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Abstract. This work aims to obtain a positive, smooth, even, and homoclinic to zero
(i.e. zero at infinity) solution to a non-autonomous, second-order, nonlinear differential
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1 Introduction

The existence of homoclinic solutions for autonomous and non-autonomous differential equa-
tions and Hamiltonian systems is a crucial subject in qualitative theory (see [19]).

In this work, the second-order equation in the real line considered is
−(A(u)u′)′(t) + u(t) = λa1(t)|u(t)|q−1 + |u(t)|p−1 + g(|u′(t)|), in R

u(t) > 0, in R

limt→±∞ u(t) = 0,

(1.1)

with

(H1) 1 < q < 2 < p < +∞ and a1 ∈ Ls(R) ∩ C(R), s = 2
2−q , a positive even function;
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(H2) A : R → R a Lipschitz, smooth (at least C1(R)), non-decreasing function satisfying:

∃ γ ∈ (0, 1) such that 0 < γ ≤ A(t) ∀t ∈ R;

(H3) g : R → R a continuous function satisfying:

0 ≤ sg(s) ≤ |s|θ for all s ∈ R, where 2 < θ ≤ 3. (1.2)

The equation in (1.1) arises in several real phenomena, for instance, as the study of travel-
ing wavefronts for parabolic reaction-diffusion equations with a local reaction term, chemical
models, and others, as mentioned in [13, 14], and generalizes several classical equations such
as Duffing-type equations [3, 10, 16] or Liénard-like systems [18].

Now, we state our main result.

Theorem 1.1. There exists λ∗ > 0 such that, for all λ ∈ (0, λ∗], problem (1.1) has an even, positive
and C2(R) homoclinic solution to the origin. Moreover, as λ → 0, this solution goes to 0 in C0(R).

We also find an additional result with respect to appropriate ranges of λ in order to guar-
antee the existence of solutions.

Proposition 1.2. Assume the hypotheses of Theorem 1.1. If λ > 0 is sufficiently large, then equation
(1.1) has no (positive) solution in H1(R).

The idea to consider problem (1.1) came from article [3], where the authors considered a
similar equation but with a different set of hypotheses; namely, their formulation was focused
on the study of the equation{

−(A(u)u′)′ + u(t) = h(t, u(t)) + g(t, u′(t)) in R

u(±∞) = u′(±∞) = 0,

with

(H̃1) h, g : R2 → R locally Hölder continuous, even in the first variable and h(t, 0) = g(t, 0) =
0;

(H̃2) there exist constants 0 < r1, r2 < 1 and smooth functions b ∈ L1(R) ∩ L∞(R) with

b(t) > 0 for all t ∈ R, a1 ∈ L2(R) and a2 ∈ L
2

1−r2 (R), satisfying

b(t)|µ|r1 ≤ h(t, µ) ≤ a1(t) + a2(t)|µ|r2 , ∀(t, µ) ∈ R2;

(H̃3) there exist a constant 0 < r3 < 1 and smooth functions a3 ∈ L
2

1−r3 (R) and a4 ∈ L2(R)

satisfying
0 ≤ g(t, η) ≤ a4(t) + a3(t)|η|r3 ∀(t, η) ∈ R2;

(H̃4) the function A is smooth, nondecreasing and there exists γ ∈ (0, 1) satisfying

0 < γ ≤ A(t) ∀t ∈ R.
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By comparison with our work, we considered sup-linear growth on u and u′, terms involv-
ing this type of growth are not covered in [3]. Another aspect that we would like to emphasize
is the weakening of the hypothesis over g: comparing with [3], we asked only for continuity
over g, instead of Hölder continuity. Although the formulation presented here is not an im-
mediate consequence of [3], some techniques therein proved to be quite solid and very useful
in the study of this type of problem, transcending the circumstances framed by the authors.

