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Abstract. We are concerned with the radial solutions of the Dirichlet problem
−∆u = K(|x|) f (u) on the exterior of the ball of radius R > 0 centered at the ori-
gin in RN with N ≥ 3 where f is superlinear at ∞ and has a singularity at 0 with
f (u) ∼ 1

|u|q−1u
and 0 < q < 1 for small u. We prove that if K(|x|) ∼ |x|−α with

α > 2(N − 1) then there exist two infinite families of sign-changing radial solutions.

Keywords: exterior domains, singular, superlinear, radial solution.

2020 Mathematics Subject Classification: 34B40, 35B05.

1 Introduction

In this paper we study the radial solutions of

−∆u = K(|x|) f (u) on RN\BR(0) (1.1)

u(x) = 0 on ∂BR(0), lim
|x|→∞

u(x) = 0 (1.2)

where ∆ : Ck(RN)→ Ck−2(RN) denotes the N-dimensional Laplacian, BR(0) denotes the unit
ball centered at the origin, |x| denotes the Euclidean distance of x, and u : RN → R with
N ≥ 3.

Numerous papers have proved the existence of positive solutions of these equations with
K(|x|) = 1. See for example [4, 5, 10]. In [10], Miyamoto and Naito studied the problem in
the domain BR(0) \ {0}. Some other papers have dealt with the positive solutions of these
equations with various nonlinearities f (u) and K(|x|) ∼ |x|−α with α > 0. (See [1, 9, 11]).

We prove the existence of sign-changing solutions of (1.1)–(1.2) and analyze their proper-
ties. The papers [2, 3, 7, 8] examined the case where the non-linear function f (u) in (1.1) has a
unique positive zero. We choose a superlinear function f (u) that has no positive zeros.

Our study of the solutions of (1.1)–(1.2) is based on the following assumptions:
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(H1) f : R\{0} → R is odd, locally Lipschitz, and f > 0 on (0, ∞). (So, by the symmetry of f
about the origin, f < 0 on (−∞, 0)),

(H2) f (u) = |u|p−1u + g(u) with p > 1 for large u and limu→∞
|g(u)|
|u|p = 0,

(H3) there exists a locally Lipschitz function g1 : R→ R such that f (u) = 1
|u|q−1u + g1(u) with

0 < q < 1 and g1(0) = 0,

(H4) K(r), K′(r) are continuous on [R, ∞) with K(r) > 0 such that 2(N − 1) + rK′
K < 0 on

[R, ∞),

(H5) there exist a constant k0 > 0 and α > 2(N − 1) such that k0
rα ≤ K(r) on [R, ∞).

Let F(u) =
∫ u

0 f (t) dt. From (H3) it follows that f is integrable at 0 and therefore F is
continuous with F(0) = 0. Also, since f is odd and f > 0 on (0, ∞), it follows that F is even
and F(u) > 0 for u ̸= 0.

Since we are studying the radial solutions of (1.1)–(1.2), we let u(x) = u(|x|) = u(r) where

r = |x| =
√

x2
1 + x2

2 + · · ·+ x2
N . Denoting ∂u

∂r by u′ and ∂2u
∂r2 by u′′ then (1.1)–(1.2) becomes:

u′′(r) +
N − 1

r
u′(r) + K(r) f (u) = 0 for R < r < ∞, (1.3)

u(R) = 0, lim
r→∞

u(r) = 0. (1.4)

In this paper we prove the following:

Theorem 1.1. Assume (H1)–(H5) hold and N ≥ 3. There exist two infinite families of non-trivial
radial solutions of (1.3)–(1.4). In addition, ∃n0 ≥ 0 such that for every n ≥ n0 then there are at least
two solutions of (1.3)–(1.4) with exactly n zeros on (R, ∞).

2 Preliminaries and behavior for large a

We prove the existence of a solution of (1.3)–(1.4) with

u(R) = 0, u′(R) = a > 0 (2.1)

on [R, R + ϵ) for some ϵ > 0. We denote u(r) by ua(r) to emphasize the dependence of u on
the initial parameter a. We begin first by making the following change of variables

ua(r) = va(r2−N).

Let r2−N = t and denote R2−N by R∗. We observe then that solving (1.3), (2.1) is equivalent to
solving the following initial value problem

v′′a + h(t) f (va) = 0 on (0, R∗) (2.2)

va(R∗) = 0, v′a(R∗) = − aRN−1

N − 2
< 0 (2.3)
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where h(t) = t
2(N−1)

2−N K(t
1

2−N )

(N−2)2 . We will then try to find values of a such that va(0) = 0.

From (H4), (H5), and the definition of h(t) it follows that

h(t) > 0, h′(t) > 0 on (0, R∗]

and ∃h1 > 0 such that h1tα̃ ≤ h(t) on (0, R∗] where α̃ =
α− 2(N − 1)

N − 2
> 0.

