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Abstract. We consider a nonlinear Robin problem driven by the anisotropic (p, q)-
Laplacian plus an indefinite potential term. In the reaction, we have the competing ef-
fects of a parametric concave (sublinear) term perturbed by a superlinear one (concave-
convex problem). We prove the existence and multiplicity result for positive solutions
which is global with respect to the parameter. We also show the existence of a minimal
positive solution and determine its dependence on the parameter.
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1 Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. In this paper, we study the
following parametric anisotropic Robin boundary value problem:{

−∆p(z)u(z)− ∆q(z)u(z) + ξ(z)(u(z))p(z)−1 = λ(u(z))τ(z)−1 + f (z, u(z)) in Ω,
∂u

∂npq
+ β(z)(u(z))p(z)−1 = 0 on ∂Ω, λ > 0, u > 0, 1 < τ < p.

(pλ)

In this problem the variable exponents p(·) and q(·) of the two differential operators are
Lipschitz continuous on Ω, that is, p, q ∈ C0,1(Ω). Then the two operators are defined by

∆p(z)u = div(|Du|p(z)−2Du), ∀u ∈ W1,p(z)(Ω),

∆q(z)u = div(|Du|q(z)−2Du), ∀u ∈ W1,q(z)(Ω).
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There is also a potential term ξ(z)(u(z))p(z)−1 which is in general indefinite since ξ ∈ L∞(Ω)

can be sign-changing (nodal). Therefore the left hand side of (pλ) is not coercive. In the
reaction (right hand side of (pλ)), we have the combined effects of a parametric “concave”
(sublinear) term λuτ(z)−1 with τ ∈ C(Ω), τ+ = maxΩ̄ τ < q− = minΩ̄ q and of a Carathéodory
perturbation f (z, x) (that is, for all x ≥ 0 z → f (z, x) is measurable and for almost a.a. z ∈ Ω
x → f (z, x) is continuous) which is “convex” ((p+ − 1)-superlinear with p+ = maxΩ̄ p) but
without satisfying the usual in such cases Ambrosetti–Rabinowitz condition.

In the boundary condition, ∂u
∂npq

denotes the conormal derivative of u, corresponding to the

anisotropic (p, q)-Laplacian. If u ∈ C1(Ω̄) then

∂u
∂npq

=
(
|Du|p(z)−2 + |Du|q(z)−2)∂u

∂n

with n(.) being the outward unit normal on ∂Ω. The boundary coefficient β ∈ C0,1(∂Ω) with
β(z) ≥ 0 and either ξ ̸≡ 0 or β ̸≡ 0.

Therefore (pλ) is an anisotropic version of the classical “concave-convex problem”, with
an indefinite potential term and Robin boundary condition. Concave-convex problems, were
first studied by Ambrosetti–Brezis–Cerami [1], for semilinear Dirichlet problems driven by
the Laplacian with no potential term (that is, ξ ≡ 0) and a reaction of the form u →
λuτ−1 + ur−1 with 1 < τ < 2 < r. Their work was extended to p-Laplacian equations
by García Azorero–Peral Alonso–Manfredi [10] and Guo–Zhang [14]. Further extensions
involved more general nonlinear nonhomogeneous differential operators and more general
reactions (see Marano–Marino–Papageorgiou [19], Papageorgiou–Rădulescu [29] and the ref-
erences therein). For anisotropic problems, there are significantly fewer papers. We mention
the works of Papageorgiou–Qin–Rădulescu [24] (Dirichlet problems driven by the anisotropic
p-Laplacian) and by Deng [6], Liu–Papageorgiou [18] (Robin problems, in [6] the differential
operator is the p(z)-Laplacian and ξ ≡ 0, while in [18] the equation is driven by the anisotropic
(p, q)-Laplacian, with ξ(z) > 0 for a.a. z ∈ Ω, the conditions on f (z, .) are stronger near 0+

and the authors employ a different superlinearity condition). Using variational tools from the
critical point theory, together with truncation and comparison techniques, we prove an exis-
tence and multiplicity result for positive solutions which is global in the parameter λ > 0 (a
bifurcation-type theorem). Our result here extends all the aforementioned anisotropic works.
We also mention the works of [3], [12], [20], [27] and [28] on isotropic Neumann and Robin
problems with indefinite potential term.

Anisotropic problems are interesting from a purely mathematical viewpoint since they
exhibit challenging nonlinearities that we do not encounter in isotropic problems. The p(z)-
Laplace differential operator is not homogeneous in contrast to the p-Laplacian. This ex-
cludes from consideration techniques which proved to be very effective in the context of
isotropic problems. This makes anisotropic problems in principle more difficult to deal with.
Anisotropic equations, proved to be the right mathematical tool to describe various phenom-
ena from physics and engineering. Materials with inhomogeneities, such as electrorheological
fluids (also known as “smart fluids”), can not be modelled adequately using the formalism
of the classical Lebesgue and Sobolev spaces. They require the use of variable such spaces (a
particular case of the so-called “Musielak–Orlicz spaces”). The book of Růžička [33] contains
mathematical models of such fluids and the phenomena characterizing them (Winslow effect).
Another important application of anisotropic problem is in image restoration, where we try to
eliminate the effect of noise. Initially, this problem was approached by smoothing the input,
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which corresponds to minimizing the energy functional:

φ1(u) =
∫

Ω
(|Du|2 + |u − i|2)dz

with i(.) being the input which corresponds to shades of grey in Ω ⊂ Rn. We assume that
noise is additive, that is, i = t0 + n with t0 representing the true image and n the noise which
is a random variable with zero mean. It turns out that this approach destroys the small details
of the image. To remedy this, it was proposed to use the “total variation smoothing”, which
corresponds to minimizing the energy functional:

φ2(u) =
∫

Ω
(|Du|+ |u − i|2)dz.

This approach does a good job of preserving the edges of the image (an edge gives rise to
a large gradient of u(·)). But unfortunately, this approach also introduces edges, where they
did not exist before. For this reason Chen–Levine–Rao [4], suggested to consider the energy
functional:

φ3(u) =
∫

Ω
(|Du|p(z) + |u − i|2)dz

with 1 ≤ p(z) ≤ 2. This function is close to 1 where there are no edges and close to 2 where
there are. Therefore, we have an energy functional which incorporates the positive aspects of
both φ1(.) and φ2(.).

More details on the mathematical and physical applications of variable spaces can be found
in the books of Cruz Uribe–Fiorenza [5], Diening–Harjulehto–Hästö–Růžička [7], Rădulescu–
Repovš [31], Růžička [33].

The Robin boundary condition is a weighted combination of Dirichlet and Neumann
boundary conditions and so it is more difficult to handle and for this reason it is less com-
mon in the literature. However, it is important from a physical viewpoint since it appears
in electromagnetic problems (impedance boundary condition) and in heat transfer problems
(convective boundary condition).

2 Mathematical background and hypotheses

In this section, we briefly review some basic facts about variable exponent spaces. A compre-
hensive presentation of variable exponent Lebesgue and Sobolev spaces can be found in the
books of Cruz Uribe–Fiorenza [5], Diening–Harjulehto–Hästö–Růžička [7].

Let L∞
1 (Ω) = {p ∈ L∞(Ω) : ess infΩ p ≥ 1}. For p ∈ L∞

1 (Ω), we set

p− = ess inf
Ω

p and p+ = ess sup
Ω

p.

Also, let M(Ω) = {u : Ω → R : u(·) is measurable}. As usual, we identify two functions
which differ on a set of zero measure.

Given p ∈ L∞
1 (Ω), we define the following variable exponent Lebesgue space

Lp(z)(Ω) =

{
u ∈ M(Ω) :

∫
Ω
|u|p(z) dz < +∞

}
.

We equip Lp(z)(Ω) with the following norm (known as the Luxemburg norm)

∥u∥p(z) = inf

{
λ > 0 :

∫
Ω

(
|u|
λ

)p(z)

dz ≤ 1

}
.
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Also, we introduce the variable exponent Sobolev spaces as follows:

W1,p(z)(Ω) =
{

u ∈ Lp(z)(Ω) : |Du| ∈ Lp(z)(Ω)
}

.

We equip this space with the following norm:

∥u∥1,p(z) = ∥u∥p(z) + ∥Du∥p(z).

An equivalent norm of W1,p(z)(Ω) is given by:

∥u∥1,p(z) = inf

{
λ > 0 :

∫
Ω

((
|Du|

λ

)p(z)

+

(
|u|
λ

)p(z)
)

dz ≤ 1

}
.

