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Abstract. We are concerned with the radial solutions of the Dirichlet problem
—Au = K(|x|)f(u) on the exterior of the ball of radius R > 0 centered at the ori-
gin in RN with N > 3 where f is superlinear at co and has a singularity at 0 with
f(u) ~ —2and0 < g < 1 for small u. We prove that if K(|x|) ~ |x|~* with

|u|9 1y
a > 2(N — 1) then there exist two infinite families of sign-changing radial solutions.
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1 Introduction

In this paper we study the radial solutions of

—Au = K(|x|)f () on R¥\Bg(0) (1.1)
u(x) =0 on dBg(0), ‘llim u(x) =0 (1.2)

where A : CF(RN) — C*=2(IRN) denotes the N-dimensional Laplacian, Bg(0) denotes the unit
ball centered at the origin, |x| denotes the Euclidean distance of x, and u : RN — R with
N > 3.

Numerous papers have proved the existence of positive solutions of these equations with
K(|x]) = 1. See for example [4,5,10]. In [10], Miyamoto and Naito studied the problem in
the domain Bg(0) \ {0}. Some other papers have dealt with the positive solutions of these
equations with various nonlinearities f(u) and K(|x|) ~ |x|~* with a > 0. (See [1,9,11]).

We prove the existence of sign-changing solutions of (1.1)—(1.2) and analyze their proper-
ties. The papers [2,3,7,8] examined the case where the non-linear function f(u) in (1.1) has a
unique positive zero. We choose a superlinear function f(u) that has no positive zeros.

Our study of the solutions of (1.1)—(1.2) is based on the following assumptions:
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(H1) f:R\{0} — Ris odd, locally Lipschitz, and f > 0 on (0, ). (So, by the symmetry of f
about the origin, f < 0 on (—00,0)),

(H2) f(u) = |u|P~Yu+ g(u) with p > 1 for large u and lim,,_,o, 81l =,

|ul?

(H3) there exists a locally Lipschitz function g7 : R — R such that f(u) = Iu\"%lu + g1(u) with
0<g<1landg(0)=0,

(H4) K(r), K'(r) are continuous on [R,c0) with K(r) > 0 such that 2(N — 1) + & < 0 on
[R,e0),

(H5) there exist a constant kg > 0 and « > 2(N — 1) such that ’;—2 < K(r) on [R, ).

Let F(u) = [y f(t) dt. From (H3) it follows that f is integrable at 0 and therefore F is
continuous with F(0) = 0. Also, since f is odd and f > 0 on (0, c0), it follows that F is even
and F(u) > 0 for u # 0.

Since we are studying the radial solutions of (1.1)—(1.2), we let u(x) = u(|x|) = u(r) where

r=|x| = \/x% + x3 + - - + x%,. Denoting %—Lr‘ by u’ and ‘327’; by u” then (1.1)—(1.2) becomes:

N-1

/!
u"(r) + .

u'(r) + K(r)f(u) =0 for R <r < oo, (1.3)

u(R) =0, limu(r)=0. (1.4)

r—o0

In this paper we prove the following:

Theorem 1.1. Assume (H1)—(H5) hold and N > 3. There exist two infinite families of non-trivial
radial solutions of (1.3)—(1.4). In addition, 3ng > 0 such that for every n > ng then there are at least
two solutions of (1.3)—(1.4) with exactly n zeros on (R, o0).

2 Preliminaries and behavior for large a
We prove the existence of a solution of (1.3)—(1.4) with
u(R)=0, v/(R)y=a>0 (2.1)

on [R,R + ¢€) for some € > 0. We denote u(r) by u,(r) to emphasize the dependence of u on
the initial parameter 2. We begin first by making the following change of variables

us(r) = v, (r*N).

Let ¥*~N = t and denote R*>N by R*. We observe then that solving (1.3), (2.1) is equivalent to
solving the following initial value problem

ol +h(t)f(v,) =0 on (0,R*) (2.2)

aRNfl
N-2

0, (R*) =0, 0. (R*)=— <0 2.3)
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2(N-1) 1
where h(t) % We will then try to find values of a such that v,(0) = 0.

From (H4), (H5), and the definition of h(t) it follows that

h(t) >0, W'(t) >0 on (0,R*]
a—2(N-1) (2.4)

and Jh; > 0 such that hyt* < h(t) on (0, R*] where & = N_2 > 0.

