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Abstract. We consider the differential inclusion problem given by

N 3

in RN. The problem deals with the anisotropic p(x)-Laplacian operator where p; are
Lipschitz continuous functions 2 < p;(x) < N for all x € RN and i € {1,...,N}.

pi(x)=2 5,

ou > + V() |u(x)|PN2u € a(x)oF (x, u),

ox;

axi

Assume p3;(x) = maxj<i<n pi(x), a € LL (RN) N LA™ (RN), F(x, t) is locally Lips-
chitz in the t-variable integrand and oF(x,t) is the subdifferential with respect to the
t-variable in the sense of Clarke. By establishing the existence of infinitely many solu-
tions, we achieve a first result within the anisotropic framework.
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1 Introduction

The Wulff shape, also known as the equilibrium crystal shape, is closely associated with a con-
vex hypersurface in RN based on a given norm. Wulff [36] introduced a variational problem
concerning an anisotropic geometric functional in the context of crystal growth. He conjec-
tured, without providing a proof, that the Wulff shape, among closed convex hypersurfaces
with constant enclosed volume, minimizes the anisotropic surface energy. This seminal work
by Wulff has spurred significant research in the field of phase transitions, particularly in sce-
narios involving anisotropic and nonhomogeneous media. Recent studies have considered
the existence of solutions for anisotropic problems, (see [4,7,12-16,29-34,37] and the related
literature for more details).
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In 2019, Ge and Radulescu [19] proved the existence of infinitely many solutions to the
differential inclusion problem involving the p(x)-Laplacian

—Ap(x)“+ V(x)’u‘P(X)*Zu € a(x)aF(x,u), in RN

via a combination the variational principle for locally Lipschitz functions with the properties
of the generalized Lebesgue Sobolev space.

Here, with the inspiration of [19], we investigate the existence of infinitely many solutions
of a differential inclusion problem involving the anisotropic p(x)-Laplacian

S (
i=1 0%
where p; are Lipschitz continuous functions such that 2 < p;(x) < N forallx € RN and i €

N
{1,...,N}, p&(x) = maxy<i<n pi(x), a € LL (RN) N L"A®1(RN), F(x, t) is locally Lipschitz in
the t-variable integrand and dF (x, t) is the subdifferential with respect to the t-variable in the
sense of Clarke [5]. Notice that L} (RY) := {5 € LI(RY) : 5(x) > 0 for all x € RN} and

Pil)=2 gy 0
Fyoll V(x)u(x) PN 2y € a(x)aF (x,u) in RN, (1.1)

u
axi

C(RV) = {h € C(RN) : h(x) > 1forall x € ]RN}.
For any i € C.(RY), we will denote

h™:= inf h(x) and h':= sup h(x).

N
xeR x€RN

Also we set the order h; < hy the fact that inf, cgn (h2(x) — By (x)) > 0.
For the potential function V, we make the following assumptions:

(Vi) Ve C(RN),0<V~.

(V2) There exists r > 0 such that for any b > 0,

lim ({x eRN: V(x) < b} N B,(y)) =0,

ly[—e0
where y is the Lebesgue measure on RY.

For the nonlinearity F, suppose the function F : RN x R — R is such that F(x,0) = 0 a.e.
on RV, and

(fo) Fisa Carathéodory function, thatis, forall t € R, the mapping x — F(x, t) is measurable
and, for almost all x € RY, the function t — F(x,t) is locally Lipschitz.

(f1) for almost all x € RN, all t € R and all w € 9F(x, t), we have

w| < ¢ (1+ |t|P?v<x>—1).

(f2) there exist 6 > 0 and C € L®(RN) such that, for almost all x € RY, we have

sup F(x,t) < C(x) <0,
0<|t|<o

where L®(RN) = {7 € L®(RN) : 5(x) < 0 for all x € RN}
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(f3) There exists g € Co(RN) with

NP () = PPN ) =1 0 for att x € RN

P <qg <q(x)<

N —pi(x)
where x(x) = p{,"(x) = I\II\’_”EL(Q y, such that for almost all x € RN we have
N
lim inf F(x, t) >0
teo [£]a3)

(f1) F(x,—t) = F(x,t) for all (x,t) € RN x R.
Now we state the main result of this article.