We define W1,p(z)
0 (Ω) as the closure in the ∥ · ∥1,p(z) norm of all compactly supported W1,p(z)(Ω)-

functions.
When p ∈ L∞

1 (Ω) and p− > 1, then the spaces Lp(z)(Ω), W1,p(z)(Ω), and W1,p(z)
0 (Ω) are all

separable, reflexive, and uniformly convex.
If p, p′ ∈ L∞

1 (Ω) and 1
p(z) +

1
p′(z) = 1, then Lp(z)(Ω)∗ = Lp′(z)(Ω), and we have the following

Hölder-type inequality: ∫
Ω
|uv| dz ≤

(
1

p−
+

1
p′−

)
∥u∥p(z)∥v∥p′(z)

for all u ∈ Lp(z)(Ω), v ∈ Lp′(z)(Ω).
We set

p∗(z) =


Np(z)

N−p(z) , if p(z) < N,

+∞, if p(z) ≥ N.

Theorem 2.1. If p, q ∈ C(Ω̄), p+ < N and 1 ≤ q(z) ≤ p∗(z) (resp. 1 ≤ q(z) < p∗(z)) for all
z ∈ Ω̄, then W1,p(z)(Ω) and W1,p(z)

0 (Ω) are embedded continuously (resp. compactly) into Lq(z)(Ω).

We set

p∂(z) =


(N−1)p(z)

N−p(z) , if p(z) < N,

+∞, if p(z) ≥ N.

Theorem 2.2. If p ∈ C(Ω̄), p− > 1 and q ∈ C(∂Ω) satisfies the condition

1 ≤ q(z) < p∂(z) for all z ∈ ∂Ω

then W1,p(z)(Ω) embedded compactly into Lq(z)(∂Ω). In particular, W1,p(z)(Ω) embedded compactly
into Lp(z)(∂Ω).

We introduce the following modular functions:

ρ(u) =
∫

Ω
|u|p(z) dz for all u ∈ Lp(z)(Ω),

ρ̂(u) =
∫

Ω

(
|Du|p(z) + |u|p(z)

)
dz for all u ∈ W1,p(z)(Ω).

We have the following properties.
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Proposition 2.3.

(a) For every u ∈ Lp(z)(Ω), u ̸= 0, we have ∥u∥p(z) = λ ⇐⇒ ρ
( u

λ

)
= 1;

(b) ∥u∥p(z) < 1 (resp. = 1, > 1) ⇐⇒ ρ(u) < 1 (resp. = 1, > 1);

(c) ∥u∥p(z) < 1 ⇒ ∥u∥p+
p(z) ≤ ρ(u) ≤ ∥u∥p−

p(z) and ∥u∥p(z) > 1 ⇒ ∥u∥p−
p(z) ≤ ρ(u) ≤ ∥u∥p+

p(z);

(d) ∥un∥p(z) → 0 ⇐⇒ ρ(un) → 0;

(e) ∥un∥p(z) → +∞ ⇐⇒ ρ(un) → +∞.

Similarly, we have the following implications when p ∈ C0,1(Ω).

Proposition 2.4.

(a) For every u ∈ W1,p(z)(Ω), u ̸= 0, we have ∥u∥1,p(z) = λ ⇐⇒ ρ̂
( u

λ

)
= 1;

(b) ∥u∥1,p(z) < 1 (resp. = 1, > 1) ⇐⇒ ρ̂(u) < 1 (resp. = 1, > 1);

(c) ∥u∥1,p(z) < 1 ⇒ ∥u∥p+
1,p(z) ≤ ρ̂(u) ≤ ∥u∥p−

1,p(z) and ∥u∥1,p(z) > 1 ⇒ ∥u∥p−
1,p(z) ≤ ρ̂(u) ≤

∥u∥p+
1,p(z);

(d) ∥un∥1,p(z) → 0 ⇐⇒ ρ̂(un) → 0;

(e) ∥un∥1,p(z) → +∞ ⇐⇒ ρ̂(un) → +∞.

Let β ∈ L∞(∂Ω) with β− := infz∈∂Ω β(z) > 0, and for any u ∈ W1,p(z)(Ω), define

∥u∥β := inf

{
τ > 0 :

∫
Ω

(
|∇u|

τ

)p(z)

dz +
∫

∂Ω
β(z)

(
|u|
τ

)p(z)

dσ ≤ τ

}
.

Proposition 2.5. Let ρβ(u) =
∫

Ω |∇u|p(z) dz +
∫

∂Ω β(z)|u|p(z) dσ with β− > 0, where dσ is the
measure on the boundary of Ω. For any u, uk ∈ W1,p(z)(Ω) (k = 1, 2, . . . ), we have that

(a) ∥u∥β ≤ 1 ⇒ ∥u∥p−
β ≤ ρβ(u) ≤ ∥u∥p+

β ;

(b) ∥u∥β ≥ 1 ⇒ ∥u∥p+
β ≤ ρβ(u) ≤ ∥u∥p−

β ;

(c) ∥uk∥β → 0 ⇐⇒ ρβ(uk) → 0 (as k → ∞);

(d) ∥uk∥β → ∞ ⇐⇒ ρβ(uk) → ∞ (as k → ∞).

Proposition 2.6. (see [32]) If there is a vector l ∈ Rn \ {0} such that for any z ∈ Ω the function
f (t) = q(z + tl) is monotone for t ∈ Iz = {t : z + tl ∈ Ω}, then

0 < µ∗ = inf
u ̸=0

∫
Ω

1
q(z) |Du|q(z)dz∫

Ω
1

q(z) |u|q(z)dz
.

Theorem 2.7. For any u ∈ W1,p(z)(Ω), let

∥u∥∂ := ∥∇u∥p(z) + ∥u∥β.

Then ∥u∥∂ is a norm on W1,p(z)(Ω) which is equivalent to

∥u∥1,p(z) = ∥∇u∥p(z) + ∥u∥p(z).
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The Banach space C1(Ω) is an ordered with a positive (order) cone C+ which is defined by

C+ = {u ∈ C1(Ω) : u(z) ≥ 0 for all z ∈ Ω}.

This cone has a nonempty interior given by

int C+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω}.

Given u : Ω → R is measurable, then we define

u+(z) = max{u(z), 0}, u−(z) = max{−u(z), 0} for all z ∈ Ω.

These are measurable functions and u = u+ − u−, |u| = u+ + u−. Moreover, if u ∈
W1,p(.)(Ω), then u± ∈ W1,p(.)(Ω). Suppose u, v : Ω → R are measurable functions with
u(z) ≤ v(z) for a.a. z ∈ Ω. We define

[u, v] = {h ∈ W1,p(.)(Ω) : u(z) ≤ h(z) ≤ v(z) for a.a. z ∈ Ω},

intC1(Ω)[u, v] = the interior in C1(Ω) of [u, v] ∩ C1(Ω),

[u) = {h ∈ W1,p(.)(Ω) | u(z) ≤ h(z) for a.a. z ∈ Ω}.

If u(.) is a measurable function, then we write 0 ≺ u if for all K ⊆ Ω compact we have
0 < cK ≤ u(z) for a.a. z ∈ K.

Let X be a Banach space and φ ∈ C1(X). We say that φ(.) satisfies the “C-condition”, if it
has the following property:

“Every sequence {un}n∈N ⊂ X such that

• {φ(un)}n∈N ⊆ R is bounded,

• (1 + ∥un∥X)φ′(un) → 0 in X∗,

admits a strongly convergent subsequence.”
This is a compactness-type condition on φ(·) which compensates for the fact that the

ambient space X need not be locally compact (being in general infinite-dimensional). By Kφ

we denote the critical set of φ(.), that is,

Kφ = {u ∈ X : φ′(u) = 0}.

Now we are ready to state our hypotheses on the data of problem (pλ):

H0: p, q ∈ C0,1(Ω̄), τ ∈ C(Ω̄) and 1 < τ(z) ≤ τ+ < q− ≤ q+ < p(z) < N for all z ∈ Ω̄. p+ <
Np−

N−p− , there exists d ∈ RN such that t → q(z + td) is monotone on Iz = {t : z + td ∈ Ω},
ξ ∈ L∞(Ω), β ∈ C0,α(∂Ω) with 0 < α < 1 and ξ ̸≡ 0 or β ̸≡ 0.

H1: f : Ω × R → R is a Carathéodory function which satisfies the following conditions:

(i) 0 ≤ f (z, x) ≤ a(z)(1 + xr(z)−1) for almost every z ∈ Ω and all x ≥ 0, where
a ∈ L∞(Ω), r ∈ C(Ω̄) and p+ < r(z) < p(z)∗ for all z ∈ Ω̄;

(ii) if F(z, x) =
∫ x

0 f (z, s)ds, then limx→+∞
F(z,x)
xp+ = +∞ uniformly for almost every

z ∈ Ω;
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(iii) if for every λ > 0, we define e(z, x) = f (z, x)x − p+F(z, x) and

βλ(z, x) = λ

(
1 − p+

τ(z)

)
xτ(z) + ξ(z)

(
p+

p(z)
− 1
)

xp(z) + e(z, x), x ≥ 0,

then there exists µ ∈ L1(Ω) such that

βλ(z, x) ≤ βλ(z, y) + µ(z)

for almost all z ∈ Ω and all 0 ≤ x ≤ y;

(iv) limx→0+
f (z,x)

xq(z)−1 = 0 uniformly for almost every z ∈ Ω.

