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Abstract. In this paper, we study the existence of multiple normalized solutions to the
following Schrödinger–Poisson system with general nonlinearities:

−ε2∆u + V(x)u + ϕu = f (u) + λu in R3,
−ε2∆ϕ = u2 in R3,∫

R3 |u|2dx = ε3a2,

where ε, a > 0, λ ∈ R is an unknown parameter that appears as a Lagrange multiplier,
V(x) : R3 → [0, ∞) is a continuous function, and f is a differentiable function satisfying
L2-subcritical growth. Through using the minimization techniques and the Lusternik–
Schnirelmann category, we prove that the numbers of normalized solutions are related
to the topology of the set where the potential V(x) attains its minimum value.
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1 Introduction

In this paper, we are concerned with the existence of multiple normalized solutions to the
following Schrödinger–Poisson system with general nonlinearities:

−ε2∆u + V(x)u + ϕu = f (u) + λu in R3,

−ε2∆ϕ = u2 in R3,∫
R3 |u|2dx = ε3a2,

(1.1)

where ε, a > 0, λ ∈ R is an unknown parameter that appears as a Lagrange multiplier.
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Problem (1.1) arises in the study of the coupled Schrödinger–Poisson system:{
iψt − ∆ψ + V(x)ψ + ϕψ = g(|ψ|2)ψ in R3,

−∆ϕ = |ψ|2 in R3,
(1.2)

where ψ(x, t) : R3 × [0, T] is the wave function. Equation (1.2) arises from approximation
of the Hartree–Fock equation which describes a quantum mechanical of many particles, see
[11, 12, 24]. Set ψ(x, t) = eiλtu(x) and u : R3 → R, one is led to the equation{

−∆u + V(x)u + ϕu = f (u) + λu in R3,

−∆ϕ = u2 in R3,

where f (u) = g(|u|2)u, λ ∈ R. The system (1.1) was firstly introduced by Benci and Fortunato
in [9]. System (1.1) also arises in various fields of physics, for instance, in semiconductor
theory (see [10,25,26]), for more details on the physical aspects, we refer the reader to [9] and
references therein.

When λ ∈ R is a fixed parameter, we call (1.1) the fixed frequency problem. In the last
decades, the existence, concentration and multiplicity of solutions for the fixed frequency
problem (1.1) has been studied by many scholars, for example [2–4, 13, 15, 27, 29] and the
references therein.

Recently, the existence and multiplicity of normalized solution are attracted many people’s
interests. Such solutions have a prescribed L2-norm, that is, solutions which satisfy ∥u∥2 = a
for a priori given a > 0. In this case, the parameter λ ∈ R cannot be fixed but instead appears
as a Lagrange multiplier.

When ε = 1, V(x) = 0 and f (u) = |u|p−2u, normalized solutions of (1.1) can be obtained
by considering the critical points of the following functional

J(u) =
1
2

∫
R3

|∇u|2dx +
1
4

∫
R3

∫
R3

u2(x)u2(y)
|x − y| dydx − 1

p

∫
R3

|u|pdx

on the constraint
S(a) = {u ∈ H1(R3) : ∥u∥2 = a}.

As far as we know, the first work for normalized solutions to Schrödinger–Poisson system
is due to Sánchez and Soler [28], they proved that all the minimizing sequence for σa are
compact provided that a ∈ (0, a0) for a suitable a0 > 0 small enough and p = 8

3 , where σa is
defined by

σa = inf
u∈S(a)

J(u). (1.3)

Bellazzini and Siciliano in [5] and [6] proved that σa is achieved when a > 0 is small and
p ∈ (2, 3) and when a > 0 is large and p ∈ (3, 10

3 ), respectively. Subsequently, Jeanjean and
Luo in [22] sharpened the conclusion of [6] by showing that (1.3) has a minimizer if and only
if

a ≥ a1 = inf{a > 0 : σa < 0}.

Moreover, for the case of p = 3 or p = 10
3 , they proved σa has no minimizer for any a > 0.

For the L2-supercritical case, that is, p ∈ ( 10
3 , 6), the functional J(u) is no more bounded

from below on S(a). Bellazzini, Jeanjean and Luo in [7] found critical points of J(u) on S(a)
by looking at the mountain-pass level for a > 0 sufficiently small. In 2021, Jeanjean and Le in
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[21] obtained the existence of two positive solutions for (1.1) with f (u) = |u|p−2u which can
be characterized respectively as a local minima and as a mountain pass critical point when
p ∈ ( 10

3 , 6]. For the general nonlinearity, Chen, Tang and Yuan in [16] studied the existence
of normalized solutions for system (1.1), where f ∈ C(R, R) covers the case f (u) = |u|p−2u
with q ∈ (2, 10

3 ) ∪ ( 10
3 , 6). When considering more general L2-supercritical conditions without

imposing the monotonicity property on f , Hu, Tang and Jin [20] obtained the existence of
normalized solutions for problem (1.1) under suitable assumptions on f .

For the case combining nonlinearity, Kang, Li and Tang in [23] considered system (1.1)
with f (u) = µ|u|q−2u + |u|p−2u, where µ ∈ R, 2 < q ≤ 10

3 ≤ p < 6 with q ̸= p. Under some
suitable assumptions on s and µ, they proved some existence, nonexistence and multiplicity
of normalized solutions.

When ε = 1 and V(x) ̸= 0, it is more complicated to deal with the existence of normalized
solutions. Zeng and Zhang in [32] considered system (1.1) with f (u) = |u|pu (0 < p < 4

3 ) and
unbounded potential, where the potential function V(x) satisfies the following conditions

V ∈ C(RN , R+), inf
x∈RN

V(x) = 0 and lim
|x|→+∞

V(x) = ∞,

with the help of the compactness of Sobolev embedding in the working space, they obtained
the existence of normalized solutions.

To our best of knowledge, there is few results for the existence of multiple normalized so-
lutions to Schrödinger–Poisson system (1.1). Motivated by [1], the main purpose of this paper
is to study the existence of multiple normalized solutions to (1.1) by using the Lusternik–
Schnirelmann category when V(x) satisfies the global conditions:

(V) V ∈ C(RN , R) ∩ L∞(RN), V(0) = 0, 0 = inf
x∈RN

V(x) < lim inf
|x|→+∞

V(x) = V∞.