(2.4)

We first prove the existence of a solution for (2.2)–(2.3) on [R∗ − ϵ, R∗] for some ϵ > 0. To
do this, we transform this equation into an integral equation and use the contraction mapping
principle to solve it. Let t > 0 and let va be a solution of (2.2)–(2.3). By integrating (2.2) over
(t, R∗) and using (2.3) we obtain

v′a(t) = −
aRN−1

N − 2
+

∫ R∗

t
h(x) f (va(x)) dx. (2.5)

Now integrate (2.5) over (t, R∗) and use (2.3). This gives

va(t) =
aRN−1

N − 2
(R∗ − t)−

∫ R∗

t

(∫ R∗

s
h(x) f (va(x)) dx

)
ds. (2.6)

Letting va(t) = (R∗ − t)y(t) and y(R∗) ≡ limt→R∗−
va(t)
R∗−t = −v′a(R∗) = aRN−1

N−2 , we can
rewrite the equation (2.6) in terms of y(t) as

y(t) =
aRN−1

N − 2
− 1

R∗ − t

∫ R∗

t

(∫ R∗

s
h(x) f ((R∗ − x)y(x)) dx

)
ds. (2.7)

We now solve (2.7) by defining an operator on an appropriate space and showing that it
has a fixed point. For this, let a > 0 and consider the Banach space

X =

{
y ∈ C[R∗ − ϵ, R∗] : y(R∗) =

aRN−1

N − 2
,
∣∣∣∣y(t)− aRN−1

N − 2

∣∣∣∣ ≤ aRN−1

2(N − 2)
on [R∗ − ϵ, R∗]

}
equipped with the supremum norm defined by

∥y∥ = sup
x∈[R∗−ϵ,R∗]

|y(x)|.

We define a map T : X → C[R∗ − ϵ, R∗] by

(Ty)(t) =
aRN−1

N − 2
− 1

R∗ − t

∫ R∗

t

(∫ R∗

s
h(x) f ((R∗ − x)y(x)) dx

)
ds for R∗− ϵ ≤ t < R∗ (2.8)

and T(R∗) = aRN−1

N−2 . Since f = 1
|u|q−1u + g1(u) by (H3), we have from (2.8) that

(Ty)(t)=
aRN−1

N − 2
− 1

R∗ − t

∫ R∗

t

(∫ R∗

s
h(x)

(
1

(R∗ − x)qyq(x)
+ g1 ((R∗ − x)y(x))

)
dx

)
ds. (2.9)

Since 0 < q < 1 by (H3), it follows that 1
(R∗−x)q is integrable on [0, R∗]. Using this fact

together with that g1 is locally Lipschitz, it can be shown that T is a contraction mapping
from X into itself for sufficiently small ϵ (the details are carried out in [3]). Thus by the
contraction mapping principle [6], there exists a unique element y ∈ X such that Ty = y on
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[R∗ − ϵ, R∗]. Hence, we obtain a solution va(t) = (R∗ − t)y(t) of (2.2)–(2.3) on [R∗ − ϵ, R∗] if
a > 0 and ϵ > 0 is sufficiently small.

Next let (R1, R∗] be the maximal half-open interval of existence of the solution to (2.2)–
(2.3). Now we define the energy of the solution

Ea =
1
2

v′2a
h(t)

+ F(va) for R1 < t ≤ R∗. (2.10)

Then it follows from (2.2) and (2.4) that

E′a = −
v′2a h′

2h2 ≤ 0 on (R1, R∗]. (2.11)

Thus, Ea is non-increasing on (R1, R∗] and hence for R1 < t ≤ R∗ we have

0 <
1
2

a2R2(N−1)

(N − 2)2h(R∗)
=

1
2

v′2a (R∗)
h(R∗)

= Ea(R∗) ≤ Ea =
1
2

v′2a
h(t)

+ F(va) on (R1, R∗]. (2.12)

So Ea > 0 on (R1, R∗].

We next claim that the solution of (2.2)–(2.3) exists on [0, R∗] and analyze the properties of
the solution in several lemmas.

Lemma 2.1. Assume (H1)–(H5) hold, N ≥ 3 and a > 0. Let va be the solution of (2.2)–(2.3). Then
va can be extended to the maximal interval [0, R∗].

Proof. Let va be the unique solution of (2.2)–(2.3) on the maximal half-open interval of exis-
tence (R1, R∗]. We show that R1 = 0. Suppose on the contrary that R1 > 0. Using (2.2), (2.4)
and that F(va) ≥ 0 we obtain(

1
2

v′2a + h(t)F(va)

)′
= h′(t)F(va) ≥ 0 on (R1, R∗]. (2.13)

Let 0 < t < R1. Now by integrating (2.13) over (t, R∗), using (2.3) and that h(t) > 0,
F(va) ≥ 0 we obtain

1
2

v′2a ≤
1
2

v′2a + h(t)F(va) ≤
1
2

a2R2(N−1)

(N − 2)2 on (R1, R∗]. (2.14)

Therefore,

|v′a| ≤
aRN−1

N − 2
on (R1, R∗]. (2.15)

Also, we have

|va| =
∣∣∣∣∫ R∗

t
v′a ds

∣∣∣∣ ≤ ∫ R∗

t
|v′a| ds ≤ aRN−1

N − 2
(R∗ − t) ≤ aRN−1

N − 2
R∗ =

aR
N − 2

on (R1, R∗]. (2.16)