Our formulation presented some interesting challenges, for instance, the problem is not
variational. Among the non-variational techniques, we chose the Galerkin method as a tool to
gather information about the existence of weak solutions. Although proving itself beneficial,
the Galerkin method presented us with other types of challenges to circumvent. For example,
the nonlinear term g(|u′(t)|) with 0 ≤ sg(s) ≤ |s|θ and 2 < θ ≤ 3 enables us to take g(s) ≡
sign(s)|s|2. Thus estimations involving

∫
Ω |u′|2 become essential to the calculations but, at the

same time, we cannot say much about it a priori: this is due to the lack of information about
u′, since the embedding theorems of H1

0(Ω) do not provide substation information about u′

as they do for u.
We consider the case θ = 3 as the critical one and treat it separately in our estimations.

For θ > 3 we would get expressions involving
∫
|u′|θ−1 that we could not control, because

θ − 1 > 2 and we only know that u′ ∈ L2; for this reason we limited θ ≤ 3, and θ > 2 was
required because we wanted to focus on the sup-linear case.

There is some literature about equations on domains in Rn involving the term |∇u|2 in
the nonlinearity (see [1, 2, 9, 15]), some authors call this type of growth: “critical growth on the
gradient”. Simple changes on how this term appears in the equation can have dramatic effects
on the outcome. For instance, a simple change in the sign of |∇u|2 can lead to a total failure
to obtain a solution (even in the weak sense), see the article [2] for more information. We
also would like to emphasize article [9] for its results and broader discussion about PDE with
quadratic growth on the gradient: the model problem studied by the authors is

−div(A(x)∇u) = c0(x)u + µ(x)|∇u|2 + f (x),

with suitable hypothesis. In this context, our problem (1.1) presents a similar structure that
was not covered before, thus we believe it contributes to the discussion previously mentioned.

The methods applied in our work require certain symmetry, which is due mainly to a
lack of a comparison principle (known to the authors) to guarantee that some limit-functions
are not zero almost everywhere (a.e.), (see Proposition 2.24). To overcome this obstacle, we
founded this work focusing on the set E1

0(I) = {u ∈ H1
0(I); u(t) = u(−t) a.e.}, I ⊂ R a

symmetric interval, which is the subset of H1
0(I) consisting of even (or radial symmetric)

functions.
In order to develop our study, in Section 2, we started by analyzing our equation on a

bounded interval:{
−(A(u)u′)′(t) + u(t) = λa1(t)|u(t)|q−1 + |u(t)|p−1 + g(|u′(t)|), in (−n, n)

u(n) = u(−n) = 0.
(Pn)

This restriction was essential to realize our estimations and to obtain upper bound constants
that were crucial to construct the solution in R to the problem (1.1). The process developed in
Section 2 consisted mainly of two steps:

First Approximate g by a sequence of Lipschitz functions ( fk) using the Strauss Approximation;
this sequence received this name after its first appearance in the article [17].
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This approximation was useful because it helped us to work with the necessary estima-
tions without extra hypotheses over g. We followed [5] in the definition and presentation
of the properties of the sequence ( fk). In this article, the authors used this approxima-
tion to avoid the usage of the Ambrosetti–Rabinowitz condition and were able to obtain
a positive solution to the equation

−∆u = λuq(r)−1 + f (r, u) in B(0, 1)

u > 0 in B(0, 1)

u = 0 on ∂B,

see [5] for more information.

We would like to emphasize that, in [5], the authors used this approximation in a term
involving u; namely they used it to approximate f (r, u). In our work, we used it in u′.

Second We used the sequence ( fk) to define an approximate problem in (−n, n) and used
the Galerkin method to obtain a weak solution. Then, using the work done by Gary M.
Liberman [12], we obtained the a priori estimation summarized in Proposition 2.21. Thus
we obtained a strong solution to this problem. Afterward, we were able to construct a
strong solution to the problem (Pn).