Theorem 1.1. Suppose that (fo)—(fa), (V1) and (V,) hold. Then problem (1.1) has infinitely many
nontrivial solutions.

The unique aspect of this paper lies in its capacity to extend the conclusions of Ge and
Réadulescu [19] to a more generalized, anisotropic setting.

The subsequent sections of this paper are structured as follows. In Section 2, we will re-
visit the definitions and various properties associated with variable exponent Sobolev spaces.
Moving on to Section 3, we will establish the existence of an infinite number of nontrivial
solutions for the problem (1.1), with credit given to the essential ideas derived from [19].

2 Preliminaries

We recall some preliminary results on the theory of variable exponent Sobolev space. For
more details see [8,10,11,17,21,23,24,26-28], where additional information and specifics can
be found.

For p(x) € C+(RVN), we define the variable exponent Lebesgue space

L) .= {u : u is measurable and /N () [PWdx < +oo}
R
with the norm

and we define the variable exponent Sobolev space
WP (RNY .= {u € LPO(RN) : |Vu| € LPW (]RN)},

with the norm |u|W1,p(x)(]RN) = |ulpx) + [Vit|pn). We recall that spaces LPX)(RN) and
WP() (RN) are separable and reflexive Banach spaces.
Here, we introduce a natural generalization of the variable exponent Sobolev space
wirl) (RN) that will enable us to study problem (1.1) with sufficient accuracy (see [21,22]).
Let us denote by 7 : RN — RV the vectorial function

7 (x) = (p1(x),- -, pa ().
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Also assume 1 < p1(x),...,pn(x) < .
One can define DV 7 (- (RN) by
DLV O(RN) .= {u e LAO(RN) : 9y u € LPO(RN), i =1,.. N}

This is a reflexive Banach space with respect to the norm

N
H”HL?p) = Z HaxiuHLPi(')(]RN)'
i=1

This space continuously embedded in LPN) (RN), where p, = max;<;<y pi(x). We introduce
+/ ?_ S RN by

= (pf, o) Poi=(prae )
and P, P*, P~ € R" by
Pt =max{p],...,pi;}, Pt =max{p;,...,pn} P~ =min{py,...,py}. (21)

Throughout this paper we assume that

N
YL 22)
i=1 pz

We define

* N + L x—
P =y pe=max{PLp ), (2.3)
Yiz1 ey

where p*~ = inf, gy p*(x).
Define].D1§ J(RN) — R by

) |u () [PV dx

Z/ \axu dx+/
i=1 ]RNP1 l

forall u € DL?(')(]RN). Then | € Cl(DL?(')(lRN,IR). If we denote
A=] :D'PORN) = (DVFO(RV))*,

then

N
(A),0) = L [ (02 u()d ()

V (x) |u(x) PN 2 y0dx
for all u,o € DVP)(RN), where (-,-) is the duality pairing between (DV7()(RN))* and
DLV O(RN).

Definition 2.1. A mapping f : X — X* is said to be of type (S)4, if u, — u in X and
limsup,, ., (f(un), un —u) < 0implies u, — u in X.

Similar to [3] we have the following proposition.
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Proposition 2.2. Suppose G := DL?(‘)(]RN) and A is as above. Then A : G — G* is
(1) convex, bounded and strictly monotone operator;

(2) a mapping of type (S)+;

(3) a homeomorphism.

+ -2 = 1. Then the

Denote by L1¥)(RN) the conjugate space of LPN(*)(RN) pgvl(x) (%)

Holder type inequality

1 1

/]RN\uv|dx§ <p+ﬂl >|”|LpN J(RN) 9] o vy
N

holds for all u € LPV®)(RN) and v € L1®)(RN). Furthermore, if we define the mapping
o : L'V (RN) — R by

— PR ()
pw) = [ I,

then the following relations hold:

1] pg, (x) = p for u # 0 <> p(}i) =1, (2.4)
Ul ) <L=1,>1) <= p(u) <1(=1,>1), (2.5)
]u\po >1= ]u\p?\’i < p(”)|”’zZZ(+x)’ (2.6)
Ul g o) <1 => WN )< p()lull - 2.7)