Now let (tn) ⊂ (R1, R∗] such that tn → R+
1 . Then by the mean value theorem and (2.15) we

obtain

|va(tn)− va(tm)| = |v′a(cn,m)||tn − tm| ≤
aRN−1

N − 2
|tn − tm| → 0 as m, n→ ∞.
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This shows that (va(tn)) is a Cauchy sequence on (R1, R∗] and so ∃L ∈ R such that
limt→R+

1
va(t) = L. Also since h(t)F(va) and h′(t)F(va) are continuous on (R1, R∗], inte-

grating (2.13) on (t, R∗) we see that limt→R+
1

v′a(t) = L1 exists. From (2.12) we see 0 <

Ea ≤ 1
2

L2
1

h(R∗) + F(L) on (R1, R∗] which shows that L and L1 cannot both be zero. Now if
L = 0 then L1 ̸= 0 and we can use the contraction mapping principle as we did earlier to
extend our solution to (R1 − δ, R∗] for some δ > 0. On the other hand, if L ̸= 0, then we can
use the standard existence theorem for ordinary differential equations to obtain a solution on
(R1 − δ, R∗] for some δ > 0. Therefore in both cases the solution of (2.2)-(2.3) can be extended
to (R1− δ, R∗] for some δ > 0, contradicting the maximality of (R1, R∗]. Hence R1 = 0. It then
follows from (2.15) and (2.16) that va and v′a are bounded on (0, R∗] and so in a similar way to
earlier we see that the limits limt→0+ va(t) and limt→0+ v′a(t) exist. Thus va and v′a are defined
and continuous [0, R∗].

Remark 2.2. If va solves (2.2)–(2.3) and z ∈ (0, R∗) is such that va(z) = 0 then by (2.12),
0 < Ea(za) = 1

2
v′2a (z)
h(z) and hence v′a(z) ̸= 0. Thus the zeros of va on (0, R∗) are simple. Also,

since limu→0 | f (u)| = ∞, by (H3) it follows that the solution to (2.2)–(2.3) is twice differen-
tiable except at points where va(t0) = 0. Therefore, by a solution va of (2.2)–(2.3) we mean a
continuously differentiable function va on [0, R∗] that satisfies the equation (2.6) with (2.3).

Lemma 2.3. Assume (H1)–(H5) hold, N ≥ 3 and a > 0. Let va solve (2.2)–(2.3) on [0, R∗]. Then va

depends continuously on the initial parameter a on [0, R∗].

Proof. Let 0 < a1 < a < a2. Then from (2.15) we have

|v′a| ≤
aRN−1

N − 2
≤ a2c1 for all a such that 0 < a1 ≤ a ≤ a2 (2.17)

where c1 = RN−1

N−2 . And from (2.16) we have

|va| =
aR

N − 2
≤ a2c2 for all a such that 0 < a1 ≤ a ≤ a2 (2.18)

where c2 = R
N−2 . Thus, (2.17) and (2.18) show that the upper bounds for |va|, |v′a| can be

chosen to be independent of a on [0, R∗] for all a such that 0 < a1 ≤ a ≤ a2.

Now let ã > 0 and suppose a → ã. Then, we want to show that va → vã uniformly on
[0, R∗]. Suppose on the contrary, that there is a subsequence (aj) ⊂ R such that aj → ã as
j→ ∞ and ϵ0 > 0 such that

|vaj(tj)− vã(tj)| ≥ ϵ0 for some sequence tj ∈ [0, R∗]. (2.19)

Since aj → ã, there exists N0 ∈ N such that for all j ≥ N0 |aj| ≤ ã + 1. From (2.15) and (2.16)
we know that va and v′a are uniformly bounded on the compact domain [0, R∗]. Hence, by the
Arzelà–Ascoli theorem, there exists a subsequence (vajk

) ⊂ (vaj) such that vajk
→ vã uniformly

on [0, R∗] as k→ ∞. Therefore, as k→ ∞ from (2.19) we obtain

0← |vajk
(tjk)− vã(tjk)| ≥ ϵ0

which is a contradiction. Thus, va → vã uniformly on [0, R∗] and this completes the proof of
the lemma.
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Lemma 2.4. Assume (H1)–(H5) hold and N ≥ 3. If a > 0 and va is a solution of (2.2)–(2.3), then va

has at most finitely many zeros on (0, R∗).

Proof. Suppose on the contrary that ∃ a sequence (zk,a) ⊂ (0, R∗) with 0 < · · · < z2,a < z1,a

such that va(zk,a) = 0. Then zk,a converges to some z∗a on [0, R∗]. Since va has infinitely many
zeros, zk,a, and v′a(zk,a) ̸= 0 by the Remark 2.2, it follows that va has infinitely many local
extrema, {Mk,a}∞

k=1, with zk+1,a < Mk,a < zk,a and so limk→∞ Mk,a = z∗a . Since Ea(t) > 0 on
(0, R∗] and E is non-increasing by (2.12) we have F(va(Mk,a)) = Ea(Mk,a) ≥ 1

2
a2R2(N−1)

(N−2)2h(R∗) > 0.
So ∃βa > 0 such that |va(Mk,a)| ≥ βa for all k. Now by the mean value theorem and (2.15)
∃tk,a ∈ (Mk,a, zk,a) such that

0< βa≤ |va(Mk,a)|= |va(Mk,a)− va(zk,a)|= |v′a(tk,a)||Mk,a − zk,a| ≤
aRN−1

(N − 2)
|Mk,a − zk,a|. (2.20)

Since Mk,a → z∗a and zk,a → z∗a as k → ∞, the right-hand side of (2.20) goes to 0 as k → ∞
which gives a contradiction. Therefore va has at most finitely many zeros on (0, R∗) for
a > 0.