In Section 4 we used the pieces of information gathered in Section 2 to construct a solution
to the problem (1.1), thus proving Theorem 1.1. We also prove Proposition 1.2 in Section 4.
We would like to point out the role of Section 3: there we study the asymptotic behavior, in
respect to λ, of the solution to the problem (Pn) – the arguments presented were inspired by
the article [8]. This was useful to tackle the last assertion of Theorem 1.1.

2 Solution in a bounded interval

First, we will obtain a solution to a problem related to (1.1); namely, we will study{
−(A(u)u′)′(t) + u(t) = λa1(t)|u(t)|q−1 + |u(t)|p−1 + g(|u′(t)|), in (−n, n)

u(n) = u(−n) = 0,
(Pn)

with the same set of hypothesis (H1), (H2) and (H3). The motivation for this approach is to
construct a solution to the problem (1.1) using the solutions of (Pn). Although the analysis
of (Pn) is easier since it is defined over (−n, n), rather than R, the lack of hypothesis over g
creates a difficult situation for our estimations. To overcome this matter, we will utilize the
Strauss Approximation on g at the same time that we approximate the problem (Pn). Let us
define the sequence of functions that will approximate g.

Define G(s) =
∫ s

0 g(t)dt so that G is differentiable and G′(s) = g(s). By means of G we
shall construct a sequence of approximations of g by Lipschitz functions fk : R −→ R. Let

fk(s) =



−k[G(−k − 1
k )− G(−k)], if s ≤ −k

−k[G(s − 1
k )− G(s)], if − k ≤ s ≤ −1

k

k2s[G(−2
k )− G(−1

k )], if −1
k ≤ s ≤ 0

k2s[G( 2
k )− G( 1

k )], if 0 ≤ s ≤ 1
k

k[G(s + 1
k )− G(s)], if 1

k ≤ s ≤ k

k[G(k + 1
k )− G(k)], if s ≥ k.

(2.1)



Homoclinic solution to zero of a non-autonomous ODE 5

Remark 2.1. The construction of the sequence ( fk) is due to [17].

The advantage of this sequence lies in the properties that one can obtain from it:

Theorem 2.2 ([5, Lemma 1]). The sequence fk as defined above satisfies:

1. s fk(s) ≥ 0 for all s ∈ R;

2. for all k ∈ N there is a constant c(k) such that | fk(ξ)− fk(η)| ≤ c(k)|ξ − η|, for all ξ, η ∈ R;

3. fk converges uniformly to g in bounded sets.

Remark 2.3. From the definition of the sequence fk, and the fact that sign(g(s)) = sign(s) for
all s ∈ R, it follows without difficulties that 1 is true. In [5, p. 6, Prop. 5] one can find a
detailed proof of 2, so we will only prove 3 by an alternative argumentation.

Proof. Given a bounded set J ⊂ R, there exists m0 ∈ N such that J ⊂ (−m0, m0); so to prove 3
we only need to prove that it holds in intervals such as (−m, m), m ∈ N. We may also assume
that k > m. Given ϵ > 0, for s ∈ (−m, m) there are four possible cases:

Case I. −m < s ≤ −1
k Here we have that

| fk(s)− g(s)| =
∣∣∣∣−k

[
G
(

s − 1
k

)
− G(s)

]
− g(s)

∣∣∣∣ =
∣∣∣∣∣
[
G(s − 1

k )− G(s)
]

−1
k

− g(s)

∣∣∣∣∣ .

Then, since G′(s) = g(s), there exists δ(s) > 0 such that 0 < |h| < δ(s) implies∣∣∣∣ [G(s + h)− G(s)]
h

− g(s)
∣∣∣∣ < ϵ

From the family of open sets {(s − δ(s), s + δ(s)); s ∈ [−m, 0]} we extract a finite subcover
{(si − δ(si), si + δ(si)); i = 1 . . . l} of the compact set [−m, 0] and take δ = min{δ(si); i =

1, . . . l}. Thus, for k > 1
δ we get | fk(s)− g(s)| < ϵ.

