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Abstract. We show the existence of a positive solution to the (p, q)-Laplacian problem

—Apu —algu = Af(u) —h(x) in Q,
u =0 on oQ),

for A large, where () is a bounded domain in R" with smooth boundary 9}, a is a
nonnegative constant, h € L*(Q)), p > q > 1, and f satisfies f(0) = f(r) = 0 with
f>0o0n (0,r) for some r > 0.
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1 Introduction

Consider the (p,q) Laplacian problem

(1.1)

—Apu —algu = Af(u) —h(x) in Q,
u = 0 on d(),

where () is bounded domain in R" with smooth boundary 0Q2, p > g > 1, Aju =
div(|Vu|"=2Vu), f:[0,00) = R, h:Q — R, ais a nonnegative constant, and A is a positive
parameter.

In contrast to the p-Laplacian, the (p,q)-Laplacian is not homogenous and occurs in ap-
plied areas such as chemical reactions and quantum physics (see e.g. [2,6]) and has been
studied extensively in recent years. The existence of a positive solution to (1.1) for A large
when f is p-sublinear at co was studied in [1]. We are interested here in the case when f
has falling zeroes and are motivated by a result in [9, Theorem 1.1], where the existence of a
positive solution to (1.1) was established for A large when a = 0 (the p-Laplacian equation),
h = e is small, and f satisfies the following condition:
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(H) There exists a constant ¥ > 0 such that f : [0,7] — R is continuous with f(0) = f(r) =0
and f > 0on (0,7).

This result extended a previous work in [4] where p = 2 and f(u) = u — u®. Note that under
the assumption (H), the function g(u) = Af(u) — € has at least two zeroes for A large as
g(0) = g(r) < 0 and g(r/2) = Af(r/2) —e > 0 for A large. The purpose of this note
is to extend the result in [9] to the general (p,q)-Laplacian. In fact, we show that for any
h € L®(Q), (1.1) has a positive solution provided that A is large enough. This extension is
nontrivial since the lack of homogeneity of the operator makes it difficult to create a positive
subsolution.
Our main result is

Theorem 1.1. Let (H) hold and ¢y > 0. Suppose h € L= (Q) with 0 < h < cg in Q). Then there exists
a constant Ao > 0 depending on cq such that (1.1) has a positive solution for A > Ay.

We shall denote by || - ||, | - |1, and | - |1, the norms in L7(Q)), C'(Q)), and C*(Q)) respec-
tively.

Lemma 1.2. Let f € L®(Q) with |||l < M. Then the problem

{—Apu —ahgu=f inQ, (12)

u=0 onaQ)

has a unique solution u € CV(Q) for some v € (0,1). Furthermore |u|y, < C, where C > 0isa
constant depending on M (but not on a and f).

Proof. Let E = Wg’p(Q) with norm [Jul| = ([, \Vu\p)l/p. Define
(Au,v) :/ ]Vu|P’2Vu-Vv+a/ IVul1"2Vu - Vo
O 0
and
F(v) = / v
0=
for u,v € E. Then it is easily seen that A : E — E* is continuous with

A
(Anu) 1 = oo as ||u]| — oo

]

and
(Au— Av,u —v) > / (|VulP2Vu — |VolP2Vo-Vu— Vo) >0 foru # 0.
0

Hence by the Minty-Browder Theorem (see [3]), there exists a unique u € E such that
Au = F in E* i.e. u is the unique weak solution of (1.2). To show that u € C¥(Q) for some
v € (0,1), we need Lieberman’s regularity result in [8]. By the weak comparison principle
[10, Theorem 10.1], |u| < @ in Q), where 7 satisfies

—Ayil —abgii = M in B(0,R),
ii=0 onodB(0,R),
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where R > 0 is such that O C B(0,R) and B(0,R) denotes the open ball centered at 0 with
radius R in R”. Note that # is unique, radial, and

i(x) = /R(pl <MS> ds < /OR <Ms>p_1ds = <M>HRP’71 = M Vx € B(0,R),

x| n n n

where ¢(t) = |t|F~2t + a|t|172L.
Next, let w € C(Q)) satisfy Aw = f in Q,w = 0 on 9Q. Then the equation in (1.2)
becomes
divA(x,u,Vu)=0 inQ,

where A(x,z, 1) = |p|P~2u + a|u|72u + Vw(x). Since A(x,z, 1) satisfies assumptions (1.10a)-
(1.10d) in [8, p. 320] and |u| < My in Q, it follows from the remark after Theorem 1.7 in [8]
that u € C1(Q)) for some v € (0,1) and |u|;, < C, where C depends on M. O

Lemma 1.3. Let f,g € L®(Q)) and u,v € W&’p(ﬂ) satisfy

—Apu—algu=f inQ, and —Ayv —alhgu =g in(),
u=0 onoQ), v=0 onoQ.