By change of variable x → εx, problem (1.1) reduces to the following system
−∆u + V(εx)u + ϕu = f (u) + λu in R3,

−∆ϕ = u2 in R3,∫
R3 |u|2dx = a2.

(1.4)

We assume that V(x) satisfies (V) and f satisfies the following assumptions:

( f1) f is odd and there exist q ∈ (3, 10
3 ) and α ∈ (0,+∞) such that lims→0

| f (s)|
|s|q−1 = α.

( f2) There exist constants c1, c2, c3, c4 > 0 and p ∈ (3, 10
3 ) such that

| f (s)| ≤ c1 + c2|s|p−1 ∀s ∈ R and | f ′(s)| ≤ c3 + c4|s|p−2 ∀s ∈ R.

( f3) There exists q1 ∈ (3, 10
3 ) and q > q1 such that f (s)/sq1−1 is an increasing function of s on

(0,+∞).

Remark 1.1. The conditions ( f1) and ( f3) imply that F(t) ≥ 0 for all t ∈ R. Indeed,

f (s)
sq1−1 ≥ lim

s→0+

f (s)
sq−1 sq−q1 = 0, s > 0,

that is, f (s) ≥ 0. Hence, F(t) ≥ 0.
An example of a function f that satisfies the above assumption is

f (s) = |s|q−2s + |s|r−2s ln(1 + |s|) ∀s ∈ R,

for some r, q ∈ (3, 10
3 ) and r > q, here ( f2) and ( f3) hold with p ∈ (r, 10

3 ).
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A solution u to the problem (1.4) with
∫

R3 |u|2 = a2 can be obtained by looking for critical
points of the following functional

Jε(u) =
1
2

∫
R3

(|∇u|2 + V(εx)u2)dx +
1
4

∫
R3

ϕuu2dx −
∫

R3
F(u)dx, u ∈ H1(R3),

restricted to sphere
S(a) = {u ∈ H1(R3) : ∥u∥2 = a},

where ∥ · ∥p denotes the usual norm in Lp(R3) for p ∈ [1,+∞).
Moreover, it is easy to see that Jε ∈ C1(H1(R3), R) and

J′ε(u)v =
∫

R3
(∇u∇v + V(εx)uv)dx +

∫
R3

ϕuuvdx −
∫

R3
f (u)vdx, ∀v ∈ H1(R3).

When we study the multiplicity of solutions in the nonautonomous case, we need to use
the following sets:

M = {x ∈ R3 : V(x) = 0}
and

Mδ = {x ∈ R3 : dist(x, M) ≤ δ}, δ > 0.

Now, we state our main result as follows.

Theorem 1.2. Suppose that f satisfies the conditions ( f1)–( f3) and that V satisfies (V). Then for each
δ > 0, there exist ε0, µ∗ > 0 and a∗ > 0 such that (1.1) admits at least catMδ

(M) couples (uj, λj) ∈
H1(R3)× R of weak solutions for 0 < ε < ε0, |V|∞ < µ∗ and a > a∗ with

∫
R3 |uj|2dx = a2 and

Jε(uj) < 0.

Remark 1.3. For V(0) =: V0 ̸= 0, V0 < V∞, we can also obtain Theorem 1.2.

We recall that, if Y is a closed subset of a topological space X, the Lusternik–Schnirelmann
category catX(Y) is the least number of closed and contractible sets in X which cover Y. If
X = Y, we use the notation cat(X). For more details about this subject, we cite [30].

The organization of this paper is as follows. In Section 2, we study the autonomous
problem. In Section 3, we study the nonautonomous case. In this section, we also study
the Palais–Smale condition on the sphere S(a) for the energy functional and provide some
crucial tools to establish a multiplicity result. In Section 4, we prove the multiplicity and
concentration of solutions to problem (1.1).

2 The autonomous case

The following classical Gagliardo–Nirenberg inequality is so crucial in this paper, which can
be found in [31]. Precisely, let l ∈ [2, 6), then

|u|ll ≤ C|u|(1−βl)l
2 |∇u|βl l

2 in R3, βl =
3(l − 2)

2l
, (2.1)

for some positive constant C = C(3, l) > 0.
In this section, we list some preliminary lemmas which used later involving the existence

of normalized solution for the following Schrödinger–Poisson system
−∆u + µu + ϕu = f (u) + λu in R3,

−∆ϕ = u2 in R3,∫
R3 |u|2dx = a2,

(2.2)
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where a > 0, µ ≥ 0, and λ ∈ R is unknown parameter that appears as a Lagrange multiplier
and f is a continuous function satisfying ( f1)–( f3).

A solution u to the problem (2.2) corresponds to a critical point of the C1 functional

Iµ(u) =
1
2

∫
R3

(|∇u|2 + µu2)dx +
1
4

∫
R3

ϕuu2dx −
∫

R3
F(u)dx, u ∈ H1(R3),

on the constraint S(a) given by

S(a) = {u ∈ H1(R3) : ∥u∥2 = a}.

Our main result in this section is stated as follows.

Theorem 2.1. Suppose that f satisfies the conditions ( f1)–( f3). Then, there exists µ∗ > 0 and a∗ > 0
such that problem (2.2) has a couple (u, λ) solution when 0 ≤ µ < µ∗ and a > a∗, where u is positive.

The proof of the theorem above will be divided into several lemmas.
Now, we recall some properties of the functions ϕu in the following lemma (for a proof see

[27], [18] and [17]).

Lemma 2.2. The following results hold:

(1) ϕu ≥ 0;

(2) there exist some constants C1, C2 > 0 such that
∫

R3 ϕuu2dx ≤ C1|u|412
5
≤ C2∥u∥4;

(3) if un → u in Lt(R3), ∀t ∈ [2, 6), then
∫

R3 ϕun un
2dx →

∫
R3 ϕuu2dx,

where ∥ · ∥ denotes the usual norm in H1(R3).

Define N: H1(R3) → R by

N(u) =
∫

R3
ϕuu2dx.