Case II. −1
k ≤ s ≤ 0

Since g(0) = 0 and g is continuous, for the given ϵ > 0 there exists δ > 0 such that |t| < δ

implies |g(t)| < ϵ/2. Let k0 ∈ N be such that k0 > m and k0 > 2/δ. Then, for k > k0

| fk(s)− g(s)| =
∣∣∣∣k2s

[
G
(
−2
k

)
− G

(
−1
k

)]
− g(s)

∣∣∣∣
≤ k2|s|

∣∣∣∣∫ −2/k

−1/k
|g(t)|dt

∣∣∣∣+ |g(s)|

≤ k2(
1
k2 )

ϵ

2
+

ϵ

2
= ϵ ∀s ∈ [

−1
k

, 0].

The cases 0 ≤ s ≤ 1
k and 1

k ≤ s < m can be analyzed in a similar fashion. Thus we see
that, for ϵ > 0 , we can take k ∈ N big enough such that | fk(s)− g(s)| < ϵ independently of
s ∈ (−m, m).

Lemma 2.4 ([5, Lemma 2]). Let g : R → R be a continuous function satisfying (1.2). Then the
sequence fk of Theorem 2.2 satisfies

1. For all k ∈ N, 0 ≤ s fk(s) ≤ C1|s|θ for every |s| ≥ 1
k ;
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2. for all k ∈ N, 0 ≤ s fk(s) ≤ C1|s|2 for every |s| ≤ 1
k ;

where C1 is a constant independent of k.

Proof. See [5, Page 8, Lemma 2].

Now we are in condition – using ( fk) – to define a problem that approximates problem
(Pn). Let ψ ∈ L2(−n, n) ∩ C(−n, n) be a positive, even function. We define our approximate
problem by:{

−(A(u)u′)′(t) + u(t) = λa1(t)|u(t)|q−1 + |u(t)|p−1 + fk(|u′(t)|) + ψ
k , in (−n, n)

u(n) = u(−n) = 0.
(Pk

n)

In the next subsection we will utilize the Galerkin method to obtain a solution to (Pk
n); afterward,

we will let k vary and thus, as k → ∞, obtain a solution to (Pn). Before jumping into the next
subsection, let us define what we understand as weak solution to problem (Pn):

Definition 2.5. We will call w ∈ H1
0(−n, n) a weak solution of (Pn) if∫ n

−n
A(w)w′v′ +

∫ n

−n
wv =

∫ n

−n
λa1|w|q−1v +

∫ n

−n
|w|p−1v +

∫ n

−n
g(|w′|)v

for all v ∈ H1
0(−n, n).

Remark 2.6. We will use, for the sake of clarity, the notation ∥ · ∥W1,2 for the usual norm of H1
0

and for (∥u∥L2 + ∥u′∥L2) or (∥u∥2
L2 + ∥u′∥2

L2)
1/2. Since these norms are equivalent the results

will not change but the constants may. In most of the cases ∥u∥W1,2 = ∥u∥L2 + ∥u′∥L2 . We also
emphasize that, when the context is clear, we will omit the domain in norms such as those
from the spaces Lp(−n, n).

Remark 2.7. The integrals in the definition above are well defined, see for instance the esti-
mations of Proposition 2.16. The same is true for the definitions given in the next subsection.

2.1 Solution to the approximate problem

Our main goal in this subsection is to prove the following theorem:

Theorem 2.8. There exist λ∗ > 0, β ∈ (0, 1) and k∗ ∈ N for which the problem (Pk
n) admits a

nontrivial, even, non-negative C1,β[−n, n] ∩ C2(−n, n) solution for every λ ∈ (0, λ∗) and k ≥ k∗.

As mentioned, we will utilize the Galerkin method; thus we will start by presenting the
foundations that this method requires. The next lemma is a well-known result, but it plays a
central role in all arguments involving the Galerkin method.

Lemma 2.9. Let F : RN → RN be a continuous function such that ⟨F(x), x⟩ ≥ 0 for all x ∈ RN

with ∥x∥RN = r. Then there exists x0 in the closed ball B[0, r] such that F(x0) = 0.