We first prove the existence of a solution for (2.2)—(2.3) on [R* — ¢, R*] for some € > 0. To
do this, we transform this equation into an integral equation and use the contraction mapping
principle to solve it. Let t > 0 and let v, be a solution of (2.2)—(2.3). By integrating (2.2) over
(t,R*) and using (2.3) we obtain

o (1) = ”RN : ~+ / “ %)) dx. 2.5)

Now integrate (2.5) over (¢, R*) and use (2.3). This gives

v,(t) = L;\I;Zj_zl (R* —t) — /tR* (/SR*h(x)f(va(x)) dx> ds. (2.6)

Letting v,(t) = (R* — f)y(t) and y(R*) = lim,; .- lgi—@t = —0v)(R*) = %, we can
rewrite the equation (2.6) in terms of y(t) as

v = = [ ([ s (e ) ax ) as @)

We now solve (2.7) by defining an operator on an appropriate space and showing that it
has a fixed point. For this, let 2 > 0 and consider the Banach space

aRN-1 aRN-1 aRN-1
{yGC[R €,R*] : y(RY) 7N_2,y(t) N_2|3N=2) on [R e,R]}
equipped with the supremum norm defined by
[yl = sup [|y(x)].

x€[R*—e,R*]
We define amap T : X — C[R* — ¢, R*] by

aRN-1 . .
(Ty)(t) = 1\1;_2 - R*l_ : /tR (/SR h(x)f ((R* —x)y(x)) dx> ds for R" —e <t < R" (2.8)

and T(R*) = %R~

+ ¢1(u) by (H3), we have from (2.8) that

|u\‘l Tul=Tu

N-1 . .
0= 5~ =1 | ([ 70 (o= 6 (& = 2w ) dx ) ds. 29

Since 0 < g < 1 by (H3), it follows that ﬁ is integrable on [0, R*]. Using this fact
together with that g; is locally Lipschitz, it can be shown that T is a contraction mapping
from X into itself for sufficiently small € (the details are carried out in [3]). Thus by the
contraction mapping principle [6], there exists a unique element y € X such that Ty = y on
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[R* — €, R*]. Hence, we obtain a solution v,(t) = (R* — t)y(t) of (2.2)-(2.3) on [R* — ¢, R*] if
a > 0 and € > 0 is sufficiently small.

Next let (Ry, R*] be the maximal half-open interval of existence of the solution to (2.2)-
(2.3). Now we define the energy of the solution

2
1o

e = 2y

+ F(v;) for Ry <t < R*. (2.10)

Then it follows from (2.2) and (2.4) that

, U/Zh/
_ a *
Ey=——3 <0 on (Ry, RY]. (2.11)

Thus, E, is non-increasing on (R;, R*| and hence for R; < t < R* we have

0/2

1
<E,= Eh(at) + F(v,) on (Rq,R7]. (2.12)

1 aZRZ(Nfl) - 1 UIIJZ<R*)

0 < S IN—2PR(R) ~ 2 h(R)

= Ea(R*)

So E; > 0 on (Ry, R*].

We next claim that the solution of (2.2)-(2.3) exists on [0, R*] and analyze the properties of
the solution in several lemmas.

Lemma 2.1. Assume (H1)-(H5) hold, N > 3 and a > 0. Let v, be the solution of (2.2)—(2.3). Then
v, can be extended to the maximal interval [0, R*].

Proof. Let v, be the unique solution of (2.2)-(2.3) on the maximal half-open interval of exis-
tence (R, R*]. We show that Ry = 0. Suppose on the contrary that R; > 0. Using (2.2), (2.4)
and that F(v,) > 0 we obtain

<;v;2 +h(t)1—"(va)>/ =W (t)F(v,) >0 on (Ry,R*]. (2.13)

Let 0 < t < Ry. Now by integrating (2.13) over (t,R*), using (2.3) and that h(t) > 0,
F(v,) > 0 we obtain

1 1 142R2(N-1) .