Lemma 2.3 ([33, Lemma 2.2]). Let un ⇀ u in H1(R3) and un → u a.e. in R3. Then as n → ∞,

(1) N(un − u) = N(un)− N(u) + o(1);

(2) N′(un − u) = N′(un)− N′(u) + o(1), in (H1(R3))′.

Lemma 2.4. The functional Iµ is coercive and bounded from below in S(a).

Proof. According to ( f1)–( f2), there is C1, C2 > 0 such that

|F(t)| ≤ C1|t|q + C2|t|p ∀t ∈ R.

Then it follows from (2.1) that

Iµ(u) ≥
1
2

∫
R3

|∇u|2dx − CC1a(1−βq)q
(∫

R3
|∇u|2dx

) βqq
2

− CC2a(1−βp)p
(∫

R3
|∇u|2dx

) βp p
2

.

Since q, p ∈ (2, 10
3 ), by simple calculation, we get βqq, βp p < 2, which ensures the coercivity

and boundedness of Iµ from below.
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Lemma 2.4 guarantees that the minimization problem

Iµ,a = inf
u∈S(a)

Iµ(u)

is well defined. In what follows, we are going to establish some properties of Iµ related to the
parameter µ ≥ 0.

Lemma 2.5. There exists µ∗ > 0, a∗ > 0 such that Iµ,a < 0 for 0 ≤ µ < µ∗ and a > a∗.

Proof. By assumption ( f3), we have

f ′(t)t − (q1 − 1) f (t) ≥ 0 ∀t > 0. (2.3)

In order to show t 7→ F(t)
tq1 is increasing on (0,+∞), we need to prove

d
dt

F(t)
tq1

=
f (t)tq1 − q1F(t)tq1−1

t2q1
=

f (t)t − q1F(t)
tq1+1 ∀t > 0.

Define h(t) = f (t)t − q1F(t), clearly, h(0) = 0 and (2.3) yields that

h′(t) = f ′(t)t − (q1 − 1) f (t) ≥ 0 ∀t > 0,

which implies that
h(t) = f (t)t − q1F(t) ≥ 0. (2.4)

This leads to d
dt

F(t)
tq1 ≥ 0, that is, the function t 7→ F(t)

tq1 is increasing on (0,+∞), thus, we have
that

F(ts)
(ts)q1

≥ F(s)
sq1

∀s > 0 and t ≥ 1,

which yields that
F(ts) ≥ tq1 F(s) ∀s > 0 and t ≥ 1. (2.5)

Given u0(x) ∈ S(a) ∩ L∞(R3) a nonnegative function, let

uη
0(x) = η2u0(ηx) for all x ∈ R3 and all η ∈ R. (2.6)

By simple computation, we have ∫
R3

|uη
0(x)|2dx = ηa2,

that is, uη
0(x) ∈ S(η

1
2 a). Therefore,

Iµ(u
η
0(x)) ≤ η3

2

∫
R3

|∇u0|2dx +
µηa2

2
+

η3

4

∫
R3

ϕu0 u2
0dx − η2q1−3

∫
R3

F(u0(x))dx.

When q1 ∈ (3, 10
3 ) and η > 0, 2q1 − 3 > 3, for |η| large, we deduce that

η3

2

∫
R3

|∇u0|2dx +
η3

4

∫
R3

ϕu0 u2
0dx − η2q1−3

∫
R3

F(u0(x))dx = Aη < 0,

thus, we obtain that

Iµ(u
η
0(x)) ≤ Aη +

µa2

2
.

Hence, we fix µ∗ > 0 such that

Iµ(u
η
0(x)) < 0, ∀µ ∈ [0, µ∗),

showing that I
µ,t

1
2 a

< 0. Thus, for a large enough, Iµ,a < 0.
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Lemma 2.6. Fix µ ∈ [0, µ∗) and let a∗ < a1 < a2. There holds a6
1

a6
2
Iµ,a2 < Iµ,a1 < 0.

Proof. Let ξ > 1 such that a2 = ξa1 and {un} ⊂ S(a1) be a nonnegative minimizing sequence
with respect to the Iµ,a1 (because Iµ(u) = Iµ(|u|) for all u ∈ H1(R3)), that is,

Iµ(un) → Iµ,a1 as n → +∞.

Set vn = ξ4un(ξ2x). Obviously vn ∈ S(a2) and

Iµ,a2 ≤ Iµ(vn)

=
ξ6

2

∫
R3

|∇un|2dx +
ξ2µ2

2

∫
R3

u2
ndx +

ξ6

4

∫
R3

ϕun u2
ndx − ξ−6

∫
R3

F(ξ4un(x))dx

≤ ξ6
[

1
2

∫
R3

|∇un|2dx +
µ2

2

∫
R3

u2
ndx +

1
4

∫
R3

ϕun u2
ndx

]
− ξ−6

∫
R3

F(ξ4un(x))dx.

By (2.5), we deduce that

Iµ,a2 ≤ Iµ(vn) = ξ6 Iµ(un) + (ξ6 − ξ4q1−6)
∫

R3
F(un(x))dx.

Claim 2.7. There exists a constant C > 0 and n0 ∈ N such that∫
R3

F(un)dx ≥ C for n ≥ n0.

Arguing by contradiction that there exists a subsequence of {un}, still denoted by itself,
such that ∫

R3
F(un)dx → 0 as n → +∞.

Thus, we have
0 > Iµ,a + on(1) = Iµ(un) ≥ −

∫
R3

F(un)dx,

which is absurd. Thus, Claim 2.7 holds. It is easy to verify that ξ6 − ξ4q1−6 < 0. Hence, we
have

Iµ,a2 ≤ ξ6 Iµ(un) + (ξ6 − ξ4q1−6)C.

As n → +∞, we get
Iµ,a2 < ξ6Iµ,a1 + (ξ6 − ξ4q1−6)C < ξ6Iµ,a1 ,

that is,
a6

1

a6
2
Iµ,a2 < Iµ,a1 .

The following theorem is a compactness theorem on S(a), which is crucial to study the
autonomous case and the nonautonomous case.