Proof. See [11, Chap. 5, Theorem 5.2.5].

Now we will define an entity called E-weak solution. It is well known that the main focus
of the Galerkin method is to obtain a weak solution, but we will utilize it to obtain an E-weak
solution first.
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Definition 2.10. A function w ∈ H1
0(−n, n) is called an E-weak solution of (Pk

n) if w is an even
function satisfying∫ n

−n
A(w)w′φ′ +

∫ n

−n
wφ =

∫ n

−n
λa1|w|q−1φ +

∫ n

−n
|w|p−1φ +

∫ n

−n
fk(|w′|)φ +

∫ n

−n

ψ

k
φ

for all φ ∈ E1
0(−n, n) = {u ∈ H1

0(−n, n); u(t) = u(−t) a.e.}.

The use of the E-weak solution will be central in our argumentation to obtain an even
solution to the problem (Pk

n). This symmetry – being even – will also be beneficial in the use
of our comparison principle, which is stated as follows:

Theorem 2.11 ([3, Theorem 3.1]). Let σ : (0,+∞) → R be a continuous function such that the
mapping (0,+∞) ∋ s 7→ σ(s)

s is strictly decreasing and ρ > 0. Suppose that there exist even
functions v, w ∈ C2(−ρ, ρ) ∩ C[−ρ, ρ] such that:

1. (A(w)w′)′ − w + σ(w) ≤ 0 ≤ (A(v)v′)− v + σ(v) in (−ρ, ρ);

2. v, w ≥ 0 in (−ρ, ρ) and v(ρ) ≤ w(ρ);

3. {x ∈ (−ρ, ρ); v(x) = 0} and {x ∈ (−ρ, ρ); w(x) = 0} have null measure in R;

4. v′ · w′ ≥ 0 in (−ρ, ρ);

5. v′, w′ ∈ L∞(−ρ, ρ).

Then v ≤ w in (−ρ, ρ).

Proof. The same as [3, p. 2419, Thm 3.1].

Turns out that, obtaining an E-weak solution enables us to recuperate a weak solution in
the usual sense:

Definition 2.12. We will call w ∈ H1
0(−n, n) a weak solution of (Pk

n) if∫ n

−n
A(w)w′v′ +

∫ n

−n
wv =

∫ n

−n
λa1|w|q−1v +

∫ n

−n
|w|p−1v +

∫ n

−n
fk(|w′|)v +

∫ n

−n

ψ

k
v

for all v ∈ H1
0(−n, n).

This is achieved by

Lemma 2.13 ([3, Lemma 4.1]). Let w ∈ H1
0(−n, n) be an E-weak solution of (Pk

n). Then w is a weak
solution of (Pk

n).

Proof. See [3, p. 2421, Lemma 4.1].

The subset E1
0(−n, n) ⊂ H1

0(−n, n) can be understood as the set of radial symmetric func-
tions in R. One can prove without difficulties the following properties of E1

0(−n, n):

i) it is a Hilbert space;

ii) it is separable;

iii) it has an orthonormal basis.
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Let E1
0(−n, n) = {u ∈ H1

0(−n, n); u(t) = u(−t) a.e.} and (el)
∞
l=1 be an orthonormal basis of

E1
0(−n, n).

Define VM = span{e1, . . . , eM}; then for every u ∈ VM there exist ξ1, . . . , ξM in R such that
u = ∑M

i=1 ξiei. By means of T : VM → RM, T(u) = T(∑M
i=1 ξiei) = (ξ1, . . . , ξM), which is a

linear isomorphism and preserve norm, we may define F : RM → RM such that

F(ξ) = (F1(ξ), . . . ,FM(ξ)) (2.2)

and

Fj(ξ) =
∫ n

−n
A(u)u′e′j +

∫ n

−n
uej −

∫ n

−n
λa1|u|q−1ej −

∫ n

−n
|u|p−1ej −

∫ n

−n
fk(|u′|)ej −

∫ n

−n

ψ

k
ej,

where j ∈ {1, . . . , M} and u = T−1(ξ), for all ξ ∈ RM.