Proposition 2.3 ([9]). Let p3,(x),q(x) be measurable functions such that p;(x) € L*(RN) and
1 < p%(x)q(x) < co almost everywhere in RN. Let u € LI (RN), u # 0. Then

P‘z’( R(x) e
) = 1= Iu! Ja(x) = [Py < ’u‘Pf\;(X)Q(X)'

PR N (x o
n <1= |u| N Ja(x) = | PR )|q(x) < |u‘p€,(?¢)q(x)'

’u‘p‘;\,

1] g (x

PN

In particular, if pQ,(x) = p% is a constant, then ||u|P(¥) lg(x) = |u ()’

Next we consider the case that V satisfies (V;) and (V). We equip the linear subspace

{ e DLVP O (RN ; E/ |9, 1Pl dx+/ x)|u|Pn dx<+00}

with the norm

||u||E—1nf{)\>0 Z/ |p1 dx+/ |—|”N dx<+oo}

Then (E, || - ||e) is continuously embedded into DLF () (RN) as a closed subspace. Therefore,
(E, || - ||g) is also a separable reflexive Banach space. It is easy to see that with the norm || - ||,
Proposition 2.2 remains valid, that is, the following properties hold true.
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Proposition 2.4. Set I(u) = YNq [on 0[P dx + [on V() |[u|PNdx. If u(x) € e DLPO(RN),
then

(i) foru #0,||ullg = Aifand only if I(%) =1,

(i) |lullg <1(=1,>1) ifand only if I(u) < 1(=1,> 1),
Gii) |[ullp > 1 implies ||ul " < I(u) < [ul ¥,
(i) |ullg < 1 implies ||l < 1(u) < [lull2¥ .

Here we recall the followmg theorem from [6, Theorem m 4.] which implies there exits an
embedding from DV v (RYN) into L7 (RN), where p* := N—p This is a particular case of the
result of Troisi [35].

Theorem 2.5. Assume p; > 1fori=1,...,N. Then there exists a continuous embedding DL (RN)
into LP" (RN), i.e. DV7 (RN) — LV (]RN)

This implies that we have a continuous embedding E < LPN()(RN).

Now by a similar argument as [1, Theorem 3.2] which is in the Heisenberg group setting
(or by combining [25, Theorem 2.1] and [2, Lemma 4.4] which are in the Euclidean setting) we
have the following proposition.

Nhﬂgzvn(g), If V satisfies (V1) and (V2), then

Proposition 2.6. Assume x(x) = p%,*(x) =

(i) we have a compact embedding E — LPN() (RN),

(ii) for any measurable function g : RN — R with p,(x) < q(x) < x(x), we have a compact
embedding E — L1¥)(RN).

Let (Y, | - ||) be a real Banach space and Y* its topological dual. A function ¢ : Y —
R is called locally Lipschitz if each point u € Y possesses a neighborhood N, such that
|f(u1) — f(u2)| < [Jus —up||, for all uy,up € Ny, for a constant L > 0 depending on N,,.. The
generalized directional derivative of ¢ at the point u# € Y in the direction h € Y is

0° (1, 1) = lim ing 2@+ 1) = $(w)
’ w—u t .
t—0t

The generalized gradient of ¢ at u € Y is defined by
op(u) ={u* €Y : (u*,hy < ¢°(u,h) forallh € Y},

which is a nonempty, convex and w*-compact subset of Y, where (-, -) is the duality pairing
between Y* and Y. We say that u € Y is a critical point of ¢ if 0 € 9¢(u), (see [3] for further
details).

Definition 2.7. Let Y be a real Banach space, and ¢ : Y — R is a locally Lipschitz function.
We say that ¢ satisfies the nonsmooth (PS.) condition if any sequence {u,} C Y such that
¢(un) — c and m(u,) — 0 as n — oo has a strongly convergent subsequence, where m(u,) =
v+ 1 u* € o¢(uy)}. If this property holds at every level ¢ € R, then we simply say that
¢ satisfies the nonsmooth (PS) condition.
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We recall the following lemma [18, Theorem 2.1.7].