Remark 2.8. Since we look for positive solutions and all the above hypotheses concern the pos-
itive semiaxis, we may assume that f (z, x) = 0 for almost every z ∈ Ω, all x ≤ 0. Hypotheses
H1(iii) is satisfied if there exists M > 0 such that for a.a. z ∈ Ω

x → λxτ(z)−1 + f (z, x)− ξ(z)xp(z)−1

xp+−1

is nondecreasing on x ≥ M (see [16]).
The following function satisfies hypotheses H1 above

f (z, x) =

(x+)s(z)−1, if x ≤ 1,

xp+−1 ln x + xµ(z)−1, if 1 < x

with s ∈ C(Ω̄), q(z) < s(z) for all z ∈ Ω̄, µ ∈ C(Ω̄), µ(z) ≤ p+ for all z ∈ Ω. This function
fails to satisfy the Ambrosetti–Rabinowitz condition (see [2]).

Let p ∈ C0,1(Ω) and consider the operator V : W1,p(z)(Ω) → (W1,p(z)(Ω))∗ defined by

⟨V(u), h⟩ =
∫

Ω

(
|∇u|p(z)−2(Du, Dh)R + |∇u|q(z)−2(Du, Dh)R

)
dz, ∀u, h ∈ W1,p(z)(Ω).

This operator has the following properties (see [13]).

Proposition 2.9. The map V : W1,p(z)(Ω) → (W1,p(z)(Ω))∗ defined above is bounded(that is, maps
bounded sets to bounded sets), continuous, strictly monotone (hence maximal monotone, too) and for
type (S)+, that is

un ⇀ u (weakly) in W1,p(z)(Ω) and lim sup
n→∞

⟨V(un), (un − u)⟩ ≤ 0 ⇒ un → u in W1,p(z)(Ω).

3 Positive solutions

We introduce the following two sets:

L := {λ > 0 : problem (pλ) has a positive solution},

Sλ := set of positive solutions of (pλ).

Our first goal is to establish some basic properties of L. From now on ∥ · ∥ := ∥ · ∥1,p(z).
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Let θ > ∥ξ∥∞, λ > 0, and consider the functional φ̂λ : W1,p(z)(Ω) → R defined by

φ̂λ(u) =
∫

Ω

|∇u|p(z)
p(z)

dz +
∫

Ω

|∇u|q(z)
q(z)

dz +
∫

Ω

ξ(z)
p(z)

|u|p(z)dz +
∫

Ω

θ

p(z)
(u−)p(z)dz

+
∫

∂Ω

β(z)
p(z)

|u|p(z)dσ −
∫

Ω

λ

τ(z)
(u+)τ(z)dz −

∫
Ω

F(z, u+)dz

for all u ∈ W1,p(z)(Ω).

Proposition 3.1. If hypotheses H0 and H1 hold, and λ > 0, then φ̂λ(·) satisfies the C-condition.

Proof. We consider a sequence {un}n≥1 ⊆ W1,p(z)(Ω) such that

|φ̂λ(un)| ≤ M1 for some M1 > 0, all n ∈ N, (3.1)

(1 + ∥un∥)φ̂′
λ(un) → 0 in W1,p(z)(Ω)∗ as n → ∞. (3.2)

From (3.2) we have

|⟨φ̂′
λ(un), h⟩| ≤ εn∥h∥

1 + ∥un∥
for all h ∈ W1,p(z)(Ω), all n ∈ N, (3.3)

with εn → 0+, which implies

∣∣∣∣⟨V(un), h⟩+
∫

Ω
ξ(z)|un|p(z)−2unhdz −

∫
Ω

θ(u−
n )

p(z)−1hdz

− λ
∫

Ω
(u+

n )
τ(z)−1hdz +

∫
∂Ω

β(z)|un|p(z)−2unhdσ −
∫

Ω
f (z, u+

n )hdz
∣∣∣∣ ≤ εn∥h∥

(1 + ∥un∥)
(3.4)

for all h ∈ W1,p(z)(Ω), n ∈ N.
In (3.4), we choose h = −u−

n ∈ W1,p(z)(Ω). We have∣∣∣∣ ∫Ω
|Du−

n |p(z)dz +
∫

Ω
|Du−

n |q(z)dz +
∫

Ω
ξ(z)(u−

n )
p(z)dz +

∫
Ω

θ(u−
n )

p(z)dz

+
∫

∂Ω
β(z)(u−

n )
p(z)dσ

∣∣∣∣ ≤ εn (3.5)

for all n ∈ N.
Then, ∣∣∣∣ ∫Ω

|Du−
n |p(z)dz +

∫
Ω
(ξ(z) + θ)(u−

n )
p(z)dz +

∫
∂Ω

β(z)(u−
n )

p(z)dσ

∣∣∣∣ ≤ εn (3.6)

which implies
u−

n → 0 in W1,p(z)(Ω) (recall that θ > ∥ξ∥∞). (3.7)

In (3.4), we choose h = u+
n ∈ W1,p(z)(Ω). We have∣∣∣∣ ∫Ω

|Du+
n |p(z)dz +

∫
Ω
|Du+

n |q(z)dz +
∫

Ω
ξ(z)(u+

n )
p(z)dz − λ

∫
Ω
(u+

n )
τ(z)dz

−
∫

Ω
f (z, u+

n )u
+
n dz +

∫
∂Ω

β(z)(u+
n )

p(z)dσ

∣∣∣∣ ≤ εn (3.8)
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for all n ∈ N.
On the other hand, from (3.1), (3.7) we have

∣∣∣∣ ∫Ω

p+
p(z)

|Du+
n |p(z)dz +

∫
Ω

p+
q(z)

|Du+
n |q(z)dz +

∫
Ω

p+
p(z)

ξ(z)(u+
n )

p(z)dz

− λ
∫

Ω

p+
τ(z)

(u+
n )

τ(z)dz −
∫

Ω
p+F(z, u+

n )u
+
n dz +

∫
∂Ω

p+
p(z)

β(z)(u+
n )

p(z)dσ

∣∣∣∣ ≤ M2 (3.9)

for some M2 > 0, all n ∈ N.
From (3.8) and (3.9) it follows that∫
Ω

(
p+

p(z)
− 1
)
|Du+

n |p(z)dz +
∫

Ω

(
p+

q(z)
− 1
)
|Du+

n |q(z)dz +
∫

Ω
ξ(z)

(
p+

p(z)
− 1
)
(u+

n )
p(z)dz

+
∫

∂Ω

(
p+

p(z)
− 1
)

β(z)(u+
n )

p(z)dσ − λ
∫

Ω

(
p+

τ(z)
− 1
)
(u+

n )
τ(z)dz +

∫
Ω

e(z, u+
n )dz ≤ M3 (3.10)

for some M3 > 0, all n ∈ N.
Recall βλ(z, x) = λ(1 − p+

τ(z) )xτ(z) + ξ(z)( p+
p(z) − 1)xp(z) + e(z, x) for all x ≥ 0. Then from

(3.10) we have ∫
Ω

βλ(z, u+
n )dz ≤ M3 for all n ∈ N. (3.11)

Claim. The sequence {u+
n }n≥1 ⊆ W1,p(z)(Ω) is bounded.