Lemma 2.14. The function F is continuous.

Remark 2.15. Our proof will use the fact that, if (xn) is a sequence that converges to x and,
for all subsequence (xnl ) of (xn), there exist a subsequence (xnlk

) of (xnl ) such that F(xnlk
)

converges to F(x), then F(xn) converges to F(x).

Proof. Given ξ = (ξ1, . . . , ξM) ∈ RM, let (ξl)
∞
l=1 be a sequence in RM such that ∥ξl − ξ∥RM → 0.

By means of T we can identify T−1(ξ) = u = ∑M
i=1 eiξi and T−1(ξl) = ul = ∑M

i=1 eiξ
l
i . Since T is

isometry we have that ∥ul − u∥W1,2 → 0. That is, ∥ul − u∥L2 → 0 and ∥u′
l − u′∥L2 → 0. Taking

a subsequence, if necessary, we may assume that

ul(x) → u(x) a.e. on (−n, n),

u′
l(x) → u′(x) a.e. on (−n, n),

and |ul(x)| ≤ h1(x), |u′
l(x)| ≤ h2(x) a.e. on (−n, n), with h1, h2 ∈ L2(−n, n). Let j ∈

{1, 2, . . . , M}, we will prove that Fj(ξl) → Fj(ξ).∣∣∣∣∫ n

−n
A(ul)u′

le
′
j −

∫ n

−n
A(u)u′e′j

∣∣∣∣ ≤ ∫ n

−n

(
|u′

l ||A(ul)− A(u)|+ |A(u)||u′
l − u′|

)
|e′j|, (2.3)

since |u′
l(x)||A(ul(x))− A(u(x))||e′j(x)| → 0 a.e. and |A(u(x))||u′

l(x)− u′(x)||e′j(x)| → 0 a.e.,
by the Dominated Convergence Theorem (D.C.T) the left side of (2.3) tends to zero as l → +∞.∣∣∣∣∫ n

−n
ulej −

∫ n

−n
uej

∣∣∣∣ ≤ ∫ n

−n
|ul − u||ej| → 0 by (D.C.T). (2.4)

∣∣∣∣∫ n

−n
[λa1(|ul |q−1 − |u|q−1) + (|ul |p−1 − |u|p−1) + ( fk(u′

l)− fk(u′))]ej

∣∣∣∣
≤
∫ n

−n
λ|a1|

∣∣∣|ul |q−1 − |u|q−1
∣∣∣ |ej|+

∫ n

−n

∣∣∣|ul |p−1 − |u|p−1
∣∣∣ |ej|

+
∫ n

−n

∣∣ fk(|u′
l |)− fk(|u′|)

∣∣ |ej|, (2.5)

since that |ul |q−1 → |u|q−1 a.e. and |ul |p−1 → |u|p−1 a.e., (D.C.T) implies that the first two
integrals above converge to zero. Using the second item of Theorem 2.2, we have∫ n

−n

∣∣ fk(|u′
l |)− fk(|u′|)

∣∣ |ej| ≤
∫ n

−n
c(k)|u′

l − u′||ej|. (2.6)

Then, by (D.C.T), (2.6) converges to 0 as l → +∞.
These estimations show us that for every subsequence (ξlk) of (ξl), there exists a subse-

quence (ξlkn
) of (ξlk) that Fj(ξlkn

) → Fj(ξ). Therefore Fj(ξl) → Fj(ξ).
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Proposition 2.16. There exist λ∗ > 0 and k∗ ∈ N for which the problem (Pk
n) admits a nontrivial

weak solution for every λ ∈ (0, λ∗) and k ≥ k∗.

Remark 2.17. We will, in fact, search for an E-weak solution; but as seen in Lemma 2.13 this
will also be a weak solution.