Then |u—v|; — O0as || f — gl — 0.

Proof. By Lemma 1.2, u,v € C1(Q)) for some v € (0,1) and |ul1,, 0|1, < C, where C depends
on an upper bound of || f||c, ||||co-
Multiplying the equation

—(Apu — Apv) —a(Agu —Agv) = f —g in Q)
by u — v and integrating, we get
LIV@=ol+a [ [Vu-ol = [ (f=g)u—0)
<2C|f —glh =0
as || f — gll1 — 0. From this and the interpolation inequality [7, Corollary 1.3],
wl < clwly & llwlly, Vo e CH(Q)

for some ¢ > 0 and 6 € (0,1), we obtain |u —v|; — 0 as ||f — g|[1 — 0, which completes the
proof. O

Lemma 1.4. Let m > 0 and u,, be the solution of

—Apu —abgu=m inQ),
u=0 ondQ.
Then
(1) ||tm]lco — 00 as m — oo,

(i) ||ttm||cc — 0 as m — 0.
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Proof. (i) A calculation shows that u,, = m?-'v,,, where v,, satisfies

(1.3)

—Apvy — am%’Aqvm =1 inQ,
vm =0 on oQ.

Suppose ||up|l 7/ o0 as m — oo. Then by going to a subsequence if necessary, we can

assume that ||ty ||cc < M Vm > 0 for some M > 0.
1

This implies |vy,| < Mm 71 < M in Q for m > 1. By Lemma 1.2, |v,,]1, < C, where
C > 0 is independent of m. Hence there exists vy € C}(Q)) and a subsequence of (vy,), which
we still denote by (vy,), such that v,, — vg in C!(Q)). Since

/ yva\Hva-vlpﬂm?ff’f/ |v0myq*2m-vt/;:/ P VpeW(Q),
@) Q QO

it follows by letting m — oo that

/Q Voo|P~2Vog - Vip = /Q p Ve W(Q),
i.e vy satisfies —A,v9 = 11in (), v9 = 0 on dQ). Consequently,

|l ttm]|eo = mﬁvaHc>o — 00 asm —
a contradiction which proves (i).
(ii) Using Lemma 1.3 with f = m and ¢ = 0, we obtain the result. ]
Proof of Theorem 1.1. Let u,, be defined by Lemma 1.4. By Lemma 1.3, the map m — ||ty ]|co
is continuous. This, together with Lemma 1.4, implies the existence of an m > 0 such that

llttm||lo = r. By [10, Corollary 8.4], u,, > 0 in Q) and % < 0 on 0}, where n denotes the
outward unit normal on Q). Let 0 < « < B < r and z, 5 € C#(Q) be the solution of

f S 7 7
et ‘[uc d = Ny p, z=0 onodQ.
—cg otherwise

—Npz —algz = {
Note that the existence of Zu,p follows from Lemma 1.2. Since —Apuy, — aAyu,, = min () and
1ha,p = mlly = (m +co)|B] = 0
as « — 0 and B — r, where |B| denotes the Lebesgue measure of
B={x:up(x) <a}U{x:p <uy(x)<r},

it follows from Lemma 1.3 that |z, — t;|1 — 0 as « — 0 and B — r. Hence there exist «, 8
such that z, g = zp such that
L%m <zyp<uy inQ. (1.4)

Note that the right side inequality in (1.4) follows from the weak comparison principle in
[10, Theorem 10.1]. In particular, § < zp < B when u,, € [a,B], which implies f(zg) >
inf(, /5 g f = v > 0 and therefore

—Apzo —algzo = m < Ay —co < Af(zo) — h(x) (1.5)
for u,, € [, f] and A > @ For such A and u,, ¢ [«, B],
—Apzo —algzo = —co < —h(x) < Af(z0) — h(x) (1.6)

since f(zp) > 0 in view of (1.4). Combining (1.5) and (1.6), we see that z is a subsolution of
(1.1). Clearly, z; = r is a supersolution of (1.1) with zy < z; in (). Hence (1.1) has a solution z
with zp <z < z;in Q by [5, Corollary 1], which completes the proof. O
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