Our argument proceeds through contradiction. So, suppose that the claim is not true.
Then passing to a subsequence if necessary, we may assume that

∥u+
n ∥ → ∞ as n → ∞. (3.12)

Let yn = u+
n

∥u+
n ∥

, n ∈ N. Then ∥yn∥ = 1, yn ≥ 0 for all n ∈ N. So, we may assume that

yn ⇀ y (weakly) in W1,p(z)(Ω) and yn → y in Lp(z)(Ω), y ≥ 0. (3.13)

Let Ω+ = {z ∈ Ω : y(z) > 0} and Ω0 = {z ∈ Ω : y(z) = 0}. Then Ω = Ω+ ∪ Ω0.
First we assume that |Ω+|N > 0 (by | · |N we denote the Lebesgue measure on RN). We

have u+
n (z) → +∞ for a.a. z ∈ Ω+ and so on account of hypothesis H1(ii) we have∫

Ω

F(z, u+
n )

∥u+
n ∥p+

dz → +∞ as n → +∞ (see [23]). (3.14)

On account of (3.12), we may assume that ∥u+
n ∥ ≥ 1 for all n ∈ N. Then from (3.1) and

(3.5), we have

λ
∫

Ω

1
τ(z)

(u+
n )

τ(z)

∥u+
n ∥p+ dz +

∫
Ω

F(z, u+
n )

∥u+
n ∥p+

dz ≤ ε′n +
1

p−

∫
Ω

|Du+
n |p(z)

∥u+
n ∥p+

dz +
1

q−

∫
Ω

|Du+
n |q(z)

∥u+
n ∥p+

dz

+
∥ξ∥∞

p−

∫
Ω

(u+
n )

p(z)

∥u+
n ∥p+

dz +
∥β∥∞

p−

∫
∂Ω

(u+
n )

p(z)

∥u+
n ∥p+

dσ

≤ ε′n +
1

p−

∫
Ω
|Dyn|p(z)dz +

1
q−∥un∥p+−q+

∫
Ω
|Dyn|q(z)dz +

∥ξ∥∞

p−

∫
Ω
(yn)

p(z)dz

+
∥β∥∞

p−

∫
∂Ω

(yn)
p(z)dσ ≤ M4 (3.15)
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for some M4 > 0 with ε′n → 0.
Comparing (3.14) and (3.15), we have a contradiction. We can assume that y ≡ 0, that is

|Ω|N = |Ω0|N . We define

φ̂λ(tnu+
n ) := max{φ̂λ(tu+

n ) : 0 ≤ t ≤ 1}. (3.16)

Let vn = η1/p−yn for all n ∈ N, with η ≥ 1. Then, we have

vn ⇀ 0 in W1,p(z)(Ω) and
∫

Ω
F(z, vn) dz → 0 as n → ∞ (see [23]). (3.17)

Also, we have ∫
Ω

1
τ(z)

vτ(z)
n dz → 0. (3.18)

Moreover (3.12) implies that we can find n0 ∈ N such that

η
1

p−

∥u+
n ∥

∈ (0, 1] for all n ≥ n0. (3.19)

Hence from (3.16) and (3.19)

φ̂λ(tnu+
n ) ≥ φ̂λ(vn) =

∫
Ω

1
p(z)

|Dvn|p(z)dz +
∫

Ω

1
q(z)

|Dvn|q(z)dz +
∫

Ω

1
p(z)

ξ(z)vp(z)
n dz

− λ
∫

Ω

1
τ(z)

vτ(z)
n dz +

∫
∂Ω

1
p(z)

β(z)vp(z)
n dσ −

∫
Ω

F(z, vn) dz for all n ≥ n0

≥ 1
p+

( ∫
Ω
|Dvn|p(z)dz +

∫
Ω

ξ(z)vp(z)
n dz +

∫
∂Ω

β(z)vp(z)
n dσ

)
−
∫

Ω
F(z, vn) dz

≥ η

2p+
(see hypotheses H0 and (3.17))

for all n ≥ n1 ≥ n0. Since η ≥ 1 is an arbitrary number, we can infer that

φ̂λ(tnu+
n ) → +∞ as n → ∞. (3.20)

We know that

φ̂λ(0) = 0 and φ̂λ(u+
n ) ≤ M5, all n ∈ N. (3.21)

From (3.20) and (3.21) it follows that we can find n2 ∈ N such that

tn ∈ (0, 1) for all n ≥ n2. (3.22)

Then from (3.16) and (3.22) we infer that

tn
d
dt

φ̂λ(tu+
n )

∣∣∣∣
t=tn

= 0, then ⟨φ̂′
λ(tnu+

n ), tnu+
n ⟩ = 0, ∀n ≥ n2,
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φ̂λ(tnu+
n ) = φ̂λ(tnu+

n )−
1

p+
⟨φ̂′

λ(tnu+
n ), tnu+

n ⟩

=
∫

Ω
tp(z)
n

[
1

p(z)
− 1

p+

]
|Du+

n |p(z)dz +
∫

Ω
tq(z)
n

[
1

q(z)
− 1

p+

]
|Du+

n |q(z)dz

+
∫

Ω

[
1

p(z)
− 1

p+

]
ξ(z)(tnu+

n )
p(z)dz −

∫
Ω

λ

[
1

τ(z)
− 1

p+

]
(tnu+

n )
τ(z)dz

+
∫

∂Ω

[
1

p(z)
− 1

p+

]
β(z)(tnu+

n )
p(z)dσ +

1
p+

∫
Ω

e(z, tnu+
n )dz

≤
∫

Ω

[
1

p(z)
− 1

p+

]
|Du+

n |p(z)dz+
∫

Ω

[
1

q(z)
− 1

p+

]
|Du+

n |q(z)dz +
1

p+

∫
Ω

βλ(z, tnu+
n )dz

+
∫

Ω

[
1

p(z)
− 1

p+

]
ξ(z)(tnu+

n )
p(z)dz +

∫
∂Ω

[
1

p(z)
− 1

p+

]
β(z)(tnu+

n )
p(z)dσ

≤
∫

Ω

[
1

p(z)
− 1

p+

]
|Du+

n |p(z)dz +
∫

Ω

[
1

q(z)
− 1

p+

]
|Du+

n |q(z)dz

+
1

p+

∫
Ω

βλ(z, u+
n )dz +

1
p+

∥µ∥1 +
∫

Ω

[
1

p(z)
− 1

p+

]
ξ(z)(u+

n )
p(z)dz

+
∫

∂Ω

[
1

p(z)
− 1

p+

]
β(z)(u+

n )
p(z)dσ

= φ̂λ(u+
n )−

1
p+

⟨φ̂λ(u+
n ), u+

n ⟩+
1

p+
∥µ∥1. (3.23)

Hence we have,

φ̂λ(tnu+
n ) ≤ φ̂λ(u+

n )−
1

p+
⟨φ̂λ(u+

n ), u+
n ⟩+

1
p+

∥µ∥1 for all n ≥ n2 (see (3.8))

≤ φ̂λ(u+
n ) +

εn

p+
+

1
p+

∥µ∥1 (3.24)

(3.20) and (3.24) give us that φ̂λ(u+
n ) → +∞, and this contradicts with (3.21).

Therefore {u+
n } ⊂ W1,p(z)(Ω) is bounded. Then from (3.7) and the claim it follows that

{un} ⊂ W1,p(z)(Ω) is bounded.

We may assume that

un ⇀ u in W1,p(z)(Ω) and un → u in Lr(z)(Ω) as n → ∞. (3.25)

In (3.4), we choose h = un − u ∈ W1,p(z)(Ω), pass to the limit as n → ∞ and use (3.25). Then

lim
n→∞

⟨V(un), un − u⟩ = 0 (3.26)

(3.26) and Proposition (2.9) give us un → u in W1,p(z)(Ω). So φ̂λ(·.) satisfies the C-condition.

Proposition 3.2. If hypotheses H0 and H1 hold, then L ̸= ∅ and we have then Sλ ⊂ int C+ for every
λ ∈ L.

Proof. On account of hypotheses H1(iv), we see that given ε > 0, we can find Cε = C(ε) > 0
such that

F(z, x) ≤ ε

q(z)
xq(z) + Cεxr+ for a.a. z ∈ Ω, all x ≥ 0.
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For every u ∈ W1,p(z)(Ω), we have

φ̂λ(u) ≥
∫

Ω

1
p(z)

|Du|p(z) dz +
∫

Ω

1
q(z)

|Du|q(z) dz +
∫

∂Ω

β(z)
p(z)

|u|p(z)dσ +
∫

Ω

ξ(z)
p(z)

|u|p(z)dz

+
∫

Ω

θ

p(z)
(u−)p(z)dz −

∫
Ω

ε

q(z)
|u|q(z) dz − Cε

∫
Ω
|u|r+dz − λ

∫
Ω

1
τ(z)

(u+)τ(z)dz

≥ C̃ min{∥u∥p+ , ∥u∥p−}+
∫

Ω

1
q(z)

|Du|q(z) dz −
∫

Ω

ε

q(z)
|u|q(z) dz

− Cε

∫
Ω
|u|r+dz − λ

∫
Ω

1
τ(z)

(u+)τ(z)dz (3.27)

for some C̃ > 0 (recall that θ > ∥ξ∥∞).
Observe next that,∫

Ω

1
q(z)

|Du|q(z) dz ≥ µ∗
∫

Ω

1
q(z)

|u|q(z) dz (see Proposition 2.6). (3.28)∫
Ω

1
τ(z)

(u+)τ(z)dz ≤ 1
τ−

max{∥u∥τ+
τ(z), ∥u∥τ−

τ(z)}. (3.29)

We return to (3.27) and use (3.28) and (3.29). Then for u ∈ W1,p(z)(Ω) with ∥u∥ ≤ 1, ε < µ∗

we have

φ̂λ(u) ≥ C̃∥u∥p+ − λC1∥u∥τ− − Cε∥u∥r+

= (C̃ − λC1∥u∥τ−−p+ − Cε∥u∥r+−p+)∥u∥p+ , u ∈ W1,p(z)(Ω) (3.30)

for some C1 > 0.
Let us set, for any t > 0,

kλ(t) = λC1tτ−−p+ − Cεtr+−p+ .