Lemma 2.8. Assume that X is an infinite-dimensional Banach space, and let ¢ : X — R be a locally
Lipschitz function that satisfies the nonsmooth (PS.) condition for every ¢ > 0. Assume ¢p(u) = ¢p(—u)
forall u € X and ¢(0) = 0. Suppose X = X1 @ Xo, where Xy is finite-dimensional, and assume the
following conditions:

(a) a > 0,6 > 0 such that ||u|| = é with u € X, implies ¢p(u) > w.

(b) For any finite-dimensional subspace W C X, there is R = R(W) such that ¢p(u) < 0 foru € W
with ||u|| > R.

Then ¢ possesses an unbounded sequence of critical values.

Before ending this section we can define the weighted variable exponent Lebesgue space
LZEQ(IRN ) (see [20]) as follows:

Assume a € L! (RY), then a(x) is a measurable, nonnegative real-valued function for
x € RN, Define

L Ei; (RN) = {u is measurable and / (2)|u(x)|1¥dx < —1—00}

with the norm
. u
‘M|LZE§;(IRN) = lnf{O' >0: IRNa(xﬂg“i(x)dx < 1}_

Then ngg (RN) is a Banach space.

Remark 2.9. The embedding E «— WPV (RN) Lq IRN ) is continuous.
Set h(x) = q(x)%, where g(x) is ment1oned in (f3). Then p§,* < h™ and p$,(x) <

h(x) < x(x) for all x € RN, where x(x) = p{*(x) = NNPF’;’(()).

there is a continuous embedding E < L"*)(RN). Thus, for u € E, we have |u(x)|7%)

N
LN-"N&+1(RN). By the Holder inequality,

Hence, by Proposition 2.6,

AM@WMWMSZMLN a1y < . 2.8)

PR (-1 (RN) 1 N=p% (x)+1

It follows that u € ngg (RN), and hence the embedding E < WPV (RN) LZES(]RN) is

continuous.

3 Infinitely many nontrivial solutions

Here, we introduce the energy functional ¢ : E — R associated with problem (1.1) by

9, d/
ZAWZ!M x+

From the hypotheses on F, it is standard to check that ¢ is locally Lipschitz on E and o¢(u) C
A(u) — oF(x,u) for all u € E (see [3]).

V)l Oy — [ Fxu)da
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Definition 3.1. u € E is called a solution of (1.1) to which there corresponds a mapping
x € RN — w(x) with w(x) € 9F(x,u) for almost every x € RN having the property x —
w(x)h(x) € L}(RN) for every h € E, and

Z/ |95, u|Pi )29, ud, hdx—i—/ x)|u|PNG) uhdx:/Nw(x)h(x)dx.
i=1 R

Notice that weak solutions of problem (1.1) are exactly the critical points of the func-
tional ¢.

Lemma 3.2. Assume that all conditions of Theorem 1.1 are satisfied. Then the energy functional ¢
satisfies the nonsmooth (PS) condition in E.

Proof. Suppose that {u,} C E is a (PS.) sequence for ¢, that is ¢(u,) — ¢ and m(u,) — 0 as
n — oo, which shows that

¢ =¢(un) +o(1), m(uy) = o(1), 3.1)

where 0(1) — 0 as n — +oo.

We claim that the sequence {u,}? ; is bounded. Suppose that this is not the case. By
passing to a subsequence if necessary, we may assume that ||u,||g — 400 as n — co. Without
loss of generality, we assume ||u, || > 1. Let u;;0¢(u,) be such that m(u,) = ||u}||g-, n € N.
We have u} = A(u,) — wy,, wy(x) € OF(x,uy(x)), w, € LP'®)(RN), where ﬁ + ﬁ =1
By (3.1), there is a constant M; > 0 such that !

|p(un)| < My, foralln >1, (3.2)
and there is a constant C > 0 such that

Cllunlle = (up, 1n)

= <A(uﬂ)lun> _/IRN a(x)wnundx

(3.3)
= Z/ |8xlu| *)dx +/ V(x)\u|pN( )dx — / a(x)wyuydx.
]RN Pl x ]RN
Then by (3.2) and (3.3), we have
Mipe™ + Cllualle = [ a(e) (PR F(x10) = wat ), G4

where pg;” is given by (2.1).