Theorem 2.8. Let µ ∈ [0, µ∗), a > a∗ and {un} ⊂ S(a) be a minimizing sequence with respect to Iµ.
Then, for some subsequence either

(i) {un} is strongly convergent in H1(R3);

or

(ii) there exists {yn} ⊂ R3 with |yn| → +∞ such that vn(x) = un(x + yn) → v in H1(R3), where
v ∈ S(a) and Iµ(v) = Iµ,a.
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Proof. Since Iµ is coercive on S(a), the sequence {un} is bounded. Hence, up to a subsequence,
still denoted by un, we may assume that there exists some u ∈ H1(R3) such that un ⇀ u in
H1(R3).

If u ̸= 0 and |u|2 = b ̸= a, we have that b ∈ (0, a). It follows from Brézis–Lieb lemma
(see [30]) that:

|un|22 = |un − u|22 + |u|22 + on(1).

Moreover, setting vn = un − u, dn = |vn|2, t ∈ (0, 1), by using mean value theorem, ( f1), ( f2),
and Young’s inequality, we get

|F(vn + u)− F(vn)− F(u)| ≤ |F(vn + u)− F(vn)|+ |F(u)|
≤ | f (vn + tu)||u|+ |F(u)|
≤ [C1|vn + tu|q−1 + C2|vn + tu|p−1]|u|+ C1|u|q−1 + C2|u|p−1

≤ C(|vn|q−1 + |u|q−1 + |vn|p−1 + |u|p−1)|u|+ C1|u|q−1 + C2|u|p−1

≤ Cε(|vn|q + |vn|p) + (Cε−(q−1) + C1)|u|q + (Cε−(p−1) + C2)|u|p.

Since limn→+∞ |F(vn + u)− F(vn)− F(u)| = 0 a.e. in R3, by Lebesgue dominated convergence
Theorem, it is easy to get that∫

R3
F(vn + u)dx =

∫
R3

F(vn)dx +
∫

R3
F(u)dx + on(1),

that is, ∫
R3

F(un)dx =
∫

R3
F(un − u)dx +

∫
R3

F(u)dx + on(1). (2.7)

Suppose that |vn|2 → d, then a2 = b2 + d2 and dn ∈ (0, a) for n large enough. Thus, by
Lemma 2.3 and (2.7), we have that

Iµ,a + on(1) = Iµ(un) = Iµ(vn) + Iµ(u) + on(1) ≥ Iµ,dn + Iµ,b + on(1).

From Lemma 2.6, it follows that

Iµ,a + on(1) ≥
d6

n
a6 Iµ,a + Iµ,b + on(1).

As n → +∞, we arrive at the inequality

Iµ,a ≥
d6

a6 Iµ,a + Iµ,b. (2.8)

Since b ∈ (0, a), by Lemma 2.6 and (2.8), we obtain

0 > Iµ,a >
d6

a6 Iµ,a +
b6

a6Iµ,a =
b6 + d6

a6 Iµ,a,

which yields that
b6 + d6

a6 > 1.

By using a2 = b2 + d2, we deduce that

b6 + d6 > a6 = (b2 + d2)3 = b6 + d6 + 3b2d4 + 3b4d2,
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which is absurd. Hence, we infer that |u|2 = a, that is, u ∈ S(a).
As |un|2 = |u|2 = a, un ⇀ u in L2(R3), it is easy to verify that

un → u in L2(R3). (2.9)

By (2.9) and interpolation theorem in the Lebesgue spaces, one infers that

un → u in Lt(R3), ∀t ∈ [2, 6),

which combines with ( f1)–( f2), we can deduce that∫
R3

F(un)dx →
∫

R3
F(u)dx. (2.10)

Thus, by Lemma 2.2-(3) and Iµ,a = limn→∞ Iµ(un), we have that Iµ,a ≥ Iµ(u). Since u ∈ S(a),
it follows that Iµ,a = Iµ(u), and then limn→∞ Iµ(un) = Iµ(u), which combines with (2.9), (2.10)
and Lemma 2.2-(3), we have that un → u in D1,2(R3). From (2.9), it follows that ∥un∥2 → ∥u∥2,
that is, un → u in H1(R3).

If u = 0, then un ⇀ 0 in H1(R3). Similar to Claim 2.7, we prove that there exists C > 0
such that ∫

R3
F(un)dx ≥ C for n ∈ N large. (2.11)

Next, we prove that there exist R, β > 0 and yn ∈ R3 such that∫
BR(yn)

|un|2dx ≥ β ∀n ∈ N. (2.12)

Suppose on the contrary, by Lions’ vanishing lemma, we get that un → 0 in Lt(R3) for all
t ∈ (2, 2∗). Hence, it is easy to check that F(un) → 0 in L1(R3), which is contradict with (2.11).

Since u = 0, we claim that {yn} is unbounded. Arguing by contradiction that {yn} is
bounded, there exists R0 > 0, such that |yn| < R0. Hence, BR(yn) ⊂ BR+R0(0). Thus, we have
that ∫

BR(yn)
|un|2dx ≤

∫
BR+R0 (0)

|un|2dx → 0 as n → +∞,

which is contradiction with (2.12). The claim follows.
Setting ũn(x) = u(x + yn), clearly {ũn} ⊂ S(a) and it is also a minimizing sequence with

respect to Iµ,a, up to a subsequence, we may assume that there exists ũ ∈ H1(R3) \ {0} such
that

ũn ⇀ ũ in H1(R3) and ũn(x) → ũ(x) a.e. in R3.

Similarly arguing as the above proof, we can deduce that ũn → ũ in H1(R3). This completes
the proof.

2.1 Proof of Theorem 2.1

From Lemma 2.4, there exists a bounded minimizing sequence {un} ⊂ S(a) with respect to
Iµ,a, that is, Iµ(un) → Iµ,a. By Theorem 2.8, there exists u ∈ S(a) with Iµ(u) = Iµ,a. Hence, by
the Lagrange multiplier, there exists λa ∈ R such that

Iµ
′(u) = λaΨ′(u) in (H1(R3))′, (2.13)
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where Ψ : H1(R3) → R is given by

Ψ(u) =
∫

R3
|u|2dx, u ∈ H1(R3).