Since τ− < p+ < r+ we have limt→∞ kλ(t) = limt→0+ kλ(t) = ∞.
Then there exists t0 > 0 satisfying k′λ(t0) = 0. One has

λC1(τ− − p+)t
τ−−p+−1
0 = −Cε(r+ − p+)t

r+−p+−1
0

⇒ t0 = t0(λ) =

(
λC1

Cε

p+ − τ−
r+ − p+

) 1
r+−τ−

.

Then

kλ(t0) = λC1

(
λC1

Cε

p+ − τ−
r+ − p+

) τ−−p+
r+−τ−

+ Cε

(
λC1

Cε

p+ − τ−
r+ − p+

) r+−p+
r+−τ−

and since p+ < τ+ we have limλ→0+ kλ(t0) = 0. So we can find λ0 > 0 such that

kλ(t0) < C̃ for all λ ∈ (0, λ0).

Then from (3.30) it follows that

φ̂λ(u) ≥ m̂λ > 0 for all ∥u∥ = t0. (3.31)

For u ∈ int C+, on account of the superlinearity hypothesis H1(ii), we have

φ̂λ(tu) → −∞ as t → ∞. (3.32)
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Then, (3.31), (3.32) and Proposition (3.1) permit the use of mountain pass theorem. Therefore
for every λ ∈ (0, λ0) we can find uλ ∈ W1,p(z)(Ω) such that

uλ ∈ Kφ̂λ
and 0 < m̂λ ≤ φ̂λ(uλ). (3.33)

From (3.33) we have uλ ̸= 0 (recall that ϕ̂λ(0) = 0) and

⟨φ̂′
λ(uλ), h⟩ = 0 for all h ∈ W1,p(z)(Ω). (3.34)

Choosing h = −u−
λ ∈ W1,p(z)(Ω), we obtain∫

Ω
|Du−

λ |
p(z)dz +

∫
Ω
|Du−

λ |
q(z)dz +

∫
Ω
(θ + ξ(z))(u−

λ )
p(z)dz +

∫
∂Ω

β(z)(u−
λ )

p(z)dσ = 0

⇒
∫

Ω
|Du−

λ |
p(z)dz +

∫
Ω
(θ + ξ(z))(u−

λ )
p(z)dz +

∫
∂Ω

β(z)(u−
λ )

p(z)dσ ≤ 0

⇒ uλ ≥ 0, uλ ̸= 0.

Then from (3.34) it follows that uλ is a positive solution (pλ). From the anisotropic regu-
larity theory (see [8] and [17] for the corresponding isotropic theory) we have

uλ ∈ C+ \ {0}.

For every u ∈ Sλ, we have u ∈ C+ \ {0} and

−∆p(z)u(z)− ∆q(z)u(z) + ξ(z)u(z)p(z)−1 ≥ 0 for a.a. z ∈ Ω,

⇒ ∆p(z)u(z) + ∆q(z)u(z) ≤ ∥ξ∥∞u(z)p(z)−1 for a.a. z ∈ Ω,

⇒ u ∈ int C+ (see [35] and [26], Proposition A2).

So, we have proved that (0, λ0) ⊆ L and so L ̸= ∅. Moreover, we have Sλ ⊆ int C+ for all
λ > 0.

Next, we show that L is an interval.

Proposition 3.3. If hypotheses H0 and H1 hold, λ ∈ L and 0 < µ < λ then µ ∈ L and given
uλ ∈ Sλ, we can find uµ ∈ Sµ such that uµ ≤ uλ.

Proof. Let us introduce the Carathéodory function gµ(z, x) defined by

gµ(z, x) =

{
µ(x+)τ(z)−1 + f (z, x+) + θ(x+)p(z)−1, if x ≤ uλ(z),

µuλ(z)τ(z)−1 + f (z, uλ(z)) + θuλ(z)p(z)−1, if uλ(z) < x.
(3.35)

Here θ > ∥ξ∥∞.
We set Gµ(z, x) =

∫ x
0 gµ(z, s) ds and consider the C1-functional Ψµ : W1,p(z)(Ω) → R

defined by

Ψµ(u) =
∫

Ω

1
p(z)

|Du|p(z) dz +
∫

Ω

1
q(z)

|Du|q(z) dz

+
∫

Ω

θ + ξ(z)
p(z)

|u|p(z) dz +
∫

∂Ω

β(z)
p(z)

|u|p(z) dσ −
∫

Ω
Gµ(z, u) dz (3.36)
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for all u ∈ W1,p(z)(Ω). Since θ > ∥ξ∥∞, it is clear that Ψµ(·) is coercive. Also, using the
fact that W1,p(z)(Ω) ↪→ Lp(z)(Ω) compactly, we see that Ψµ(·) is sequentially weakly lower
semicontinuous.

So, by the Weierstrass–Tonelli theorem, there exists uµ ∈ W1,p(z)(Ω) such that

Ψµ(uµ) = inf
{

Ψµ(u) : u ∈ W1,p(z)(Ω)
}

. (3.37)

Since τ+ < p−, we see that

Ψµ(uµ) < 0 = Ψµ(0) ⇒ uµ ̸= 0.

From (3.37) we have
Ψ′

µ(uµ) = 0 ⇒

⟨V(uµ), h⟩+
∫

Ω
[θ + ξ(z)]|uµ|p(z)−2uµh dz +

∫
∂Ω

β(z)|uµ|p(z)−2uµh dσ =
∫

Ω
gµ(z, uµ)h dz (3.38)

for all h ∈ W1,p(z)(Ω). In (3.38) first we choose h = −u−
µ ∈ W1,p(z)(Ω). We obtain

∫
Ω
|Du−

µ |p(z)dz +
∫

Ω
|Du−

µ |q(z)dz

+
∫

Ω
(θ + ξ(z))(u−

µ )
p(z)dz +

∫
∂Ω

β(z)(u−
µ )

p(z)dσ =
∫

Ω
gµ(z, uµ)u−

µ dz

⇒ uµ ≥ 0, uµ ̸= 0 (see (3.35)).

Next, in (3.38) we choose h = (uµ − uλ)
+ ∈ W1,p(z)(Ω). We have

⟨V(uµ), (uµ − uλ)
+⟩+

∫
Ω
[θ + ξ(z)]up(z)−1

µ (uµ − uλ)
+ dz +

∫
∂Ω

β(z)|uµ|p(z)−1uµ(uµ − uλ)
+ dσ

=
∫

Ω
[µuτ(z)−1

λ + f (z, uλ) + θup(z)−1
λ ](uµ − uλ)

+ dz (see (3.35))

≤
∫

Ω
[λuτ(z)−1

λ + f (z, uλ) + θup(z)−1
λ ](uµ − uλ)

+ dz (since µ < λ)

= ⟨V(uλ), (uµ − uλ)
+⟩+

∫
Ω
[θ + ξ(z)]up(z)−1

λ (uµ − uλ)
+ dz (since uλ ∈ Sλ).

The monotonicity of V(·) (see Proposition (2.9) ) and the fact that θ > ∥ξ∥∞ imply that
uµ ≤ uλ, ⇒ uµ ∈ [0, uλ], uµ ̸= 0, ⇒ uµ ∈ Sµ ⊆ int C+ (see (3.35) and (3.38)).

So, according to Proposition 3.3, the solution multifunction λ 7→ Sλ has a kind of weak
monotonicity property. We can improve this monotonicity property by adding one more
condition on the perturbation f (z, ·).

The new hypotheses on f (z, x) are the following:

H2: f : Ω × R → R is a function which is measurable in z ∈ Ω, for a.a. z ∈ Ω we have
f (z, ·) ∈ C1(R),

(i)–(iv) hypotheses H2(i)–(iv) are the same as the corresponding hypotheses H1(i)–(iv),
and

(v) for every ρ > 0, there exists ξ̂ρ > 0 such that for a.a. z ∈ Ω the function x →
f (z, x) + ξ̂ρxp(z)−1 is nondecreasing on [0, ρ].
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Remark 3.4. Hypotheses H2(v) is a one-sided local Hölder condition on f (z, ·). It is satisfied
for all z ∈ Ω, f (z, x) is differentiable and for every ρ > 0, we can find Cρ̂ > 0 such that
f ′x(z, x) ≥ −Cρ̂xp(z)−1 for a.a. z ∈ Ω and all 0 ≤ x ≤ ρ.

Proposition 3.5. If hypotheses H0, H2 hold, λ ∈ L, uλ ∈ Sλ ⊆ int C+ and µ ∈ (0, λ), then µ ∈ L

and we can find uµ ∈ Sµ ⊆ int C+ such that uλ − uµ ∈ int C+.