Lemma 2.5. Assume (H1)–(H5) hold, N ≥ 3 and let va solve (2.5). Then for a > 0 sufficiently large
va has a local maximum, Ma. In addition, va(Ma)→ ∞ and Ma → R∗ as a→ ∞.

Proof. First we show for any 0 ≤ t0 < R∗ that max[t0,R∗) |va(t)| → ∞ as a→ ∞.
If va has a local maximum Ma ∈ [t0, R∗), then v′a(Ma) = 0. So, by letting t = Ma in (2.12)

we obtain

F(va(Ma)) ≥
1
2

a2R2(N−1)

h(R∗)(N − 2)2 . (2.21)

Since h(R∗) > 0, it follows that the right-hand side of (2.21) approaches infinity as a → ∞
and hence from the definition of F we see that

va(Ma)→ ∞ as a→ ∞. (2.22)

On the other hand, if va has no local maximum on (t0, R∗) then va is decreasing on (t0, R∗).
We want to show that max[t0,R∗) |va(t)| → ∞ as a → ∞. Suppose on the contrary that this is
false. Then there exists a constant c3 > 0 independent of a such that |va(t)| ≤ c3 on [t0, R∗].
Then by the continuity of F there exists c4 > 0 such that F(va(t)) ≤ c4. Using this and (2.3), it
follows from (2.12) that

1
2

v′2a (t)
h(t)

+ c4 ≥
1
2

v′2a (t)
h(t)

+ F(va(t)) ≥
1
2

v′2a (R∗)
h(R∗)

=
1
2

a2c2
5 on [t0, R∗] (2.23)

where c5 = RN−1

(N−2)
√

h(R∗)
. Rewriting (2.23) we obtain

|v′a(t)| ≥
√

a2c2
5 − 2c4

√
h(t). (2.24)

By (2.4) there exists h1 > 0 such that h(t) ≥ h1tα̃ on [t0, R∗]. By using this and choosing a
sufficiently large we can ensure that

|v′a(t)| ≥
ac5

2

√
h(t) ≥ ac5

2

√
h1t

α̃
2 . (2.25)
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Since va is decreasing, then by (2.25) we have v′a < 0 on [t0, R∗]. Now integrating (2.25) over
(t0, R∗) yields

c3 ≥ va(t0) =
∫ R∗

t0

−v′a(t) dt ≥ ac5

2

√
h1

∫ R∗

t0

t
α̃
2 dt =

ac5

2

√
h1

 (R∗)
α̃
2 +1 − t

α̃
2 +1
0

α̃ + 2

 . (2.26)

The left hand side of (2.26) is a constant while the right-hand side approaches ∞ as a → ∞
which is a contradiction. Thus we conclude that for any t0 ∈ [0, R∗)

max
[t0,R∗)

|va(t)| → ∞ as a→ ∞. (2.27)

We claim next that va has a local max, Ma, and 1
2 R∗ < Ma < R∗ if a is sufficiently large.

Suppose on the contrary that va is decreasing on [ 1
2 R∗, R∗]. Let

Ca =
1
2

min
[ 1

2 R∗, 3
4 R∗]

h(t) f (va)

va
. (2.28)

By letting t0 = 3
4 R∗ in (2.27), we obtain va(

3
4 R∗) → ∞ as a → ∞. Since va is decreasing on

the interval [ 1
2 R∗, 3

4 R∗] we see that va → ∞ uniformly as a → ∞ on the interval [ 1
2 R∗, 3

4 R∗].
By (2.4) h1tα̃ ≤ h(t) on (0, R∗] for some constant h1 > 0 from which it follows that h(t) is
bounded from below on [ 1

2 R∗, 3
4 R∗]. Also we have f (va) = |va|p−1va + g(va) by (H2) and

so it follows that if va is large then f (va) ≥ 1
2 vp

a . It then follows from this that f (va)
va
≥

1
2 vp−1

a (t) ≥ 1
2 vp−1

a
( 3

4 R∗
)

on [ 1
2 R∗, 3

4 R∗]. Since p− 1 > 0 and va(
3
4 R∗) → ∞ as a → ∞, then we

see f (va)
va
→ ∞ on [ 1

2 R∗, 3
4 R∗] as a → ∞. And since h is bounded from below on [ 1

2 R∗, 3
4 R∗], it

follows from this and (2.28) that

Ca → ∞ as a→ ∞.

Now we consider the differential equation

w′′a + Cawa = 0 (2.29)

with

wa

(
3
4

R∗
)
= va

(
3
4

R∗
)
> 0,

w′a

(
3
4

R∗
)
= v′a

(
3
4

R∗
)
< 0.