EU;Z S EZ);Z +h<t>F(0g> S *m on (Rl,R ] (2.14)
Therefore,
CIRN_l
|vl| < N on (R, R*]. (2.15)
Also, we have
R* R* aRN-1 i aRN-1 i aR .

|0a| = ‘/t vl ds §/t |vl| ds < N—Z(R —1) < N R =y—3 o0 (R1,R*]. (2.16)

Now let (t,) C (Ry, R*] such that t, — R{". Then by the mean value theorem and (2.15) we
obtain

aRNfl
N-2
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This shows that (v,(t,)) is a Cauchy sequence on (Rj,R*] and so 3L € R such that
lim, g+ v,(t) = L. Also since h(t)F(v,) and I/ (t)F(v,) are continuous on (Ry, R*], inte-
grating (2.13) on (f,R*) we see that lim, , g+ vh(t) = L exists. From (2.12) we see 0 <

E, < %h(%) + F(L) on (Ry, R*] which shows that L and L; cannot both be zero. Now if
L = Othen L; # 0 and we can use the contraction mapping principle as we did earlier to
extend our solution to (R; — §, R*] for some é > 0. On the other hand, if L # 0, then we can
use the standard existence theorem for ordinary differential equations to obtain a solution on
(Ry — 4, R*] for some ¢ > 0. Therefore in both cases the solution of (2.2)-(2.3) can be extended
to (Rq — 4, R*] for some 6 > 0, contradicting the maximality of (R, R*]. Hence R; = 0. It then
follows from (2.15) and (2.16) that v, and v}, are bounded on (0, R*] and so in a similar way to
earlier we see that the limits lim;_,q+ v,(#) and lim;_,o+ v/, (¢) exist. Thus v, and v/, are defined

and continuous [0, R*]. O

Remark 2.2. If v, solves (2.2)-(2.3) and z € (0,R*) is such that v,(z) = 0 then by (2.12),
0 < Eq(zq) = %UE((ZZ)) and hence v(z) # 0. Thus the zeros of v, on (0, R*) are simple. Also,
since lim,_,o |f(u)| = oo, by (H3) it follows that the solution to (2.2)—(2.3) is twice differen-
tiable except at points where v,(tp) = 0. Therefore, by a solution v, of (2.2)—(2.3) we mean a

continuously differentiable function v, on [0, R*] that satisfies the equation (2.6) with (2.3).

Lemma 2.3. Assume (H1)—(H5) hold, N > 3 and a > 0. Let v, solve (2.2)—(2.3) on [0, R*]. Then v,
depends continuously on the initial parameter a on [0, R*].

Proof. Let 0 < a1 < a < ap. Then from (2.15) we have

N-1

R
2 > <ayc; forallasuchthat0<ay <a<ap (2.17)

ohl < 5

where ¢ = % And from (2.16) we have

R
|va| = ﬁ <aycp, forallasuchthat0 <o <a<ap (2.18)
where ¢; = &5. Thus, (2.17) and (2.18) show that the upper bounds for |v,|, [0;| can be
chosen to be independent of a on [0, R*] for all a such that 0 < a; < a < a,.

Now let @ > 0 and suppose a — 4. Then, we want to show that v, — v; uniformly on
[0, R*]. Suppose on the contrary, that there is a subsequence (a;) C R such that a; — @ as
j — o0 and €y > 0 such that

|vg,(tj) —va(tj)| > €0 for some sequence t; € [0, R*]. (2.19)

Since a; — 4, there exists Ny € IN such that for all j > Np |a;| < @+ 1. From (2.15) and (2.16)
we know that v, and v}, are uniformly bounded on the compact domain [0, R*]. Hence, by the
Arzela-Ascoli theorem, there exists a subsequence (v, ) C (v,;) such that v,, — v; uniformly
on [0, R*] as k — oo. Therefore, as k — oo from (2.19) we obtain

0« |Ulljk (tjk> - Uﬁ(tjk)| > €0

which is a contradiction. Thus, v, — v; uniformly on [0, R*] and this completes the proof of
the lemma. O
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Lemma 2.4. Assume (H1)—(H5) hold and N > 3. If a > 0 and v, is a solution of (2.2)—(2.3), then v,
has at most finitely many zeros on (0, R*).