Proof. From Proposition 3.3 we know that µ ∈ L and there exists uµ ∈ Sµ ⊆ int C+ such that

uλ − uµ ∈ C+ \ {0} (3.39)

Let ρ = ∥uλ∥∞ and let ξ̂ρ > 0 be as postulated by hypothesis H2(v). We can always assume
that ξ̂ρ > ∥ξ∥∞. Then we have

− ∆p(z)uµ − ∆q(z)uµ + [ξ(z) + ξ̂ρ]u
p(z)−1
µ

= µuτ(z)−1
µ + f (z, uµ) + ξ̂ρup(z)−1

µ

≤ µuτ(z)−1
λ + f (z, uλ) + ξ̂ρup(z)−1

λ (see (3.39) and hypothesis H2(v))

≤ λuτ(z)−1
λ + f (z, uλ) + ξ̂ρup(z)−1

λ (since µ < λ)

= −∆p(z)uλ − ∆q(z)uλ + [ξ(z) + ξ̂ρ]u
p(z)−1
λ . (3.40)

Note that since uλ ∈ int C+ and µ < λ, we have

0 ≺ (λ − µ)uq(z)−1
λ . (3.41)

Then from (3.40), (3.41) and Proposition 2.4 in [23], we can conclude that

uλ − uµ ∈ int C+.

The proof is now complete.

Next, we show that for every λ ∈ L, the solution set Sλ has the smallest element (minimal
positive solution). To this end, first, we consider the following auxiliary problem:{

−∆p(z)u(z)− ∆q(z)u(z) + |ξ(z)||u(z)|p(z)−2u(z) = λ|u(z)|τ(z)−2u(z) in Ω,
∂u

∂npq
+ β(z)|u(z)|p(z)−1 = 0 on ∂Ω, λ > 0, u > 0.

(3.42)

Proposition 3.6. If hypotheses H0 hold and λ > 0, then problem (3.42) admits a unique positive
solution ūλ ∈ int C+.

Proof. We consider the C1-functional γλ : W1,p(z)(Ω) → R defined by

γλ(u) =
∫

Ω

1
p(z)

|Du|p(z) dz +
∫

Ω

1
q(z)

|Du|q(z) dz +
∫

Ω
|ξ(z)||u|p(z) dz

− λ
∫

Ω

1
τ(z)

(u+)τ(z) dz +
∫

∂Ω

β(z)
p(z)

|u|p(z)dσ

for all u ∈ W1,p(z)(Ω). Evidently, γλ(·) is coercive (since τ+ < p−, q+ < p−.) and sequentially
weakly lower semicontinuous. So, we can find ūλ ∈ W1,p(z)(Ω) such that

γλ(ūλ) = min{γλ(u) : u ∈ W1,p(z)(Ω)} < 0 = γλ(0) (since τ+ < p−),
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which implies ūλ ̸= 0. We have
γ′

λ(ūλ) = 0,

which implies

⟨V(ūλ), h⟩+
∫

Ω
|ξ(z)||ūλ|p(z)−2ūλh dz − λ

∫
Ω
(ū+

λ )
τ(z)−1h dz +

∫
∂Ω

β(z)|ūλ|p(z)−2ūλdσ = 0

(3.43)
for all h ∈ W1,p(z)(Ω).

In (3.43) we choose h = −ū−
λ ∈ W1,p(z)(Ω). Then∫

Ω
|Dū−

λ |
p(z)dz +

∫
Ω
|Dū−

λ |
q(z)dz +

∫
Ω
|ξ(z)|(ū−

λ )
p(z)dz +

∫
∂Ω

β(z)(ū−
λ )

p(z)dσ = 0

⇒
∫

Ω
|Dū−

λ |
p(z)dz +

∫
Ω
|ξ(z)|(ū−

λ )
p(z)dz +

∫
∂Ω

β(z)(ū−
λ )

p(z)dσ ≤ 0

which implies ūλ ≥ 0, ūλ ̸= 0, hence ūλ is a positive solution of (3.42) (see (3.43)), therefore
ūλ ∈ C+ \ {0} (anisotropic regularity theory).

Therefore

∆p(z)ūλ(z) + ∆q(z)ūλ(z) ≤ ∥ξ∥∞(ūλ(z))p(z)−1 for a.a. z ∈ Ω,

which implies ūλ ∈ int C+ (see Zhang [35]).
Next, we show that this positive solution of (3.42) is unique. Suppose that v̄λ is another

positive solution of (3.42). Again we have v̄λ ∈ int C+. On account of Proposition 4.1.22 of
Papageorgiou, Rădulescu and Repovs [22], p. 274, we have ūλ

v̄λ
, v̄λ

ūλ
∈ L∞(Ω). So, we can apply

Theorem 2.5 of Takac and Giacomoni [34] and get

0 ≤
∫

Ω

[−∆p(z)ūλ − ∆q(z)ūλ

(ūλ)q−−1 +
−∆p(z)v̄λ − ∆q(z)v̄λ

(v̄λ)q−−1

]
((ūλ)

q− − (v̄λ)
q−) dz

=
∫

Ω

[
λ

(
1

(ūλ)q−−τ(z)
− 1

(v̄λ)q−−τ(z)

)
−|ξ(z)|

(
(ūλ)

p(z)−q− − (v̄λ)
p(z)−q−

)]
((ūλ)

q− − (v̄λ)
q−) dz,

which implies ūλ = v̄λ (since τ+ < p− ≤ p(z)).
Therefore the positive solution ūλ ∈ int C+ of problem (3.42) is unique.

This solution ūλ ∈ int C+ provides a lower bound for the solution set Sλ.

Proposition 3.7. If hypotheses H0, H1 hold and λ ∈ L, then ūλ ≤ u for all u ∈ Sλ.

Proof. Let u ∈ Sλ ⊂ int C+ and consider the Carathéodory function βλ(z, x) defined by

β̂λ(z, x) =

{
λ(x+)τ(z)−1, if x ≤ u(z),

λu(z)τ(z)−1, if u(z) < x.
(3.44)

We set B̂λ(z, x) =
∫ x

0 β̂λ(z, s)ds and consider the C1-functional τλ : W1,p(z)(Ω) → R defined by

τλ(u) =
∫

Ω

1
p(z)

|Du|p(z)dz +
∫

Ω

1
q(z)

|Du|q(z)dz +
∫

Ω

|ξ(z)|
p(z)

|u|p(z)dz

+
∫

∂Ω

β(z)
p(z)

|u|p(z)dσ −
∫

Ω
B̂λ(z, u)dz
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for all u ∈ W1,p(z)(Ω).
From (3.44) we see that τλ(·) is coercive. Also, it is sequentially weakly lower semicontin-

uous. So, we can find ũλ ∈ W1,p(z)(Ω) such that

τλ(ũλ) = min
{

τλ(u) : u ∈ W1,p(z)(Ω)
}
< 0 = τλ(0) (since τ+ < p−),

which implies ũλ ̸= 0.
We have

τ′
λ(ũλ) = 0,

⟨V(ũλ), h⟩+
∫

Ω
|ξ(z)||ũλ|p(z)−2ũλhdz +

∫
∂Ω

β(z)|ũλ|p(z)−2ũλhdσ =
∫

Ω
β̂λ(z, ũλ)hdz (3.45)

for all h ∈ W1,p(z)(Ω). In (3.45) we first choose h = −ũ−
λ ∈ W1,p(z)(Ω) and infer that

ũλ ≥ 0, ũλ ̸= 0.

Next, in (3.45) we choose h = (ũλ − u)+ ∈ W1,p(z)(Ω). We have

⟨V(ũλ), (ũλ − u)+⟩+
∫

Ω
|ξ(z)|(ũλ)

p(z)−1(ũλ − u)+dz +
∫

∂Ω
β(z)(ũλ)

p(z)−1(ũλ − u)+dσ

=
∫

Ω
λuτ(z)−1(ũλ − u)+dz (see (3.44))

≤
∫

Ω
[λuτ(z)−1 + f (z, u)](ũλ − u)+dz (since f ≥ 0)

≤ ⟨V(u), (ũλ − u)+⟩+
∫

Ω
|ξ(z)|up(z)−1(ũλ − u)+dz +

∫
∂Ω

β(z)up(z)−1(ũλ − u)+dσ

(since u ∈ Sλ)
⇒ ũλ ≤ u.

So, we have proved that
ũλ ∈ [0, u]\{0}. (3.46)

Then it follows from (3.43), (3.44), (3.46) that

ũλ is a positive solution of (3.42),

⇒ ũλ = ūλ ∈ int C+ (see Proposition 3.5),

⇒ ūλ ≤ u for all u ∈ Sλ.

The proof is now complete.

Remark 3.8. Reasoning as in the above proof, we show that λ 7→ ūλ is increasing, that is, if
0 < µ < λ, then ūλ − ūµ ∈ C+ \ 0.