Next we estimate (3.4). By virtue of (f3), there exists c; > 0 and M, > 0 such that, for
almost all x € RN and all [t| > M,, we have F(x,t) > c¢1|t|7™). On the other hand, from
(f1), for almost all x € RN and all ¢+ € R such that |[t| < My, we have |F(x,t)| < C, where
C = C(Ma) > 0. Therefore, for almost all x € RN and all + € R the above two inequalities
imply

F(x,t) > c1\t|‘7(") — ¢y, forallx e RN, teR, (3.5)

where ¢ = C + max{Mqi, Mg+}cl. Using (f1) again, we deduce another estimate:

lwt| < c(|t] + |#PNE)) < 20(1 4 [¢]PNE), (3.6)



Anisotropic differential inclusion on unbounded domains 9

From (3.5) and (3.6), we have
PR E (e ) — wk > pyer[H1) — gy ep — 26(1+ ), (57)

By (3.4) and (3.7), we get

0 - 1) _2/ PR g
pher [ a0 el —2¢ [ a)lunlHOdx .

< Miply + Cllunlle + (PR c2 + 2¢)als.
Note that g~ > p%,*. Then, applying Young’s inequality with €, we get

Q(x) Q)
PN = 1 PR = e B e PR

) gl . g
< (e 960 ) ITRE 4 g fu(x) [PR ) RE

R + elu(x)|1%)

Rt

<e TR 4 elu(x)]7).

Hence, by (3.8) and (3.9), we obtain

pa+

N
(P} c1 — 2ce) /IRN a(x)\un\”’(")dx < Mipyy + Cllunlle + (p c2 + 2¢)|al; + 2cet a1

Then, choosing €y small enough such that 0 < e < Z N we obtain

2c 7
e S
/ a(x) [y |1 dx < Mipl~ + (ph 2 +2c)|al1 +2ce” N [a]y
n — —
RN (poN c1 — 2C€) (310)
C
e 2 e

foralln > 1.
On the other hand, using (f1) again, we deduce another estimate:

|F(x,1,)] < 20(1 4 |up|[P). (3.11)

Hence we obtain from (3.2), (3.11) and p,* < q(x) that

1 P N/ 1 : .
Ll < 3 [ s [ v
:4>(un)+/]RN a(x)F(x,u)dx
< M +2clal; +2C/Ng(x),un|pa(x>dx (3.12)
R
< M + 2c|a|y +2c/Na(x)(1 + 1| 7)) dx
R

= M +4cla|; —|—2C/N a(x)|u, |7 dx.
R
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Therefore, combining (3.10) and (3.12), the boundedness of {1, }$ ; immediately follows, that
is, there is constant C > 0 such that ||u,||g < C. Thus, passing to a subsequence if necessary,
we assume that u,, — ug in E, so it follows from (3.1) that

(A(un), up — ug) — /]RN a(x)wn(uy — ug)dx < ey, (3.13)

with €, | 0, w, (x)9F(x, u,(x)).
Next we prove that [,y a(x)w,(u, — ug)dx as n — +o0. Clearly, by hypothesis (f), we
have

/ a(x)|wy| |uy — ugldx < c/ a(x)|u, —ugldx +/ a(x)|u PN 0, — ugldx.  (3.14)
RN RN RN
On the other hand, using Holder’s inequality, we have

/]RN a(x) |1ty [PV, — ug|dax

||un|P?v(")*1]

< 3 a x(x Uy —Uu 9 (x
<3 ‘L*"il(")’1 (RN) Lp(;\/(("))’l (IRN)| ol (RY) (3.15)
<3la| g un — o] i uaPNIT gy :
Lp‘;\](x)—r(x) (JRN) LP‘[)\](X) (]RN) LP‘IJ\]("‘)*l (]RN)
where x(x) = p*(x). We claim that
0 _ 0 +_1
PR < lualy ™ +2. (3.16)
LP?\](X)—l (]RN)
Indeed, we have that
. 0 (x)— ot —1
if [t |o(r) > 1, then [[u, [PV ) < lunlity ™ )

LPNE-T(RN)

This is seen as follows: According to (2.4), to prove (I), this is equivalent to proving that
|Uni(x) > 1 implies