(2.30)

Clearly, {cos
√

Ca(t− 3
4 R∗), sin

√
Ca(t− 3

4 R∗)} is a fundamental set of solutions of (2.29). So,
wa = α1 cos

√
Ca(t− 3

4 R∗) + α2 sin
√

Ca(t− 3
4 R∗) for some constants α1 and α2. We also know

that the distance between two consecutive zeros of wa is π√
Ca
→ 0 as a → ∞. So, for a > 0

sufficiently large we have 1
2 R∗ < 3

4 R∗ − π√
Ca

. Therefore, for a > 0 sufficiently large wa has

a zero on [ 1
2 R∗, 3

4 R∗] and hence has a local maximum M̃ on this interval with w′a < 0 on
(M̃, 3

4 R∗].

Next, we rewrite equation (2.2) and consider

v′′a +
(

h(t) f (va)

va

)
va = 0. (2.31)
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Multiplying (2.29) by va, (2.31) by wa, and subtracting we obtain

(w′ava − wav′a)
′ +

(
Ca −

h(t) f (va)

va

)
wava = 0.

Integrating this on (M̃, 3
4 R∗) and using (2.30) gives

wa(M̃)v′a(M̃) =
∫ 3

4 R∗

M̃

(
h(t) f (va)

va
− Ca

)
wava dt. (2.32)

Since wa(M̃) > 0, Ca <
h(t) f (va)

va
on [0, 3

4 R∗], and wa, va stay positive on [M̃, 3
4 R∗] it follows from

(2.32) that v′a(M̃) > 0, contradicting our assumption that va is decreasing on [ 1
2 R∗, R∗]. Thus

va has a local maximum, Ma, and 1
2 R∗ < Ma < R∗ with va decreasing on [Ma, R∗] for a > 0

sufficiently large. It also follows immediately from (2.22) that va(Ma)→ ∞ as a→ ∞.

Next we show that Ma → R∗ as a → ∞. Since va is decreasing on [Ma, R∗) and va(R∗) =
0 so we see va > 0 on [Ma, R∗). But then from (2.2) we know v′′a = −h(t) f (va) < 0 on [Ma, R∗)
and so va is concave down on [Ma, R∗). This implies

va (λMa + (1− λ) R∗) ≥ λva(Ma) + (1− λ)va(R∗) for 0 ≤ λ ≤ 1.

So by letting λ = 1
2 we obtain

va

(
Ma + R∗

2

)
≥ va(Ma) + va(R∗)

2
=

va(Ma)

2
→ ∞ as a→ ∞. (2.33)

By the superlinearity of f it follows that f (va(t)) ≥ 1
2 vp

a (t) on [Ma, Ma+R∗
2 ] if a is sufficiently

large. By using this in (2.2) we obtain

v′′a = −h(t) f (va(t)) ≤ −
1
2

vp
a (t).

Now integrating this on [Ma, t] where Ma ≤ t ≤ Ma+R∗
2 and recalling that Ma is a local maxi-

mum of va with va decreasing on [Ma, R∗] yields

v′a(t) ≤ −
1
2

∫ t

Ma

vp
a (x) dx ≤ −1

2
vp

a (t)
∫ t

Ma

h(x) dx.

Rewriting the above gives
−v′a
vp

a
≥ 1

2

∫ t

Ma

h(x) dx.

Integrating again on (Ma, t) gives,

1

(p− 1)vp−1
a (t)

≥ 1
p− 1

[v1−p
a (t)− v1−p

a (Ma)] ≥
1
2

∫ t

Ma

∫ s

Ma

h(x) dx ds.

Evaluating at t = Ma+R∗
2 we obtain

1

(p− 1)vp−1
a (Ma+R∗

2 )
≥ 1

2

∫ Ma+R∗
2

Ma

∫ s

Ma

h(x) dx ds. (2.34)

Since p− 1 > 0, it follows from (2.33) that the left-hand side of (2.34) goes to zero as a → ∞.
Thus, since h(x) > 0 and h is continuous on [Ma, R∗], it follows from (2.34) that Ma → R∗ as
a→ ∞. This completes the lemma.
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Lemma 2.6. Assume (H1)–(H5) hold, N ≥ 3 and let va solve (2.5). Then for a > 0 sufficiently large
va has a zero, za, with 0 < za < Ma < R∗ where za → R∗ and |v′a(za)| → ∞ as a→ ∞. In addition,
if a is sufficiently large and n ≥ 1, then va has n zeros on (0, R∗).