Proof. Suppose on the contrary that 3 a sequence (z;,) C (0,R*) with0 < --- < zp, < z1,
such that v,(zx,) = 0. Then z;, converges to some z; on [0, R*]. Since v, has infinitely many
zeros, zy,, and v)(zx,) # 0 by the Remark 2.2, it follows that v, has infinitely many local
extrema, {My,}p>,, with zpy1, < Mg, < 2k, and so limg_,o My, = z;. Since E,(t) > 0 on
(0, R*] and E is non-increasing by (2.12) we have F(v,(My,)) = E;(My,) > %% > 0.
So 3B, > 0 such that |v,(My,)| > B. for all k. Now by the mean value theorem and (2.15)
i, € (Mgg, Zk,q) such that

a RN -1
0< :Ba < |Uu(Mk,a)| = |Ua(Mk,u) — Ua (Zk,u)| = |U;(tk,a) ’ |Mk,a - Zk,a| < M‘Mk,a - Zk,a|' (2.20)
Since My, — z; and zx, — z, as k — oo, the right-hand side of (2.20) goes to 0 as k — oo
which gives a contradiction. Therefore v, has at most finitely many zeros on (0, R*) for
a>0. O

Lemma 2.5. Assume (H1)-(H5) hold, N > 3 and let v, solve (2.5). Then for a > 0 sufficiently large
v, has a local maximum, M,. In addition, v,(M,) — oo and M, — R* as a — oo.

Proof. First we show for any 0 < to < R* that max g+) [va(t)| — 00 as a — 0.
If v, has a local maximum M, € [ty, R*), then v),(M,) = 0. So, by letting t = M, in (2.12)
we obtain

2p2(N-1)
Fo(My)) > 22K

Since h(R*) > 0, it follows that the right-hand side of (2.21) approaches infinity as a — o
and hence from the definition of F we see that

v,(M,) — 0 asa — oo. (2.22)

On the other hand, if v, has no local maximum on (tp, R*) then v, is decreasing on (tp, R*).
We want to show that maxy, g+ [0a(t)| — c0 as a — c0. Suppose on the contrary that this is
false. Then there exists a constant c3 > 0 independent of a such that |v,(t)| < c3 on [to, R*].
Then by the continuity of F there exists ¢4 > 0 such that F(v,(t)) < c¢4. Using this and (2.3), it
follows from (2.12) that

102(t) 102(t) 192(R*) 1,5, )
2 > = > = = .
0 €425 10 + F(vq(t)) > 2 (R ,@°¢5 on [to, R*] (2.23)
. RN-1 oy .
where ¢5 = WISk Rewriting (2.23) we obtain
[0h()] > \Ja2d — 2¢4 \/1(b). (2.24)

By (2.4) there exists h; > 0 such that h(t) > ht* on [fp, R*]. By using this and choosing 4
sufficiently large we can ensure that

(O] = 2\ /n(t) = 2t (2.25)

-2
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Since v, is decreasing, then by (2.25) we have v/, < 0 on [fg, R*|]. Now integrating (2.25) over
(to, R*) yields

R* R* %+1 o t%-‘rl
c3 > va(to) :/t ) dt > @\/ / %\/h1 ( )& ). (20
0

The left hand side of (2.26) is a constant while the right-hand side approaches co as @ — oo
which is a contradiction. Thus we conclude that for any ty € [0, R¥)

[rnax |vq(t)] — 00 asa — oo. (2.27)
tg,R*

We claim next that v, has a local max, M,, and %R* < M, < R* if a is sufficiently large.
Suppose on the contrary that v, is decreasing on [%R*, R*]. Let

C, = E min M (2.28)
2[R3R Va

By letting t) = 2R* in (2.27), we obtain v,(3R*) — oo asa — co. Since v, is decreasing on
the interval [1R*, 2R*] we see that v, — co uniformly as @ — oo on the interval [JR*, 3R*].
By (2.4) hit* < h(t) on (0, R*] for some constant #; > 0 from which it follows that h(t) is
bounded from below on [JR*, 2R*]. Also we have f(v,) = |va|P~lv, + g(va) by (H2) and
so it follows that if v, is large then f(v,) > %vf . It then follows from this that %i“) >
Lop ') > 1ob ™" (3R*) on [LR*,3R*]. Since p — 1 > 0 and v,(3R*) — o0 as a — oo, then we
see f( %) _ o on [1R*,2R*] as a — oo. And since & is bounded from below on [JR*, 3R*], it
follows from this and (2.28) that

C,—> o0 asa— oo.

Now we consider the differential equation

w;/ + nga - O (2.29)

W, (ZR*) =, <iR*> >0,
(2.30)

3 3 .