(P (x)—1) 8

% (x)—1 K(x)
/N |4 (%) — —dx = /N Iurz(x+)| o dx <L
R P 1) e R PR ) o=
un () gy N (e N

This inequality is justified as follows: since |upy0 () > 1 and

N 1 RSP 1t B SR <
0N =Dy~ 00 = ety — (<00 + 5 )

R )

GO R

= P2, (x) — 1 PN —PN
>0,
we infer that
it ()" () ) 1 ~ ()<
e o
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which implies

/ |1 (x)| (PR =DP () e < / |1 () [£%) P
lu ‘P?\z+—1)P’(X) - ™ ’
Tpei(x) Mx(x)

and the proof of (I) is complete.

If |n|(ry < 1, then [Ju, [N <2, (I1)
%)
Indeed, by |uny(x) < / un[*¥dx 41 and (2.7), we obtain
RN

0 -1 OK(X)
[Joa,|PRE) sa) </]I{N’un’(pN(X) VRO gy 41
2 (0)-1

PN X

= [ Odxr1<141=2
R

Clearly, (3.6) is a consequence of (I) and (II).
Notice that the inclusion E < L*®) (RN) is continuous, and hence there exists C; > 0 such
that
’un’K(x) < ClH”nHE < CC] (317)

By Proposition 2.6, the embedding E — LPNV()(RN) is compact, and u, — u in E implies
uy — u in LPNO)(RN), Hence using (3.15), (3.16) and (3.17), we have

/]RN a(x)[tnpg (x)-1|un —uoldx — 0 asn — 4oo. (3.18)

Choose 6(x) = p;}%’;)"ll. Then § € C, (RN),1 < 0(x) < for all x € RV, and there exists

A: RN — (0,1) such that

N
pR(x)—1

1 AMx)  1-A(x) te. 1 N
G(x) = + puN(I;]),l e x e RY.
Then, for x € RY, we have
1 o N
= gmam Y T amem D aw) !

Using a € L1 (RN) N LR T(RN), we deduce

N
-1
/N|ay9<x>dx:/ a7 |a| T dx
R
i L
§2[</ |a|dx) +</ |a|dx) } (3.19)
RN RN
1 1
1 L
x[</ |a|r@ 1dx> —|—</ |a| P& 1dx> }
RN
()

This implies a € L”N 971 (RN). Hence

/]RN ( )|un_”0|dX<2|l7l| (p) |1/ln Mo|p(x) — 0 asn — +oo.
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Combining (3.13), (3.14), (3.18) and (3.19), we get lim,_, oo (A (1), un — 1) = 0. By Proposition
2.2 (2), we get u, — up in E. This proves that ¢(u) satisfies the nonsmooth (PS) condition
on E. ]

Lemma 3.3. Assume that all conditions of Theorem 1.1 are satisfied. Then there exist x > 0 and v > 0
such that, for any u € E with ||u||g = v, we have ¢p(u) > a.

Proof. Firstly, choose g € C4(RYN) (g is mentioned in (f3)). Then

Kx) N8, (x) __ N
K — ()~ N —a@N =R ) " ARG -1

x € RN, (3.20)

By Proposition 2.6, the embedding E < L**J(RY) is continuous, and there is constant c5 > 0
such that
[ulex) S csllullp forallu € E. (3.21)

Now choose v > 0 such that v < min{1, %} Then, for such a fixed <y, we have
[ulexy <1 forall u € E with [Jul[g = 1. (3.22)
Moreover, by virtue of hypothesis (f2), we obtain
F(x,t) < 9(x), (3.23)

for any x € RN and 0 < [¢| < 4.
On the other hand, for all x € RN and all |t| > 6, (f;) implies

IF(x, )] < cqlt["™), (3.24)

where ¢ = (14 1)c and T = min{|6|"V ", |5|P% " }.