We know that Sλ is downward directed (see Filippakis and Papageorgiou [9] and Papa-
georgiou, Rădulescu and Repovš [21], and recall that V(·) is monotone (see Proposition 2.9)).

Proposition 3.9. If hypotheses H0, H1 hold and λ ∈ L, then there exists u∗
λ ∈ Sλ ⊆ int C+ such that

u∗
λ ≤ u for all u ∈ Sλ (minimal positive solution of (pλ)).
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Proof. By Lemma 3.10 of Hu and Papageorgiou [15] (p. 178), we know that we can find
{un}n≥1 ⊆ Sλ ⊆ int C+ decreasing (recall that Sλ is downward directed) such that

inf
n≥1

un = inf Sλ.

Since uλ ≤ un ≤ u1 for all n ∈ N (see Proposition 3.6), from hypothesis H1(i) it follows
that {un}n≥1 ⊆ W1,p(Ω) is bounded. So, we may assume that

un ⇀ u∗
λ in W1,p(Ω) and un → u∗

λ in Lr(z)(Ω) as n → ∞. (3.47)

We have

⟨V(un), un − u∗
λ⟩+

∫
Ω

ξ(z)up(z)−1
n (un − u∗

λ) dz +
∫

∂Ω
β(z)up(z)−1

n (un − u∗
λ)dσ

= λ
∫

Ω
uτ(z)−1

n (un − u∗
λ) dz +

∫
Ω

f (z, un)(un − u∗
λ) dz,

which implies
lim
n→∞

⟨V(un), un − u∗
λ⟩ = 0,

and thus
un → u∗

λ in W1,p(z)(Ω) (see Proposition 2.9). (3.48)

Note that ūλ ≤ u∗
λ and so u∗

λ ̸= 0,

⟨V(u∗
λ), h⟩+

∫
Ω

ξ(z)(u∗
λ)

p(z)−1h dz +
∫

∂Ω
β(z)(u∗

λ)
p(z)−1hdσ

= λ
∫

Ω
(u∗

λ)
τ(z)−1h dz +

∫
Ω

f (z, u∗
λ)h dz

for all h ∈ W1,p(z)(Ω) (see (3.48)).
It follows that

u∗
λ ∈ Sλ ⊆ int C+ and u∗

λ = inf Sλ.

The proof is now complete.

We set λ∗ = supL.

Proposition 3.10. If hypotheses H0, H2 hold, then λ∗ < ∞.

Proof. On account of hypotheses H0, H2(iv) and since τ+ < p−, we see that we can find λ > λ∗

such that
λxτ(z)−1 + f (z, x)− ξ(z)xp(z)−1 ≥ 0 for a.a. z ∈ Ω, all x ≥ 0. (3.49)

Let λ > λ̂ and suppose that λ ∈ L. Then we can find uλ ∈ Sλ ⊆ int C+. Let Ω0 ⊂⊂ Ω (that is,
Ω0 ⊆ Ω0 ⊆ Ω) and assume that ∂Ω0 is a C2-manifold. We set m0 = minΩ0 uλ > 0 (recall that
uλ ∈ int C+). Also, let ξ̂ρ > ∥ξ∥∞. Let mδ

0 = m0 + δ for δ > 0 small enough. We have

− ∆p(z)m
δ
0 − ∆q(z)m

δ
0 + [ξ(z) + ξ̂ρ](mδ

0)
p(z)−1

≤ [ξ(z) + ξ̂ρ](mδ
0)

p(z)−1 + χ(δ) with χ(δ) → 0+ as δ → 0+

≤ λ̂mτ(z)−1
0 + f (z, m0) + ξ̂ρmp(z)−1

0 + χ(δ) (see (3.49))

≤ λ̂uτ(z)−1
λ + f (z, uλ) + ξ̂ρup(z)−1

λ + χ(δ) (see hypothesis H2(v))

≤ λ̂uτ(z)−1
λ + f (z, uλ) + ξ̂ρup(z)−1

λ − [λ − λ̂]mp(z)−1
0 + χ(δ)

≤ − ∆p(z)uλ − ∆q(z)uλ + [ξ(z) + ξ̂ρ]u
p(z)−1
λ in Ω0, for 0 < δ < 1 small. (3.50)
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Note that δ ∈ (0, 1) small enough, we will have

[λ − λ̂]mp(z)−1
0 − χ(δ) ≥ η > 0.

So, from (3.50) and Papageorgiou–Qin–Rădulescu [24], Proposition 5 (see also [25], Propo-
sition 6) we have

uλ(z) ≥ mδ0 for all z ∈ Ω, all 0 < δ < 1 small enough

which is a contradiction. Therefore 0 < λ∗ ≤ λ̂ < ∞.

According to this proposition, we have

(0, λ∗) ⊆ L ⊆ (0, λ∗]. (3.51)

We will show that for all λ ∈ (0, λ∗), we have at least two positive smooth solutions for
problem (pλ). To do this we need to strengthen a little the hypotheses on f (z, ·). The new
conditions on f (z, x) are the following:

H3: f : Ω × R → R is a Carathéodory function, hypotheses H3(i)–(v) are the same as the
corresponding hypotheses H2(i)–(v) = H1(i)–(v) and

(vi) for every m > 0, there exists ηm > 0 such that

f (z, x) ≥ ηm > 0 for a.a. z ∈ Ω, all x ≥ m.

Proposition 3.11. If hypotheses H0, H3 hold and λ ∈ (0, λ∗), then problem (pλ) admits at least two
positive solutions u0, û ∈ int C+, u0 ̸= û.

Proof. Let η ∈ (λ, λ∗). We have η ∈ L (see (3.51)) and so we can find uη ∈ Sη ⊆ int C+. Then
according to Proposition 3.5, we can find u0 ∈ Sλ ⊆ int C+ such that

uη − u0 ∈ int C+. (3.52)

Recall that ūλ ≤ u0 (see Proposition 3.7).
Let ρ = ∥u0∥∞ and let ξ̂ρ > 0 be as postulated by hypothesis H3(v)(H2(v)). We can assume

that ξ̂ρ > ∥ξ∥∞. Then we have

− ∆p(z)ūλ − ∆q(z)ūλ + [ξ(z) + ξ̂ρ]ū
p(z)−1
λ

≤ − ∆p(z)ūλ − ∆q(z)ūλ + [|ξ(z)|+ ξ̂ρ]ū
p(z)−1
λ

= λūτ(z)−1
λ + ξ̂ρūp(z)−1

λ (see Proposition 3.6)

≤ λuτ(z)−1
0 + f (z, ūλ) + ξ̂ρup(z)−1

0 (recall that f ≥ 0)

≤ λuτ(z)−1
0 + f (z, u0) + ξ̂ρup(z)−1

0 (see Proposition 3.7 and hypothesis H3(v) = H2(v))

= − ∆p(z)u0 − ∆q(z)u0 + [ξ(z) + ξ̂ρ]u
p(z)−1
0 (since u0 ∈ Sλ). (3.53)

On account of hypothesis H3(vi) and since uλ ∈ int C+, we see that

0 ≺ f (·, ūλ(·)).
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Then from (3.53) and Proposition 2.4 in [23] (see also [25], Proposition 7), we can conclude
that

u0 − ūλ ∈ int C+. (3.54)

It follows from (3.52) and (3.54) that

u0 ∈ intC1(Ω̄)[ūλ, uη ]. (3.55)

As before, let θ > ∥ξ∥∞ and consider the Carathéodory function kλ(z, x) defined by

kλ(z, x) =


λūλ(z)τ(z)−1 + f (z, ūλ(z)) + θūλ(z)p(z)−1, if x < ūλ(z)

λxτ(z)−1 + f (z, x) + θxp(z)−1, if ūλ(z) ≤ x ≤ uη(z)

λuη(z)τ(z)−1 + f (z, uη(z)) + ϑuη(z)p(z)−1, if uη(z) < x.

(3.56)

We set Kλ(z, x) =
∫ x

0 kλ(z, s)ds and consider the C1-functional τλ : W1,p(z)(Ω) → R de-
fined by

τλ(u) =
∫

Ω

1
p(z)

|Du|p(z)dz +
∫

Ω

1
q(z)

|Du|q(z)dz +
∫

Ω

1
p(z)

(θ + ξ(z))|u|p(z)dz

−
∫

Ω
Kλ(z, u)dz +

∫
∂Ω

β(z)
p(z)

|u|p(z)dσ

for all u ∈ W1,p(z)(Ω).
From (3.56) and since θ > ∥ξ∥∞, we infer that τλ(·) is coercive. Also, it is sequentially

weakly lower semicontinuous. So, we can find ũ0 ∈ W1,p(z)(Ω) such that

τλ(ũ0) = min{τλ(u) : u ∈ W1,p(z)(Ω)},

⇒ τ′
λ(ũ0) = 0,

⇒ ⟨τ′
λ(ũ0), h⟩ = 0 for all h ∈ W1,p(z)(Ω).