By (2.13), we have
−∆u + µu + ϕu = λau + f (u) in R3. (2.14)

Next, by simple calculation, it is easy to see that Iµ(|u|) = Iµ(u). Besides, since u ∈ S(a)
implies that |u| ∈ S(a), then the following equality holds:

Iµ,a = Iµ(u) = Iµ(|u|) ≥ Iµ,a,

thus, Iµ(|u|) = Iµ,a. Then we can replace u by |u|, thus we may assume that u ≥ 0, by standard
argument, we can prove that u(x) > 0 in R3.

By Theorem 2.1, it is easy to conclude the following corollary.

Corollary 2.9. Fix a > a∗ and let 0 ≤ µ1 < µ2 ≤ µ∗. There holds Iµ1,a < Iµ2,a < 0.

Proof. Let uµ2,a ∈ S(a) satisfying Iµ2(uµ2,a) = Iµ2,a. It is easy to infer that

Iµ1,a ≤ Iµ1(uµ2,a) < Iµ2(uµ2,a) = Iµ2,a.

3 The nonautonomous case

In this section, we will study the nonautonomous case of the Schrödinger–Poisson system
(1.4). Hereafter, we will suppose that |V|∞ < µ∗ and a > a∗, where µ∗ and a∗ was given
in section 2. In order to prove some properties of the functional Jε, we give several useful
definitions. We define J0, J∞ : H1(R3) → R by the following functionals:

J0(u) =
1
2

∫
R3

|∇u|2dx +
1
4

∫
R3

ϕuu2dx −
∫

R3
F(u)dx

and

J∞(u) =
1
2

∫
R3

(|∇u|2 + V∞|u|2)dx +
1
4

∫
R3

ϕuu2dx −
∫

R3
F(u)dx.

Furthermore, we denote Υε,a, Υ0,a and Υ∞,a:

Υε,a = inf
u∈S(a)

Jε(u), Υ0,a = inf
u∈S(a)

J0(u), Υ∞,a = inf
u∈S(a)

J∞(u).

Since 0 < V∞ < +∞, we deduce from Corollary 2.9 that

Υ0,a < Υ∞,a < 0. (3.1)

In the following, we set 0 < ρ1 = 1
2 (Υ∞,a − Υ0,a).

The following lemma establishes some essential relations involving the levels Υε,a, Υ0,a

and Υ∞,a.

Lemma 3.1. lim supε→0+ Υε,a ≤ Υ0,a and there exists ε0 > 0 such that Υε,a < Υ∞,a for all ε ∈ (0, ε0).
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Proof. Let u0 ∈ S(a) with J0(u0) = Υ0,a, we have that

Υε,a ≤ Jε(u0) =
1
2

∫
R3

(|∇u0|2 + V(εx)|u0|2)dx +
1
4

∫
R3

ϕu0 u2
0dx −

∫
R3

F(u0)dx.

As ε → 0+, we arrive at the inequality

lim sup
ε→0+

Υε,a ≤ lim
ε→0+

Jε(u0) = J0(u0) = Υ0,a.

By (3.1) and the above inequality, we can obtain that Υε,a < Υ∞,a for ε small enough.

Lemma 3.2. Fix ε ∈ (0, ε0) and let {un} ⊂ S(a) such that Jε(un) → c with c < Υ0,a + ρ1 < 0. If
un ⇀ u in H1(R3), then u ̸= 0.

Proof. We argue by contradiction that u = 0. From the definition of Jε(un) and J∞(un), it
follows that

Υ0,a + ρ1 + on(1) > c + on(1) = Jε(un) = J∞(un) +
1
2

∫
R3

(V(εx)− V∞)|un|2dx.

From (V), for any given ζ > 0, there exists R > 0 such that

V(x) ≥ V∞ − ζ, ∀ |x| ≥ R.

Thus, there holds

Υ0,a + ρ1 + on(1) > Jε(un) ≥ J∞(un) +
1
2

∫
BR/ε(0)

(V(εx)− V∞)|un|2dx − ζ

2

∫
Bc

R/ε(0)
|un|2dx.

Since {un} is bounded in H1(R3) and un → 0 in Ll(BR/ε(0)) for all l ∈ [1, 2∗), we obtain

Υ0,a + ρ1 + on(1) ≥ J∞(un)− ζC ≥ Υ∞,a − ζC

for some C > 0. Because ζ > 0 is arbitrary, it follows that

Υ0,a + ρ1 ≥ Υ∞,a,

which is contradict with the definition of ρ1. The proof is completed.

Lemma 3.3. Let {un} ⊂ S(a) be a (PS)c sequence for Jε restricted to S(a) with c < Υ0,a + ρ1 < 0
and un ⇀ uε in H1(R3), that is,

Jε(un) → c as n → +∞ and ∥Jε|′S(a)(un)∥ → 0 as n → +∞.

If vn = un − uε ↛ 0 in H1(R3), then there exists β > 0, such that

lim inf
n→+∞

|un − uε|22 ≥ β.

Proof. Let the functional Ψ : H1(R3) → R be given by

Ψ(u) =
1
2

∫
R3

|u|2dx,

we have that S(a) = Ψ−1({ a2

2 }). Then, by Proposition 5.12 in [30], we see that

∥Jε|′S(a)(un)∥ = min
λ∈R

∥Jε
′(un)− λΨ′(un)∥(H1(R3))′ ,
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thus, there exists {λn} ⊂ R such that

∥Jε
′(un)− λnΨ′(un)∥(H1(R3))′ → 0 as n → +∞.

Since

∥Jε
′(un)− λnΨ′(un)∥(H1(R3))′ = sup

v∈H1(R3)\{0}

⟨Jε
′(un)− λnΨ′(un), v⟩

∥v∥ → 0 as n → +∞.