Proof. First we show that ∃za ∈ (0, Ma) such that va(za) = 0. Suppose on the contrary that va

stays positive on (0, Ma). We note that va cannot have a positive critical point on (0, Ma). If
it has a positive critical point ca with v′a > 0 on (ca, Ma), then va(ca) > 0 and v′′a (ca) ≥ 0. So
by (2.2) f (va(ca)) ≤ 0 but then va(ca) ≤ 0 contradicting that va > 0 on (0, Ma). Thus va is
increasing on (0, R∗). Next recall from (2.11) that E′a ≤ 0 on (0, R∗]. So we have

1
2

v′2a
h(t)

+ F(va) ≥ F(va(Ma)) on (0, Ma]. (2.35)

Rewriting (2.35) and integrating on (0, Ma) by making the change of variable s = va(t) gives∫ Ma

0

√
2h(t) dt ≤

∫ Ma

0

v′a(t) dt√
F(Va(Ma)− F(va(t))

=
∫ va(Ma)

va(0)

ds√
F(va(Ma))− F(s)

≤
∫ va(Ma)

0

ds√
F(va(Ma))− F(s)

.
(2.36)

We now estimate the integral on the right-hand side of (2.36). Letting s = va(Ma)x, we obtain∫ va(Ma)

0

ds√
F(va(Ma))− F(s)

=
va(Ma)√
F(va(Ma))

∫ 1

0

dx√
1− F(va(Ma)x)

F(va(Ma))

. (2.37)

Let G(u) =
∫ u

0 g(s) ds. Then by (H2) it follows that

F(va(Ma)x)
F(va(Ma))

=
vp+1

a (Ma)xp+1 + G(va(Ma)x)

vp+1
a (Ma) + G(va(Ma))

=
xp+1 + G(va(Ma)x)

vp+1
a (Ma)

1 + G(va(Ma))

vp+1
a (Ma)

.

(2.38)

By (H2) and L’Hôpital’s rule it follows that |G(u)|
|up+1| → 0 as u → ∞. This implies that given

ϵ > 0 there exists U such that |G(u)| ≤ ϵ|u|p+1 for |u| ≥ U. Also the continuity of G implies
that there exists c6 > 0 such that |G(u)| ≤ c6 for |u| ≤ U. Therefore

|G(u)| ≤ c6 + ϵ|u|p+1 for all u.

Letting u = va(Ma)x in the above inequality and using (2.22) we obtain

|G(va(Ma)x)|
vp+1

a (Ma)
≤ c6

vp+1
a (Ma)

+ ϵxp+1

≤ c6

vp+1
a (Ma)

+ ϵ(R∗)p+1

≤ 2(R∗)p+1ϵ for a sufficiently large.

Therefore lima→∞
G(va(Ma)x)

vp+1
a (Ma)

= 0 uniformly on [0, 1]. In particular it follows that

lima→∞
G(va(Ma))

vp+1
a (Ma)

= 0. Thus it follows from (2.38) that F(va(Ma)x)
F(va(Ma))

→ xp+1 uniformly as a → ∞.
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Also we know that
∫ 1

0
dx√

1−xp+1 < ∞ since p > 1. So it follows from this and the fact that f is

superlinear that va(Ma)√
F(va(Ma)

→ 0 as a→ ∞. Therefore it follows from (2.37) that

lim
a→∞

∫ va(Ma)

0

ds√
F(va(Ma))− F(s)

= 0.

Hence, the right-hand side of (2.36) goes to 0 as a→ ∞. However, we know h(t) > 0 on (0, R∗)
and Ma → R∗ as a → ∞ (by Lemma 2.4), so the integral on the left-hand side of (2.36)
goes to

∫ R∗

0

√
2h(t) dt > 0 which gives a contradiction. Therefore va has a zero, za, with

0 < za < Ma < R∗. Now we show that za → R∗ as a → ∞. Rewriting (2.35) and integrating
on (za, Ma) by letting x = va(t) we obtain∫ va(Ma)

0

dx√
F(va(Ma))− F(x)

≥
∫ Ma

za

√
2h(t) dt. (2.39)

As we have just proved above that the left-hand side of (2.39) goes to 0 as a → ∞. Thus since
h > 0 is continuous we must have (Ma − za) → 0 as a → ∞. Since we know from Lemma 2.4
that Ma → R∗ as a→ ∞, it follows that za → R∗ as a→ ∞.

Next we show that |v′a(za)| → ∞ as a → ∞. Since 0 < za < Ma and Ea is non-increasing
we have

1
2

v′2a (za)

h(za)
= Ea(za) ≥ Ea(Ma) = F(va(Ma)).

So by rewriting this we obtain

2h(za)F(va(Ma)) ≤ v′2a (za). (2.40)

Since za → R∗ as a → ∞ and h is continuous then h(za) → h(R∗) > 0 as a → ∞. Also, in
Lemma 2.4 we saw that va(Ma)→ ∞ as a→ ∞ and thus since F is continuous, it follows that
F(va(Ma)) → ∞ as a → ∞. Thus, from (2.40) we see that v′2a (za) → ∞ as a → ∞ which then
implies |v′a(za)| → ∞ as a→ ∞.

Finally, we denote the largest zero of va on (0, R∗) as z1,a. Using a similar argument as
in Lemma 2.5, it can be shown that va has a local minimum, ma ∈ (0, z1,a) if a is sufficiently
large. And by following a similar argument as above we can show that there exists a second
zero, z2,a ∈ (0, ma) of va, z2,a → R∗ as a → ∞, and |v′a(z2,a)| → ∞ as a → ∞. Continuing in
this way if a is sufficiently large and n is a given non-negative integer, then va has n zeros on
(0, R∗) if a is sufficiently large.