Clearly, {cos v/C,(t — 2R*),sin/Cs(t — 3R*)} is a fundamental set of solutions of (2.29). So,
W, = 1 cos v/ Cp(t — %R*) + apsin/C,(t — %R*) for some constants «1 and «,. We also know
that the distance between two consecutive zeros of w, is \/% —+0asa — oo. So, fora > 0
sufficiently large we have JR* < 2R* — \/% Therefore, ~for a > 0 sufficiently large w, has
a zero on [3R*,32R*] and hence has a local maximum M on this interval with w, < 0 on

(M, 3R"].

with

Next, we rewrite equation (2.2) and consider

ol + (h(t)f(z’“)> v, = 0. (2.31)

Uq
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Multiplying (2.29) by v,, (2.31) by w,, and subtracting we obtain

(whv, — w,ol,) + (Ca — h(t)f(va)> wav, = 0.

Uq

Integrating this on (M, 3R*) and using (2.30) gives

w,(M)v, (M) = /ZR* (h(t)f(va) — Ca> Wav, dt. (2.32)

M Ua

Since w, (M) >0, C, < %a(v“) on [0, 2R*], and w,, v, stay positive on [M, 2R*] it follows from
(2.32) that v,(M) > 0, contradicting our assumption that v, is decreasing on [1R*, R*]. Thus
v, has a local maximum, M,, and %R* < M, < R* with v, decreasing on [M,, R*] for a > 0

sufficiently large. It also follows immediately from (2.22) that v,(M,) — o as a — oo.

Next we show that M, — R* as a — oo. Since v, is decreasing on [M,, R*) and v,(R*) =
0 so we see v, > 0 on [M,, R*). But then from (2.2) we know v] = —h(t)f(v,) < 0 on [M,, R*
and so v, is concave down on [M,, R*). This implies

Vo (AMy + (1 = A)R*) > Avg(M,) + (1 — A)ve(R*) for0 <A <1
So by letting A = 3 we obtain

Vg <M”;—R ) = ol ) ;Ua(R ) _ ya(;\/lu) — 00 asa— . (2.33)

By the superlinearity of f it follows that f(v,(t)) > 0% (t) on [M,, M”;R*] if a is sufficiently
large. By using this in (2.2) we obtain
1
o = —h(t)f(va(t)) < =504 (t).

Now integrating this on [M,, t] where M, < t < M“TW and recalling that M, is a local maxi-
mum of v, with v, decreasing on [M,, R*] yields

t t
o (1) < —+ [ ol(x) dx < — ol (t) [ i)
2 /M, 2 M,

Rewriting the above gives

_'0(/1 1 t
> h(x) dx
'UZ — 2 M,l ( )

Integrating again on (M,, t) gives,

1 > 1 1-p 1-p > 1 rt s
T T 0= M) 2 5 [ [ ) dx s,
Evaluating at t = MaTJrR* we obtain
1 1 M s
(p— 1yl (M) 3y ) s (2.34)

Since p — 1 > 0, it follows from (2.33) that the left-hand side of (2.34) goes to zero as a — oo.
Thus, since h(x) > 0 and & is continuous on [M,, R*], it follows from (2.34) that M, — R* as
a — oo. This completes the lemma. ]
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Lemma 2.6. Assume (H1)-(H5) hold, N > 3 and let v, solve (2.5). Then for a > 0 sufficiently large
v, has a zero, z,, with 0 < z, < M, < R* where z; — R* and |v},(z;)| — oo as a — oo. In addition,
if a is sufficiently large and n > 1, then v, has n zeros on (0, R*).

Proof. First we show that 3z, € (0, M,) such that v,(z,) = 0. Suppose on the contrary that v,
stays positive on (0, M,). We note that v, cannot have a positive critical point on (0, M,). If
it has a positive critical point ¢, with v, > 0 on (¢;, M,), then v,(c,) > 0 and v/ (c,) > 0. So
by (2.2) f (va(ca)) < 0 but then v,(c,) < 0 contradicting that v, > 0 on (0, M,). Thus v, is
increasing on (0, R*). Next recall from (2.11) that E, < 0 on (0, R*]. So we have

2
1 v;

2h(t)

+F(v)) > F(vs(M,)) on (0, M,]. (2.35)

Rewriting (2.35) and integrating on (0, M,) by making the change of variable s = v,(t) gives

M, M, vl (t) dt o [oa(Ma) ds
b VO E S R ]~ o VEOOA=F®

< va(Ma) ds
_/0 VE(©d(Ma)) — F(s)