Choosing h = (ūλ − ũ0)+ and h = (ũ0 − uη)+ and using (3.56), we show as before that

ũ0 ∈ [ūλ, uη ] ∩ int C+.

Therefore, we may assume that ũ0 = u0 or otherwise, we already have a second positive
smooth solution and so, we are done.

Next, we consider the Carathéodory function

k̂λ(z, x) =

{
λūλ(z)τ(z)−1 + f (z, ūλ(z)) + θūλ(z)p(z)−1, if x ≤ ūλ(z)

λxτ(z)−1 + f (z, x) + ϑxp(z)−1, if ūλ(z) < x.
(3.57)

We define K̂λ(z, x) =
∫ x

0 k̂λ(z, s)ds and introduce the C1-functional τ̂λ : W1,p(z)(Ω) → R

defined by

τ̂λ(u) =
∫

Ω

1
p(z)

|Du|p(z)dz +
∫

Ω

1
q(z)

|Du|q(z)dz +
∫

Ω

1
p(z)

(θ + ξ(z))|u|p(z)dz

−
∫

Ω
K̂λ(z, u)dz +

∫
∂Ω

β(z)
p(z)

|u|p(z)dσ

for all u ∈ W1,p(z)(Ω).
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From (3.56) and (3.57), it is clear that

τλ

∣∣
[ūλ,uη ]

= τ̂λ

∣∣
[ūλ,uη ]

.

On account of (3.55), we have that u0 is a local C1(Ω)-minimizer of τ̂λ,

⇒ u0 is a local W1,p(z)(Ω)− minimizer of τ̂λ.

(see Gasiński and Papageorgiou [[13], Proposition 3.3])
Using (3.57), we can easily see that

Kτ̂λ
⊂ [ūλ) ∩ int C+. (3.58)

Then from (3.57) and the above, we can infer that we may assume that Kτ̂λ
is finite or otherwise,

we already have an infinity of positive smooth solutions all distinct from u0 and so, we are
done. According to Theorem 5.7.6 of Papageorgiou, Rădulescu, and Repovš [[22], p. 449], we
can find ρ ∈ (0, 1) small such that

τ̂λ(u0) < inf{τ̂λ(u) : ∥u − u0∥ = ρ} = m̂ρ. (3.59)

On account of hypothesis H3(ii) for u ∈ int C+, we have

τ̂λ(tu) → −∞ as t → +∞. (3.60)

Finally, from (3.57), it follows that

ϕλ̂

∣∣
[ūλ)

= τ̂λ

∣∣
[ūλ)

+ η̂ with η̂ ∈ R,

⇒ τ̂λ(·) satisfies the C-condition (see Proposition 3.1). (3.61)

Then (3.59), (3.60), (3.61) permit the use of the mountain pass theorem. So, we can find
û ∈ W1,p(z)(Ω) such that

û ∈ Kτ̂λ
⊂ [ūλ) ∩ int C+ and m̂ρ ≤ τ̂λ(û). (3.62)

From (3.62) and (3.57), we see that û ∈ Sλ ⊆ int C+, while from (3.62) and (3.59), we have that
û ̸= u0.

Finally, we show that the critical parameter value λ∗ is admissible, that is, λ∗

Proposition 3.12. If hypotheses H0, H1 hold, then λ∗ ∈ L.

Proof. Let {λn}n≥1 ⊆ L such that λn → λ∗ as n → ∞. From the proof of Proposition 3.3, we
know that we can find un ∈ Sλn ⊆ int C+ such that φλ̂n

(un) < 0 for all n ∈ N.
Also, we have φ′

λ̂n
(un) = 0, for all n ∈ N. Then as in the proof of Proposition 3.1, we show

that {un}n≥1 ⊆ W1,p(z)(Ω) is bounded.
We may assume that

un ⇀ u∗ in W1,p(z)(Ω) and un → u∗ in Lr(z)(Ω) as n → ∞. (3.63)

We have

⟨V(un), h⟩+
∫

Ω
ξ(z)up(z)−1

n h dz +
∫

∂Ω
β(z)up(z)−1

n hdσ = λn

∫
Ω

uτ(z)−1
n h dz +

∫
Ω

f (z, un)h dz
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for all h ∈ W1,p(z)(Ω), all n ∈ N.
Choosing h = un − u∗, passing to the limit as n → ∞ and using (3.63), we obtain

un → u∗ in W1,p(z)(Ω).

So, in the limit as n → ∞, we have

⟨V(u∗), h⟩+
∫

Ω
ξ(z)(u∗)p(z)−1h dz +

∫
∂Ω

β(z)(u∗)p(z)−1hdσ

= λ∗
∫

Ω
(u∗)q(z)−1h dz +

∫
Ω

f (z, u∗)h dz

for all h ∈ W1,p(z)(Ω).
We have ūλ1 ≤ un for all n ∈ N (see the Remark 3.8),

⇒ ūλ1 ≤ u∗,

⇒ u∗ ∈ Sλ∗ ⊆ int C+ and so λ∗ ∈ L.

The proof is now complete.

Summarizing, we can state the following existence and multiplicity theorem for the prob-
lem (pλ), which is global in the parameter λ > 0 (a bifurcation-type theorem).

Theorem 3.13. If hypotheses H0, H3, hold, then there exists λ∗ > 0 such that

(a) for all λ ∈ (0, λ∗), problem (pλ) has at least two positive solutions

u0, û ∈ int C+;

(b) for λ = λ∗, problem (pλ) has at least one positive solution

u∗ ∈ int C+;

(c) for all λ > λ∗, problem (pλ) has no positive solutions;

(d) for every λ ∈ L = (0, λ∗], problem (pλ) has a smallest positive solution u∗
λ ∈ int C+ and the

map λ 7→ u∗
λ from L = (0, λ∗] into C+ \ {0} is increasing, that is,

0 < µ ≤ λ ∈ L ⇒ u∗
λ − u∗

µ ∈ C+ \ {0}.
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[34] P. Takáč, J. Giacomoni, A p(x)-Laplacian extension of the Díaz–Saa inequality and some
applications, Proc. Roy. Soc. Edinburgh Sect. A 150(2020), No. 1, 205–232. https://doi.
org/10.1017/prm.2018.91; MR4065080; Zbl 1436.35210

[35] Q. Zhang, A strong maximum principle for differential equations with nonstandard
p(x)-growth conditions, J. Math. Anal. Appl. 312(2005), 125–143. https://doi.org/10.
1016/j.jmaa.2005.03.013; MR2175201; Zbl 1162.35374

https://doi.org/10.3934/dcdss.2021111
https://doi.org/10.3934/dcdss.2021111
https://www.ams.org/mathscinet-getitem?mr=4347357
https://zbmath.org/?q=an:1482.35101
https://doi.org/10.1007/s00025-023-01912-8
https://www.ams.org/mathscinet-getitem?mr=4581175
https://zbmath.org/?q=an:1514.35026
https://doi.org/10.1007/s40840-018-0701-2
https://doi.org/10.1007/s40840-018-0701-2
https://www.ams.org/mathscinet-getitem?mr=4044899
https://zbmath.org/?q=an:1431.35026
https://doi.org/10.1515/ans-2016-0023
https://doi.org/10.1515/ans-2016-0023
https://www.ams.org/mathscinet-getitem?mr=3562940
https://zbmath.org/?q=an:1352.35021
https://doi.org/10.1007/978-3-7643-8145-5
https://doi.org/10.1007/978-3-7643-8145-5
https://www.ams.org/mathscinet-getitem?mr=2356201
https://zbmath.org/?q=an:1134.35001
https://doi.org/10.1201/b18601
https://www.ams.org/mathscinet-getitem?mr=3379920
https://zbmath.org/?q=an:1343.35003
https://doi.org/10.3934/cpaa.2018003
https://www.ams.org/mathscinet-getitem?mr=3808968
https://zbmath.org/?q=an:1379.35091
https://doi.org/10.1007/BFb0104029
https://www.ams.org/mathscinet-getitem?mr=1810360
https://zbmath.org/?q=an:0968.76531
https://doi.org/10.1017/prm.2018.91
https://doi.org/10.1017/prm.2018.91
https://www.ams.org/mathscinet-getitem?mr=4065080
https://zbmath.org/?q=an:1436.35210
https://doi.org/10.1016/j.jmaa.2005.03.013
https://doi.org/10.1016/j.jmaa.2005.03.013
https://www.ams.org/mathscinet-getitem?mr=2175201
https://zbmath.org/?q=an:1162.35374

	Introduction
	Mathematical background and hypotheses
	Positive solutions