3 Behavior for small a > 0

Lemma 3.1. Assume (H1)–(H5) hold and let va solve (2.2)–(2.3). Suppose a is sufficiently small.
Then va has a zero, za, and a local maximum, Ma, with 0 < za < Ma < R∗. In addition, za → R∗,
Ma → R∗, |v′a(za)| → 0, and va(Ma) → 0 as a → 0+. Furthermore, given n ≥ 1, if a is sufficiently
small then va has n zeros on (0, R∗).

Proof. First we want to show that va has a zero on (0, R∗) if a is sufficiently small. Suppose on
the contrary that va > 0 on (0, R∗) for all a > 0. By (2.6) we have

va(t) =
aRN−1

N − 2
(R∗ − t)−

∫ R∗

t

(∫ R∗

s
h(x) f (va(x)) dx

)
ds. (3.1)
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Since va > 0 near R∗ it follows from (2.2) that v′′a < 0 near R∗ so by integrating this inequality
twice we obtain

0 < va <
aRN−1

N − 2
(R∗ − t). (3.2)

From (H1) and (H3) there exists f1 > 0 such that f (va) ≥ f1v−q
a . Substituting this into (3.1)

gives

va(t) ≤ ac7(R∗ − t)− f1

∫ R∗

t

(∫ R∗

s
h(x)v−q

a (x) dx
)

ds (3.3)

where c7 = RN−1

N−2 . Since h is increasing on [0, R∗] then from (3.2) and (3.3) we obtain

va(t) ≤ ac7(R∗− t)− f1h(t)
∫ R∗

t

(∫ R∗

s
v−q

a (x) dx
)

ds = ac7(R∗− t)− f1h(t)(R∗ − t)2−q

aqcq
7(1− q)(2− q)

. (3.4)

Therefore if va > 0 on [R∗
2 , R∗], then from (3.4) we obtain

f1h(t)(R∗ − t)1−q

cq+1
7 (1− q)(2− q)

≤ aq+1. (3.5)

Letting t = R∗
2 in (3.5) we obtain

f1h(R∗
2 )(R∗)1−q

cq+1
7 21−q(1− q)(2− q)

≤ aq+1. (3.6)

The left-hand side of (3.6) is a positive constant but the right-hand side goes to 0 as a → 0+.
Thus we obtain a contradiction if a is sufficiently small. Hence va has a zero, za, on [R∗

2 , R∗] if
a > 0 is sufficiently small and va > 0 on (za, R∗). Since va(za) = 0 = va(R∗) and v′a(R∗) < 0,
it follows that va has a local maximum, Ma, with 0 < za < Ma < R∗.

Next by letting t = za in (3.5) we obtain

f1h(za)(R∗ − za)1−q

cq+1
7 (1− q)(2− q)

≤ aq+1. (3.7)

Since the right-hand side of (3.7) goes to 0 as a→ 0+ it follows that za → R∗ as a→ 0+. Since
za < Ma < R∗ it then follows that Ma → R∗ as a→ 0+.

Next we know that 1
2 v′2a + h(t)F(va) is increasing by (2.13). So it follows that

1
2

v′2a (za) =
1
2

v′2a (za) + h(za)F(va(za)) ≤
1
2

v′2a (R∗) + h(R∗)F(va(R∗)) =
1
2

a2R2(N−1)

(N − 2)2 . (3.8)

The right-hand side of (3.8) goes to 0 as a→ 0+ which implies that |v′a(za)| → 0 as a→ 0+.

Now we show that va(Ma) → 0 as a → 0+. From (2.16) we have |va| ≤ aR
N−2 on (0, R∗).

Since va(Ma) ≥ 0 it then follows that

0 ≤ va(Ma) ≤
aR

N − 2
→ 0 as a→ 0+.

Now if we denote the largest zero of va on (0, R∗) as z1,a then by using a similar argument
as above we can show that va has a local minimum, ma, on (0, z1,a) if a is sufficiently small.
Also, it can be shown that there exists a zero, z2,a ∈ (0, ma) of va and z2,a → R∗ as a → 0+.
Continuing in this way, given n ≥ 1 then va has n zeros on (0, R∗) if a is sufficiently small .
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4 Proof of Theorem 1.1

Let n ≥ 0 and consider the set

Sn = {a > 0 | va solves (2.2)–(2.3) and va has exactly n zeros on (0, R∗)}.

By Lemma 2.4 we observe that if a > 0 then Sn ̸= ∅ for some n. Let n0 ≥ 0 be the least
integer n such that Sn ̸= ∅ (i.e, Sn0 ̸= ∅ and Sn = ∅ for all 0 ≤ n < n0). Also it follows from
Lemma 2.6 that Sn0 is bounded from above. So let

a+n0
= sup Sn0 .

Lemma 4.1. va+n has exactly n zeros, va+n (0) = 0, and v′a+n (0) ̸= 0 for all n ≥ n0.