We now estimate the integral on the right-hand side of (2.36). Letting s = v,(M,)x, we obtain

(My) ds va(Ma) [ dx
_ , (2.37)
b e =TS~ VR b i R

(2.36)

Let G(u) = [, §(s) ds. Then by (H2) it follows that

F(va(M)x)  ob ™ (M) xP ! 4 G (v,(M,)x)
F(vq(Ma)) oV (M) + G(va(M,))
G(va(M, 2.38
P+ L U(;H((Mg) (2.38)
G(Ua(Ma))
U§+1(Mg)

1+

By (H2) and L'Hopital’s rule it follows that ‘\Sv(fl) || — 0 as u — oo. This implies that given

€ > 0 there exists U such that |G(u)| < €|u|P*! for |u| > U. Also the continuity of G implies
that there exists ¢ > 0 such that |G(u)| < ¢4 for |u| < U. Therefore

|G(u)| < ce+€|ulP™ forall u.

Letting 1 = v,(M,)x in the above inequality and using (2.22) we obtain

GeaMD| 6
o (Mg ol (M)

- Hcié
vh (M)
< 2(R*)P*le  for a sufficiently large.

+ e(R*>p+1

G(va(Ma)x)
VH(Ma)

lim; e % = 0. Thus it follows from (2.38) that % — xPt1 uniformly as a — oo.

Therefore lim;_, = 0 uniformly on [0,1]. In particular it follows that
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Also we know that fol \/i’;w < co since p > 1. So it follows from this and the fact that f is

% — 0 as a — oo. Therefore it follows from (2.37) that
Ua (Mg

superlinear that

) va(Ma) ds

lim =0

e Jo VE(@©a(Ma)) — E(s)
Hence, the right-hand side of (2.36) goes to 0 as 2 — co. However, we know h(t) > 0 on (0, R¥)
and M, — R*asa — oo (by Lemma 2.4), so the integral on the left-hand side of (2.36)
goes to fOR \/2h(t) dt > 0 which gives a contradiction. Therefore v, has a zero, z,, with
0 < z; < M, < R*. Now we show that z, — R* as a — co. Rewriting (2.35) and integrating
on (z,, M,) by letting x = v,(t) we obtain

0a(Ma) dx M,
/O NCEACRIETE] z/zu J2h(t) dt. (2.39)

As we have just proved above that the left-hand side of (2.39) goes to 0 as 4 — co. Thus since
h > 0 is continuous we must have (M, —z,) — 0 as a4 — 0. Since we know from Lemma 2.4
that M, — R* as a — oo, it follows that z, — R* as a — oo.

Next we show that |v},(z,)| — o0 as a — oo. Since 0 < z, < M, and E, is non-increasing
we have

1 0 (2a)

2 h(z,)

So by rewriting this we obtain

= E;(zq) > Es(M,) = F(v,(M,)).

2h(z4)F(va(M,)) < 02(z,). (2.40)

Since z;, — R* asa — oo and h is continuous then h(z,) — h(R*) > 0 as a — oo. Also, in
Lemma 2.4 we saw that v,(M,) — o0 as a — co and thus since F is continuous, it follows that
F(v,(M,)) — oo as a — oo. Thus, from (2.40) we see that v/?(z,) — o0 as a — co which then
implies |0/} (z,)| — o0 as a — oo.

Finally, we denote the largest zero of v, on (0,R*) as z1,. Using a similar argument as
in Lemma 2.5, it can be shown that v, has a local minimum, m, € (0,z;,) if a is sufficiently
large. And by following a similar argument as above we can show that there exists a second
zero, zp, € (0,m,) of v, 22, — R* as a — oo, and |v}(z2,4)| — o0 as a — oco. Continuing in
this way if a is sufficiently large and # is a given non-negative integer, then v, has n zeros on
(0, R*) if a is sufficiently large. O

3 Behavior forsmall a > 0

Lemma 3.1. Assume (H1)-(H5) hold and let v, solve (2.2)—(2.3). Suppose a is sufficiently small.
Then v, has a zero, z,, and a local maximum, M,, with 0 < z, < M, < R*. In addition, z, — R,
M, — R*, |v}(z,)] — 0, and v,(M,) — 0as a — 0F. Furthermore, given n > 1, if a is sufficiently
small then v, has n zeros on (0, R*).

