→+∞
sup

t∈[0,τ]

(ut3 + u)1/2u1/3

u
= 0.

Therefore, f1 satisfies (3.2) for τ ∈ (0,+∞).
Next, f2(t, x) = (x1t3 + x1/2

3 )(exp (−x2) + 1)/10 is bounded with respect to x2, non-
decreasing with respect to x1, x3 and

lim
w→0+

inf
t∈[τ/4, 3τ/4]

u∈[0,+∞)

(
wt3 + w1/2

) exp (−u) + 1
10w

= +∞,

lim
w→+∞

sup
t∈[0,τ]

u∈[0,+∞)

(
wt3 + w1/2

) exp (−u) + 1
10w

=
τ3

5
.

Calculations show that B2 τ3/5 < 1 for τ ∈ (0, 401/5). Therefore, f2 satisfies (3.2) for τ ∈
(0, 401/5).

Next, f3(t, x) = (162x4
3 + x3)(2+ sin (x1t + x2))/(1+ x3

3) is bounded with respect to x1, x2,
and

lim
x3→0+

sup
t∈[0,τ]

x1,x2∈[0,+∞)

162x4
3 + x3

(1 + x3
3)x3

(
2 + sin (x1t + x2)

)
= 3,

lim
x3→+∞

inf
t∈[τ/4, 3τ/4]
x1,x2∈[0,+∞)

162x4
3 + x3

(1 + x3
3)x3

(
2 + sin (x1t + x2)

)
= 162.

Calculations show that 3B3 < 1 < 162A3/4 for τ ∈ (1/2, 2
√

2/3). Therefore, f3 satisfies (3.3)
for τ ∈ (1/2, 2

√
2/3).

Each fi satisfies either (3.2) or (3.3) for sufficiently small q, sufficiently large Q and τ ∈
(1/2, 2

√
2/3). Therefore, by Theorem 3.7, the theoretical result is 1/2 < τ < 2

√
2/3, or

approximately 1/2 < τ < 1.633.
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Since a2 ≤ b2 and a3 ≤ b3, we consider non-negative c2 and c3. For numerical result we
make meshes in interval [−1, 1] for c1, [0, 2] for c2 and [0.001, 2.001] for c3 with step sizes
θ1 = θ2 = θ3 = 0.1 and ε = 0.1. The result is illustrated in Figure 4.1. Numerical result shows
that 0.200 ≤ τ ≤ 2.579.

● ● ● ● ●
●
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●

●

●

●

● ●

●

●

●
●

●

●

● ●

-1.0 -0.5 0.5 1.0
c1

0.5

1.0

1.5

2.0

2.5

tM(c1)

Figure 4.1: Graph of the c1 7→ tM(c1) for problem (4.3), (4.4).

Example 4.2. Consider system of differential equations

x′′1 + (x1x2x3)
1/4 = 0, t ∈ (0, τ),

x′′2 +
1

1 + tx2
+

1
1 + x1x3

= 0, t ∈ (0, τ),

x′′3 ++
(15 + 4t)x3

1 + x2
3

+ cos x1 sin x2 + 1 = 0, t ∈ (0, τ),

(4.5)

with boundary conditions
x1(0) = 1, x1(τ) = 0,

x2(0) = 0, x2(τ) = 1,

x3(0) = 1, x3(τ) = 1.

(4.6)

Here f1(t, x) = (x1x2x3)1/4 is non-decreasing with respect to all xi, i = 1, 2, 3, and

lim
u→0+

inf
t∈[τ/4, 3τ/4]

u3/4

u
= +∞, lim

u→+∞
sup

t∈[0,τ]

u3/4

u
= 0.

Therefore, f1 satisfies (3.2) for τ ∈ (0,+∞).
Next, f2(t, x) = (1 + tx2)−1 + (1 + x1x3)−1 is bounded with respect to x1, x3 and

lim
x2→0+

inf
t∈[τ/4, 3τ/4]
x1,x3∈[0,+∞)

1
(1 + tx2)x2

+
1

(1 + x1x3)x2
= +∞,

lim
x2→+∞

sup
t∈[0,τ]

x1,x3∈[0,+∞)

1
(1 + tx2)x2

+
1

(1 + x1x3)x2
= 0.

Therefore, f2 satisfies (3.2) for τ ∈ (0,+∞).
Next, f3(t, x) = (15 + 4t)x3/(1 + x2

3) + cos x1 sin x2 + 1 is bounded with respect to x1, x2,
and

lim
x3→0+

inf
t∈[τ/4, 3τ/4]
x1,x2∈[0,+∞)

(15 + 4t)x3

(1 + x2
3)x3

+
cos x1 sin x2 + 1

x3
= 15 + τ,
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lim
x3→+∞

sup
t∈[0,τ]

x1,x2∈[0,+∞)

(15 + 4t)x3

(1 + x2
3)x3

+
cos x1 sin x2 + 1

x3
= 0.

Calculations show that 1 < (15 + τ)A3/4 for τ ∈ (1.944,+∞). Therefore, f3 satisfies (3.2) for
τ ∈ (1.944,+∞).

Each fi satisfies (3.2) for sufficiently small q, sufficiently large Q and τ ∈ (1.944,+∞).
Therefore, by Theorem 3.7, the theoretical result is τ > 1.944.

For numerical result we make meshes in interval [−7, 0] for c1, [0, 7] for c2 and c3 with step
sizes θ1 = 1, θ2 = θ3 = 0.1 and ε = 0.1. The result is illustrated in Figure 4.2. Numerical result
shows that τ could be less than 1.944.

● ●
●

●

●

●

●

●

-7 -6 -5 -4 -3 -2 -1
c1

0.2

0.4

0.6

0.8

1.0

1.2

1.4

tM(c1)

Figure 4.2: Graph of the c1 7→ tM(c1) for problem (4.5), (4.6).

Remark 4.3. There is no ground to say that this method is not suitable for nonlocal conditions,
for instance, x(0) = φi[xi] + ai, x(τ) = bi. But, since we are using “brute force” (which is long
itself), in case of nonlocal conditions program needs much smaller step size to get nonzero
tM(c1), and hence much more time to run, which makes the program inefficient.
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