In view of the boundedness of {un}, we can deduce that

⟨Jε
′(un)− λnΨ′(un), un⟩

∥un∥
≤ ∥Jε

′(un)− λnΨ′(un)∥(H1(R3))′ → 0 as n → +∞,

which leads to

λna2 =
∫

R3
(|∇un|2 + V(εx)u2

n)dx +
∫

R3
ϕun u2

ndx −
∫

R3
f (un)undx + on(1). (3.2)

From the boundedness of {un} ∈ H1(R3), it follows that {λn} is also a bounded sequence, up
to a subsequence, we may assume that λn → λε as n → +∞. Hence, we have that

∥Jε
′(un)− λεΨ′(un)∥(H1(R3))′ ≤ ∥Jε

′(un)− λnΨ′(un)∥(H1(R3))′ + |λn − λε|∥Ψ′(un)∥(H1(R3))′ ,

which combing with un ⇀ uε in H1(R3), we can deduce that

Jε
′(uε)− λεΨ′(uε) = 0 in (H1(R3))′.

By using Lemma 2.3, we can prove that

Jε
′(un) = Jε

′(uε) + Jε
′(vn) + on(1),

and
Ψ′(un) = Ψ′(uε) + Ψ′(vn) + on(1).

Hence, we have
Jε
′(un)− λεΨ′(un) = Jε

′(vn)− λεΨ′(vn) + on(1),

and so
∥Jε

′(vn)− λεΨ′(vn)∥(H1(R3))′ → 0 as n → +∞,

which implies that∫
R3

(|∇vn|2 + V(εx)|vn|2)dx +
∫

R3
ϕvn vn

2dx − λε

∫
R3

|vn|2dx =
∫

R3
f (vn)vndx + on(1).

Suppose on the contrary that |vn|2 → 0, by interpolation inequality, one infers that

vn → 0 in Lt(R3), ∀t ∈ [2, 6). (3.3)

By ( f1), ( f2) and (3.3), we deduce that∫
R3

f (vn)vndx ≤
∫

R3
C1|vn|p + C2|vn|qdx → 0 as n → +∞,

and ∫
R3

ϕvn vn
2dx ≤ |vn|412

5
→ 0 as n → +∞,
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and ∫
R3

V(εx)|vn|2dx ≤
∫

R3
µ∗|vn|2dx → 0 as n → +∞.

Hence, we have that ∫
R3

|∇vn|2dx → 0 as n → +∞,

which leads to ∥vn∥H1(R3) → 0, which gives a contradiction by vn ↛ 0 in H1(R3). Therefore,
there exists β > 0 independent of ε ∈ (0, ε0) such that

lim inf
n→+∞

|un − uε|22 ≥ β.

In what follows, we set

0 < ρ < min
{

1
2

,
β3

a6

}
(Υ∞,a − Υ0,a) ≤ ρ1. (3.4)

Lemma 3.4. For each ε ∈ (0, ε0), the functional Jε satisfies the (PS)c condition restricted to S(a) for
c < Υ0,a + ρ.

Proof. Let {un} be a (PS)c sequence for Jε restricted to S(a) with un ⇀ uε in H1(R3) and
c < Υ0,a + ρ. Then, by Proposition 5.12 in [30], there exists (λn) ⊂ R such that

∥Jε
′(un)− λnΨ′(un)∥(H1(R3))′ → 0 as n → +∞.

By Lemma 3.3, if vn = un − uε ↛ 0 in H1(R3), there exists β > 0 independent of ε such
that

lim inf
n→+∞

|vn|22 ≥ β.

Let dn = |vn|2 satisfying that |vn|2 → d > 0 and |uε|2 = b, by Brézis-Lieb lemma, we obtain
a2 = b2 + d2. By Lemma 3.2, we have b > 0 and in its proof it was proved that Jε(vn) ≥
Υ∞,dn + on(1), we must have dn ∈ (0, a) for n large enough, and so

c + on(1) = Jε(un) = Jε(vn) + Jε(uε) + on(1) ≥ Υ∞,dn + Υ0,b + on(1).

By Lemma 2.6, we infer that

ρ + Υ0,a >
d6

n
a6 Υ∞,a +

b6

a6 Υ0,a.

As n → +∞, using a2 = b2 + d2, we arrive at the inequality

ρ >
d6

a6 Υ∞,a +
b6 − a6

a6 Υ0,a >
d6

a6 (Υ∞,a − Υ0,a) +
3a2d4 − 3a4d2

a6 Υ0,a >
β3

a6 (Υ∞,a − Υ0,a),

which is contradict with (3.4). Thus, vn → 0 in H1(R3), that is, un → uε in H1(R3), which
implies that |uε|2 = a and

−∆uε + V(εx)uε + ϕuε = λεuε + f (uε) in R3,

where λε is the limit of some subsequence of {λn}.
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4 Multiplicity result

Let δ > 0 be fixed and w be a positive solution of the following Schrödinger–Poisson system
−∆u + ϕu = f (u) + λu in R3,

−∆ϕ = u2 in R3,∫
R3 |u|2dx = a2,

with J0(w) = Υ0,a. Let η be a smooth nonincreasing cut-off function satisfying

η(s) =

{
1, 0 ≤ s ≤ δ

2 ,

0, s ≥ δ.

For any y ∈ M, let us define

Ψε,y(x) = η(|εx − y|)w
(

εx − y
ε

)
, Ψ̃ε,y(x) = a

Ψε,y(x)
|Ψε,y|2

,

and denote Φε: M → S(a) by Φε(y) = Ψ̃ε,y. Clearly, Φε(y) has a compact support for any
y ∈ M.

Lemma 4.1 (See [14, Chapter II, 3.2]). Let I be a C1-functional defined on C1-Finsler manifold V .
If I is bounded from below and satisfies the (PS) condition, the I has at least catV (V) distinct critical
points.

Lemma 4.2 (See [8, Lemma 4.3]). Let Γ, Ω+, Ω− be closed sets with Ω− ⊂ Ω+. Let Φ : Ω− → Γ,
β : Γ → Ω+ be two continuous maps such that β ◦ Φ is homotopically equivalent to the embedding
Id : Ω− → Ω+. Then cat(Γ) ≥ catΩ+(Ω−).

Lemma 4.3. The function Φε has the following property:

lim
ε→0

Jε(Φε(y)) = Υ0,a, uniformly in y ∈ M.

Proof. To prove this lemma, we argue by contradiction that there exist δ0 > 0, {yn} ⊂ M, {yn}
is a bounded sequence and εn → 0 such that

|Jεn(Φεn(yn))− Υ0,a| ≥ δ0, ∀n ∈ N.