Proof. First we want to show that v, has a zero on (0, R*) if a is sufficiently small. Suppose on
the contrary that v, > 0 on (0, R*) for all 4 > 0. By (2.6) we have

_ aRNfl

oa(t) = N_Z(R*—t)—/tR* </SR*h(x)f(vg(x))dx> ds. (3.1)
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Since v, > 0 near R* it follows from (2.2) that v/ < 0 near R* so by integrating this inequality

twice we obtain
aRN-1

N-2
From (H1) and (H3) there exists fi > 0 such that f(v,) > fiv, . Substituting this into (3.1)
gives

O<o, <

(R* —t). (3.2)

v,(t) < acy(R* —t) —fl/tR* </SR*h(x)vuq(x) dx) ds (3.3)

where ¢; = % Since h is increasing on [0, R*| then from (3.2) and (3.3) we obtain

R* R* * 2—q
va(t) < acs(R* — 1) — fih() / ( / 07 (x) dx> ds = acy(R* — ) — TR DT -5
to\Us alc;(1—q)(2—q)
Therefore if v, > 0 on [%*, R*], then from (3.4) we obtain
flfl(t) (R* — t)l_q < a"]Jrl‘ (35)
& (1=q)(2—9q)
Letting t = &~ in (3.5) we obtain
LG IS ) (3.6)

cIT21-1(1 - g)(2 — q)

The left-hand side of (3.6) is a positive constant but the right-hand side goes to 0 as a — 0%.
Thus we obtain a contradiction if a is sufficiently small. Hence v, has a zero, z,, on [%*/ R*] if
a > 0 is sufficiently small and v, > 0 on (z,, R*). Since v,(z,) = 0 = v,(R*) and v} (R*) < 0,
it follows that v, has a local maximum, M,, with 0 < z, < M, < R*.

Next by letting t = z, in (3.5) we obtain
fih(zq) (R* — Za)l_q
1
G (1-9)2-9)

Since the right-hand side of (3.7) goes to 0 as a4 — 07 it follows that z, — R* as a — 0T. Since
z, < M, < R* it then follows that M, — R* asa — 07.

S an"l‘ (37)

Next we know that 102 + h(t)F(v,) is increasing by (2.13). So it follows that

S02(20) = 502(2) + h(za)F(0a(za)) < 20R(R") + h(R*)F(2a(R"))

1 HZRZ(N—l)

The right-hand side of (3.8) goes to 0 as 2 — 0" which implies that |v},(z,)| — 0asa — 0.

Now we show that v,(M,) — 0asa — 0T. From (2.16) we have |v,| < &5 on (0, R*).
Since v,(M,) > 0 it then follows that

aR
O<U M <
- a( a)_N

2—>O asa — 0T,

Now if we denote the largest zero of v, on (0, R*) as z1,, then by using a similar argument
as above we can show that v, has a local minimum, m,, on (0,z;,) if 4 is sufficiently small.
Also, it can be shown that there exists a zero, zp, € (0,m,) of v, and z,, — R* asa — 0F.
Continuing in this way, given n > 1 then v, has n zeros on (0, R*) if a is sufficiently small . []
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4 Proof of Theorem 1.1

Let n > 0 and consider the set
Sy, ={a > 0] v, solves (2.2)—(2.3) and v, has exactly n zeros on (0,R*)}.

By Lemma 2.4 we observe that if 4 > 0 then S, # @ for some n. Let np > 0 be the least
integer n such that S, # @ (i.e, Sy, # @ and S, = @ for all 0 < n < ng). Also it follows from
Lemma 2.6 that S, is bounded from above. So let

+
dp, = Sup Sy,.

Lemma 4.1. v, has exactly n zeros, v,+(0) = 0, and v’ . (0) # 0 for all n > ny.

Proof. It follows from the definition of S, that Vat, has at least 1y zeros on (0, R*). Suppose
that Vai, has an (19 + 1)st zero. Then by the continuous dependence of v, on a it follows
that v, has an (ny + 1)st zero if a is sufficiently close to a,,. But if we choose a € S,, such
that 2 < a,, and a is sufficiently close to a,,, then v, has only ny zeros on (0, R*) which

gives a contradiction. Thus v+ has exactly ng zeros on (0, R*). Now we want to show that
o

Vai, (0) = 0. Assume without the loss of generality that Vg, > 0 on (0,z4,). Then by the
continuity of Uy, We have v, (0) > 0. Suppose Ve (0) > 0. Since the zeros of v, are simple
and v,(0) > 0 it follows that v, has exactly ng zeros on (0, R*) if a is close to a,,. Butif a > a,,
then v, has at least 1y + 1 zeros on (0, R*) which is a contradiction. Therefore, we must have
Uan+0 (0) =0.