From (3.23) and (3.24), for all x € RN and all t € R, we have F(x,t) < &(x) + c7|t|P),
where ¢c; = ¢ + %.
Thus, for all u € E with ||u||g = 1y, we have

Z/IRN \ax1u| dx+/

V) AWy — [ a()F(xu)dx

LI M)
> e W e [ ao s /R LA (25)
> 1 HquV—c/ a(x)]u]*’?\l(x)dx—l—/ a(x)d(x)dx
TR F 7 Jrw RN '

Applying Young’s inequality with €, we get

PR =1 x u|PR )
q(x) _q(X)*l”([]\](X) ﬂ
<ex 19&)=-px ) +¢ PR () ||u’pN |pN x)
@) - (3.26)
—ede ARO[y
_aT
S e+te¢ V?\]7 ’u|q(x)
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So, returning to (3.25) and using (3.26), for all u € E with ||u||g = 7, we obtain

_ARC

1 o + o —
$) 2 Slulh - R cr [ @l

—cye /]RN a(x)dx — /IRN a(x)v(x)dx.

(3.27)

Since v € L®(IRV), there exists some cg > 0 such that —v(x) > cs. We can choose and &y small
enough such that cgla|; — egc7|aly > 0, and then (3.27) immediately implies

) Cat-n
Py > el e A e [ a(olu(x)idx (3.28)
PN RN

x(x)
Similarly to the proof of (3.19), and combining inequality (3.20), we have a(x) € L@ (RN).

Using Proposition 2.3, (3.21) and (3.22), for all u € E with ||u||g = 7, we obtain

[ aG @ <lal ot g
RN L¥® 40 (RN)

x)—q(x (]R La(x) (]RN)
<la (x ull 2
| ‘LT<x>(—;<7> (]RN)‘ ) (3.29)
<la| cd lullf .
Lx(x)—q(x) (RN)

Using (3.29) in (3.28), we see that, for any u € E with ||u||g = -y, we have

]. pn+ _"7+*Df’z\]7 - -
w) > ——ulltv —e, ™l g ulll. .
R L RN 1

which implies that there exist «# > 0 and v > 0 such that ¢(u) > « for any u € E with
Julle = v. O

Lemma 3.4. Assume that all conditions of Theorem 1.1 are satisfied. Then ¢(u) — —oo as ||u||g —
+oo for all u € F, where F is an arbitrary finite-dimensional subspace of E.

Proof. By virtue of hypothesis (f3), we can find My > 0 such that
F(x,t) > co|t|1™)  forall x € RN, |t| > My, (3.30)
In addition, from hypothesis (f;), for almost all x € RN and || < My, we have
[F(x,t)] > c3, (3.31)
where ¢3 = (1+ Mf;%’+ + MZ?()C. Thus, using 3.30 and 3.31, we obtain

F(x,t) > colt|7¥) forallx € RN, t € R, (3.32)

o + 0 —
where ¢4 = ¢35+ ¢9 max{MZN , MZN }. Moreover, similar to (2.6) and (2.7), we get
q(x) q°
< Jl A < Jul

;
< J Al ax < iy

0
g > 1= 1l vy
o (3.33)
+

. 1 1
’u‘LZEX;(]RN) < :> ‘M|L‘72;;(]RN)

a
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Because W is a finite-dimensional subspace of E, all norms are equivalent, so we can find
0 < C=C(F) < 1such that

1
Cllullg < \u\Lqu;( < EH“HE forallu € F. (3.34)

RN)
Taking into account (3.32), (3.33) and (3.34), for every u € F with [|u|[r > 1and |u] 4w &N
a(x)
1, we have

Z/]RN pi(x \8xlu| dx+/ e V() |u|Ph dx—/RNa(X)F(x,u)dx

1 o
< ul|PN" —c/ a(x uq(x)dx—i—c/ a(x)dx
_p?v_||| o [ Al ey [ alx) o35
I+ cqlaly — coCT fJulll  if [ul , LR ry) > b
0 +
15"+ cqlaly — coCT Julll if [u] , LR ry) < L
Because of g7 > g~ > p%; ", we see that ¢(u) — —oo as ||ul|p — +oo. O

Here is the proof of Theorem 1.1.

Proof. Tt is obvious that ¢ is even and ¢(0) = 0. Besides, Lemmas 3.2, 3.3 and 3.4 permit
the application of Lemma 2.8 with X = E,X; = F (see Lemma 3.4) and X, = E @ F (see
Lemma 3.3). Therefore, we obtain that the functional ¢ has an unbounded sequence of critical
values, so problem (1.1) possesses infinitely many nontrivial solutions. O
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