Since
|η(εnz)w(z)|2 → |w(z)|2 a.e. in R3 as n → +∞,

and
|η(εnz)w(z)|2 ≤ |w(z)|2,

by Lebesgue’s dominated convergence theorem, we get

lim
n→+∞

∫
R3

|Ψεn,yn |2dx = lim
n→+∞

∫
R3

|η(εnz)w(z)|2dz =
∫

R3
|w|2dz = a2.

Then, there exists N > 0 such that

|Ψεn,yn |22 ≥ a2

2
, ∀n > N.
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Setting |Ψεn,yn |22 ≥ C = min{ a2

2 , |Ψε1,y1 |22, |Ψε2,y2 |22, . . . , |ΨεN ,yN |22}.
Since

lim
n→+∞

F(Φεn(yn)) = lim
n→+∞

F
(

a
η(εnz)w(z)
|η(εnz)w(z)|2

)
= F(w) a.e. in R3,

and by ( f1) and ( f2), we have that

|F(Φεn(yn))| =
∣∣∣∣F (

a
η(εnz)w(z)
|η(εnz)w(z)|2

)∣∣∣∣ ≤ C1|w(z)|p + C2|w(z)|q,

thus, by Lebesgue’s dominated convergence theorem, we have

lim
n→+∞

∫
R3

F(Φεn(yn))dx = lim
n→+∞

∫
R3

F
(

a
η(εnz)w(z)
|η(εnz)w(z)|2

)
dz =

∫
R3

F(w)dz.

For almost every z ∈ R3, we deduce that

lim
n→+∞

|∇Φεn(yn)|2

= lim
n→+∞

a2

|Ψεn,yn |22
|∇(η(εnz)w(z))|2

= lim
n→+∞

|∇(η(εnz))w(z) + η(εnz)∇w(z)|2

= lim
n→+∞

[ε2
n|∇(η(εnz))w(z)|2 + |η(εnz)∇w(z)|2 + 2εnη(εnz)∇(η(εnz))w(z)∇w(z)]

= lim
n→+∞

|∇w(z)|2

and

|∇Φεn(yn)|2 ≤ a2

C
[ε2

n|∇(η(εnz))w(z)|2 + |η(εnz)∇w(z)|2 + 2εnη(εnz)∇(η(εnz))w(z)∇w(z)]

≤ a2

C
[C3ε2

n|w(z)|2 + |∇w(z)|2 + C4ε2
n|w(z)|2|∇w(z)|2],

by Lebesgue’s dominated convergence theorem, we obtain

lim
n→+∞

∫
R3

|∇Φεn(yn)|2dx =
∫

R3
|∇w|2dz.

Since

lim
n→+∞

V(εnx)|Φεn(yn)|2 = lim
n→+∞

a2V(εnz + yn)

|Ψεn,yn |22
|η(εnz)w(z)|2 = 0 a.e. in R3,

and

V(εnx)|Φεn(yn)|2 =
a2V(εnz + yn)

|Ψεn,yn |22
|η(εnz)w(z)|2 ≤ a2

C
µ∗W(z)2,

by Lebesgue’s dominated convergence theorem, we deduce that

lim
n→+∞

∫
R3

V(εnx)|Φεn(yn)|2dx = 0.

Since

lim
n→+∞

ϕΦεn (yn)Φεn(yn)
2

= lim
n→+∞

∣∣∣ a
|Ψεn ,yn |2

η(εnz)w(z)
∣∣∣2 ∣∣∣ a

|Ψεn ,yn |2
η(εnr)w(r)

∣∣∣2
|z − r| = ϕww2 a.e. in R3,
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and by Lemma 2.2-(2), we have that

ϕΦεn (yn)Φεn(yn)
2 =

∣∣∣ a
|Ψεn ,yn |2

η(εnz)w(z)
∣∣∣2 ∣∣∣ a

|Ψεn ,yn |2
η(εnr)w(r)

∣∣∣2
|z − r|

≤ a4

C4
|w(z)|2 |w(r)|2

|z − r| ≤ C5ϕww2,

by Lebesgue’s dominated convergence theorem, there holds

lim
n→+∞

∫
R3

ϕΦεn (yn)Φεn(yn)
2dx

= lim
n→+∞

∫
R3

∫
R3

∣∣∣ a
|Ψεn ,yn |2

η(εnz)w(z)
∣∣∣2 ∣∣∣ a

|Ψεn ,yn |2
η(εnr)w(r)

∣∣∣2
|z − r| dzdr

=
∫

R3
ϕww2dz.

Consequently,
lim

n→+∞
Jεn(Φεn(yn)) = J0,a(w) = Υ0,a,

which is absurd. Hence, we complete the proof.

For any δ > 0, let R = R(δ) > 0 be such that Mδ ⊂ BR(0). Let χ: R3 → R3 denote by
χ(x) = x for |x| ≤ R and χ(x) = Rx

|x| for |x| ≥ R. Hereafter, we are going to consider βε:
S(a) → R3 given by

βε(u) =

∫
R3 χ(εx)|u|2dx

a2 .

Lemma 4.4. The function Φε has the following property:

lim
ε→0

βε(Φε(y)) = y, uniformly in y ∈ M.

Proof. Suppose on the contrary that there exist δ0 > 0, {yn} ⊂ M, and εn → 0 such that

|βεn(Φεn(yn))− yn| ≥ δ0, ∀n ∈ N. (4.1)

By the definition of Φεn(yn) and βεn , we have that

βεn(Φεn(yn)) = yn +

∫
R3 (χ(εnz + yn)− yn)|η(εnz)w(z)|2dz

|Ψεn,yn(
εn+yn

εn
)|22

.