Next we want to show that v/, (0) # 0. Assume without loss of generality that Vi, > 0
1o n

on (0,zy,) where z,, is the nf]h zero of a,jo on (0, R*). Since Vg, solves (2.2) we have
o +h(t)f(v,+ ) =0.

H”O ny

From the above equation it follows that

(to), —v,: ) =t = —th(t)f(v,: ) <0,
ngy ngy ) ny

Thus, tv/, — v, is decreasing. Also, since lim; o+ (tv), —v,+ )=0 we have that (tv/, —v,: ) <
g o [}

a a —_
0 on (0, zy,). It then follows that

"0 g "0

?Ja;r /
( to) <0. 4.1)
Ua+
Since Vgt > 0 on (0, z,, ), we see from (4.1) that lim; o+ —* exists. Integrating (4.1) on (£, t)
we obtain (to) (0
(s to U,+ t
0 "o < 1 g — o 0
< to - ti%‘l* t v“;o( )
Therefore, v/, (0) > 0. O
]
Next let

Sup+1 = {a > 0| v, solves (2.2)~(2.3) and v, has exactly (19 + 1) zeros on (0, R*)}.
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If a is sufficiently close to aj{o with a > af{o, then by the definition of a,J{O it follows that v, has
an (no + 1)st zero, z,, 11 € (0,R*). By integrating (2.13) on (f, R*) we obtain
1 ” 1 a2R2(N-1) R* ,
U= — W' F(v,). 4.2
Similarly, we have
2p2(N-1) R
1 2 _ 1 a;_o R !
Eva;ro = Ew —/t h F('Uu;:—o). (43)
Since v, — Vaf uniformly as a — a,jo it follows from (4.2) and (4.3) that

: / /
lim o2 = v’
+ an,
a—rap, 0

uniformly on [0, to] for ¢y > 0. (4.4)

Since 0;2% (0) > 0 it follows from (4.4) that v}, (t) # 0 if a > a;; and a close to a,; and ¢ is close

to 0. Hence, v, has at most (19 + 1) zeros and therefore v, has exactly (ng + 1) zeros if a is
sufficiently close to a:{O and a > a,f{o. Thus, S,,+1 # @. Also it follows from Lemma 2.6 that
Spo+1 is bounded above.

Now let
+

A1 = SUP Sip+1-
Then by using a similar argument as above we can show that v,: ., has exactly (19 + 1) zeros
ng
on (0, R*) and that Vg +1 (0) = 0. Continuation of this process will generate an infinite family

of solutions {v,+ }u>n, of (2.2)~(2.3) where v, has exactly n zeros on (0, R*) and % (0) = 0.

To complete the proof we again consider the set S,, as above which is non-empty. By
Lemma 3.1 it follows that S;,, is bounded from below by a positive real number. So we define

ay, = inf Sy,.

Then by using the continuous dependence of the solution v, on a as above we can show that

Va, has exactly ny zeros and Vi, (0) =0and v/_(0) # 0. Now it may be possible that Sy, is
TIO

a singleton set. Then we have a, = a,} . In this case there is only one solution with rg zeros.

But we know that if a > a; then S, 1 # @. Also if a < a,, = a;} and a is close to a,,, then v,
has exactly (19 + 1) zeros. Thus S,,+1 has at least two points. Next let

nop”’
Q41 = inf Sp,41.

Then a, ., < af{o 41 and we can also show that Vg +1 has exactly (no + 1) solutions and
Vg +1 (0) = 0. Thus, Vg +1 and Vg, +1 are two solutions with exactly (19 + 1) zeros on (0, R*).

Continuation of this process will generate a second infinite family of solutions {v,-}y>u, of
(2.2)~(2.3) where v, has exactly n zeros on (0, R*) and Vg (0) =0.

Finally, by letting u,! (t) = v, (tz=%) and u; (t) = v, (tﬁ) we obtain two infinite families

of solutions of (1.3)—(1.4) with prescribed number of zeros. This ends the proof of Theorem
1.1. O
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