Proof. It follows from the definition of Sn0 that va+n0
has at least n0 zeros on (0, R∗). Suppose

that va+n0
has an (n0 + 1)st zero. Then by the continuous dependence of va on a it follows

that va has an (n0 + 1)st zero if a is sufficiently close to an0 . But if we choose a ∈ Sn0 such
that a < an0 and a is sufficiently close to an0 , then va has only n0 zeros on (0, R∗) which
gives a contradiction. Thus va+n0

has exactly n0 zeros on (0, R∗). Now we want to show that
va+n0

(0) = 0. Assume without the loss of generality that va+n0
> 0 on (0, zan0

). Then by the
continuity of va+n0

we have va+n0
(0) ≥ 0. Suppose va+n0

(0) > 0. Since the zeros of va are simple
and va(0) > 0 it follows that va has exactly n0 zeros on (0, R∗) if a is close to an0 . But if a > an0

then va has at least n0 + 1 zeros on (0, R∗) which is a contradiction. Therefore, we must have
va+n0

(0) = 0.

Next we want to show that v′a+n0
(0) ̸= 0. Assume without loss of generality that va+n0

> 0

on (0, zn0) where zn0 is the nth
0 zero of a+n0

on (0, R∗). Since va+n0
solves (2.2) we have

v′′a+n0
+ h(t) f (va+n0

) = 0.

From the above equation it follows that

(tv′a+n0
− va+n0

)′ = tv′′a+n0
= −th(t) f (va+n0

) < 0.

Thus, tv′a+n0
− va+n0

is decreasing. Also, since limt→0+(tv′a+n0
− va+n0

)=0 we have that (tv′a+n0
− va+n0

) ≤
0 on (0, zn0). It then follows that (va+n0

t

)′
≤ 0. (4.1)

Since va+n0
> 0 on (0, zan0

), we see from (4.1) that limt→0+
va+n0

t exists. Integrating (4.1) on (t, t0)

we obtain

0 <
va+n0

(t0)

t0
≤ lim

t→0+

va+n0
(t)

t
= v′a+n0

(0).

Therefore, v′a+n0
(0) > 0.

Next let

Sn0+1 = {a > 0 | va solves (2.2)–(2.3) and va has exactly (n0 + 1) zeros on (0, R∗)}.
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If a is sufficiently close to a+n0
with a > a+n0

, then by the definition of a+n0
it follows that va has

an (n0 + 1)st zero, zan0+1 ∈ (0, R∗). By integrating (2.13) on (t, R∗) we obtain

1
2

v′2a =
1
2

a2R2(N−1)

(N − 2)2 −
∫ R∗

t
h′F(va). (4.2)

Similarly, we have
1
2

v′2a+n0
=

1
2

a+n0

2R2(N−1)

(N − 2)2 −
∫ R∗

t
h′F(va+n0

). (4.3)

Since va → va+n0
uniformly as a→ a+n0

it follows from (4.2) and (4.3) that

lim
a→a+n0

v′2a = v′2a+n0
uniformly on [0, t0] for t0 > 0. (4.4)

Since v′2a+n0
(0) > 0 it follows from (4.4) that v′a(t) ̸= 0 if a > a+n0

and a close to a+n0
and t is close

to 0. Hence, va has at most (n0 + 1) zeros and therefore va has exactly (n0 + 1) zeros if a is
sufficiently close to a+n0

and a > a+n0
. Thus, Sn0+1 ̸= ∅. Also it follows from Lemma 2.6 that

Sn0+1 is bounded above.

Now let
a+n0+1 = sup Sn0+1.

Then by using a similar argument as above we can show that va+n0+1 has exactly (n0 + 1) zeros
on (0, R∗) and that va+n0+1(0) = 0. Continuation of this process will generate an infinite family
of solutions {va+n }n≥n0 of (2.2)–(2.3) where va+n has exactly n zeros on (0, R∗) and va+n0

(0) = 0.

To complete the proof we again consider the set Sn0 as above which is non-empty. By
Lemma 3.1 it follows that Sn0 is bounded from below by a positive real number. So we define

a−n0
= inf Sn0 .

Then by using the continuous dependence of the solution va on a as above we can show that
va−n0

has exactly n0 zeros and va−n0
(0) = 0 and v′a−n0

(0) ̸= 0. Now it may be possible that Sn0 is

a singleton set. Then we have a−n0
= a+n0

. In this case there is only one solution with n0 zeros.
But we know that if a > a+n0

then Sn0+1 ̸= ∅. Also if a < a−n0
= a+n0

and a is close to a−n0
, then va

has exactly (n0 + 1) zeros. Thus Sn0+1 has at least two points. Next let

a−n0+1 = inf Sn0+1.

Then a−n0+1 < a+n0+1 and we can also show that va−n0+1 has exactly (n0 + 1) solutions and
va−n0+1(0) = 0. Thus, va+n0+1 and va−n0+1 are two solutions with exactly (n0 + 1) zeros on (0, R∗).
Continuation of this process will generate a second infinite family of solutions {va−n }n≥n0 of
(2.2)–(2.3) where va−n has exactly n zeros on (0, R∗) and va−n0

(0) = 0.

Finally, by letting u+
n (t) = v+an

(t
1

2−N ) and u−n (t) = v−an
(t

1
2−N ) we obtain two infinite families

of solutions of (1.3)–(1.4) with prescribed number of zeros. This ends the proof of Theorem
1.1.
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