Since (yn) ⊂ M ⊂ BR(0),

(χ(εnz + yn)− yn)|η(εnz)w(z)|2

|Ψεn,yn(
εn+yn

εn
)|22

→ 0 a.e. in R3,

and
(χ(εnz + yn)− yn)|η(εnz)w(z)|2

|Ψεn,yn(
εn+yn

εn
)|22

≤ 2R
C

|w(z)|2,

by Lebesgue’s dominated convergence theorem, we deduce that

|βεn(Φεn(yn))− yn| → 0, as n → +∞,

which attains a contradiction with (4.1). Hence, we complete the proof.
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Proposition 4.5. Let εn → 0 and {un} ⊂ S(a) with Jε(un) → Υ0,a. Then, there is {ỹn} ⊂ R3

such that vn(x) = un(x + ỹn) has a strongly convergent subsequence in H1(R3). Moreover, up to a
subsequence, yn = εnỹn → y in R3 for some y ∈ M.

Proof. Firstly, we claim that there exist R0, τ > 0 and ỹn ∈ R3 such that∫
BR0 (ỹn)

|un|2dx ≥ τ ∀n ∈ N.

Otherwise, owing to Lions’ vanishing lemma, we have that un → 0 in Lp(R3) for all p ∈ (2, 2∗),
which implies that

∫
R3 F(un)dx → 0. Thus, limn→+∞ Jεn(un) ≥ 0, which contradicts with

limn→+∞ Jεn(un) = Υ0,a < 0.
Considering vn(x) = un(x + ỹn), up to a subsequence, we may assume that there exists

v ∈ H1(R3) \ {0} satisfying vn ⇀ v in H1(R3). Since {vn} ⊂ S(a) and Jεn(un) ≥ J0(un) =

J0(vn) ≥ Υ0,a, there holds that J0(vn) → Υ0,a. By Theorem 2.8, vn → v in H1(R3) and v ∈ S(a).
In what follows, we are to prove that {yn} is bounded. Arguing by contradiction that for

some subsequence |yn| → +∞, the limit

Υ0,a = lim
n→+∞

Jεn(un)

= lim
n→+∞

(
1
2

∫
R3

(|∇vn|2 + V(εnx + yn)|vn|2)dx +
1
4

∫
R3

ϕvn vn
2dx −

∫
R3

F(vn)dx
)

≥ 1
2

∫
R3

(|∇v|2 + V∞|v|2)dx +
1
4

∫
R3

ϕvv2dx −
∫

R3
F(v)dx

≥ Υ∞,a,

this gives a contradiction due to (3.1). Therefore, we can suppose that yn → y in R3. Similarly
discussed as above, we obtain

Υ0,a ≥
1
2

∫
R3

(|∇v|2 + V(y)|v|2)dx +
1
4

∫
R3

ϕvv2dx −
∫

R3
F(v)dx ≥ ΥV(y),a.

By Corollary 2.9, we know that ΥV(y),a > Υ0,a as V(y) > 0. Since V(y) ≥ 0 for all y ∈ R3, the
above inequality implies that V(y) = 0, that is, y ∈ M.

Let h: [0,+∞) → [0,+∞) be a function such that h(ε) → 0 as ε → 0 and set

S̃(a) = {u ∈ S(a) : Jε(u) ≤ Υ0,a + h(ε)}. (4.2)

In view of Lemma 4.3, the function h(ε) = supy∈M |Jε(Φε(y))− Υ0,a| satisfies that h(ε) → 0 as

ε → 0. Thus, Φε(y) ∈ S̃(a) for all y ∈ M.

Lemma 4.6. Let δ > 0 and Mδ = {x ∈ R3 : dist(x, M) ≤ δ}. There holds

lim
ε→0

sup
u∈S̃(a)

inf
z∈Mδ

|βε(u)− z| = 0.

Proof. Let εn → 0 and un ∈ S̃(a) such that

inf
z∈Mδ

|βεn(un)− z| = sup
un∈S̃(a)

inf
z∈Mδ

|βεn(un)− z|+ on(1).
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According to the above equality, it is sufficient to find a sequence {yn} ⊂ Mδ such that

lim
n→+∞

|βεn(un)− yn| = 0.

Since un ∈ S̃(a), we obtain

Υ0,a ≤ J0(un) ≤ Jεn(un) ≤ Υ0,a + h(εn) ∀n ∈ N,

and so,
un ∈ S(a) and Jεn(un) → Υ0,a.

From Proposition 4.5, it follows that there exists {ỹn} ⊂ R3 such that yn = εnỹn → y for
some y ∈ M and vn(x) = un(x + ỹn) is strongly convergent to some v ∈ H1(R3) with v ̸= 0.
Then, {yn} ⊂ Mδ for n large enough and

βεn(un) = yn +

∫
R3(χ(εnz + yn)− yn)|vn|2dz

a2 ,

which implies that

βεn(un)− yn =

∫
R3(χ(εnz + yn)− yn)|vn|2dz

a2 → 0 as n → +∞.

The proof is completed.

4.1 Proof of Theorem 1.2.

In what follows, let ε ∈ (0, ε0). By Lemma 4.3, for any y ∈ M, we have

Jε(Φε(y)) ≤ Υ0,a + h(ε), h(ε) → 0 (ε → 0),

which implies that Φε(M) ⊂ S̃(a). By Lemma 4.6, we obtain

dist(βε(u), Mδ) ≤ δ, ∀u ∈ S̃(a),

which leads to βε(S̃(a)) ⊂ Mδ. Hence, we have that βε ◦Φε(M) ⊂ Mδ. We define id : M → Mδ.
Hereafter, let us define W : [0, 1]× M → Mδ

W(t, y) = tβε ◦ Φε + (1 − t) id(y) t ∈ [0, 1],

satisfying W(0, y) = id(y), W(1, y) = βε ◦ Φε, we can conclude that βε ◦ Φε is homotopic to
the inclusion map id : M → Mδ. By Lemma 4.2, it follows that

cat(S̃(a)) ≥ catMδ
(M).

Arguing as Lemma 2.4, we also have that Jε is bounded from below on S(a). From Lemma
3.4, we have that the functional Jε satisfies the (PS)c condition for the c ∈ (Υ0,a, Υ0,a + h(ε)).
By Lemma 4.1, there exists at least cat(S(a)) critical points of Jε restricted to S(a). Since
S̃(a) ⊂ S(a), cat(S̃(a)) ≤ cat(S(a)). Then, by the Lusternik–Schnirelmann category theory
(see [19] and Theorem 5.20 of [30]), we have that Jε has at least catMδ

(M) critical points on
S(a).
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