Proof. Our aim is to use Lemma 2.9, with the function F defined in (2.2). Given ξ ∈ RM, we
have that

⟨F(ξ), ξ⟩ =
∫ n

−n
A(u)|u′|2 +

∫ n

−n
|u|2 −

∫ n

−n
λa1|u|q−1u −

∫ n

−n
|u|p−1u

−
∫ n

−n
fk(|u′|)u −

∫ n

−n

ψ

k
u. (2.7)

In the following, we will estimate the above integrals. We have that∫ n

−n
λa1|u|q−1u ≤ λ∥a1∥Ls(R)∥u∥q

L2 ≤ λC2∥u∥q
W1,2 , (2.8)∫ n

−n

ψ

k
u ≤

∥ψ∥L2(−n,n)∥u∥W1,2

k
. (2.9)

Now let ũ : R → R be the extension by zero of u, then∫ n

−n
|u|p−1u ≤

∫ n

−n
|u|p =

∫ n

−n
|u|2|u|p−2 (2.10)

≤ ∥ũ∥p−2
L∞(R)

∫ n

−n
|u|2 (2.11)

= ∥ũ∥p−2
L∞(R)

∥u∥2
L2 (2.12)

≤ Cp−2∥u∥p−2
W1,2∥u∥2

W1,2 = Cp−2∥u∥p
W1,2 . (2.13)

Where C is the constant for the embedding W1,2(R) ↪→ L∞(R).
Define

Ω≥ =

{
s ∈ (−n, n) : |u′(s)| ≥ 1

k

}
and Ω≤ =

{
s ∈ (−n, n) : 0 < |u′(s)| ≤ 1

k

}
.

Then ∫ n

−n
fk(|u′|)u =

∫
Ω≥

fk(|u′|)u +
∫

Ω≤
fk(|u′|)u.

Notice that by Lemma 2.4,∫
Ω≤

fk(|u′|)u ≤
∫

Ω≤
C1|u′||u| ≤

∫
Ω≤

C1

k
|u|

≤ C1

k

∫ n

−n
|u| ≤ C1(2n)1/2

k
∥u∥L2

≤ C1(2n)1/2

k
∥u∥W1,2 .

To estimate the integral over Ω≥, consider the following cases :

Case 1. 2 < θ < 3.
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Using Lemma 2.4, we have∫
Ω≥

fk(|u′|)u ≤
∫

Ω≥
C1|u′|θ−1|u| ≤

∫ n

−n
C1|u′|θ−1|u|

≤ C1

(∫ n

−n
|u|w

) 1
w
(∫ n

−n
|u′|2

) θ−1
2

≤ C1

(∫
R
|ũ|2|ũ|w−2

) 1
w

∥u′∥θ−1
L2

≤ C1∥ũ∥
w−2

w
L∞(R)

∥u∥
2
w
L2∥u′∥θ−1

L2

≤ C1C
w−2

w ∥u∥
w−2

w
W1,2∥u∥

2
w
W1,2∥u∥θ−1

W1,2 = C1C
w−2

w ∥u∥θ
W1,2 .

Where w =
( 2

θ−1

)′
= 2

3−θ > 2.

Case 2. θ = 3. ∫
Ω≥

fk(|u′|)u ≤
∫

Ω≥
C1|u′|2|u| ≤

∫ n

−n
C1|u′|2|u|

≤ C1∥ũ∥L∞(R)∥u′∥2
L2 ≤ C1C∥u∥W1,2∥u∥2

W1,2

= C1C∥u∥3
W1,2 .

Now we are able to estimate (2.7). Notice that w−2
w = θ − 2.

⟨F(ξ), ξ⟩ ≥ γ∥u∥2
W1,2 − λC2∥u∥q

W1,2 − Cp−2∥u∥p
W1,2

− C1 max{Cθ−2, C}∥u∥θ
W1,2 −

(
C1(2n)1/2

k
+

∥ψ∥L2(−n,n)

k

)
∥u∥W1,2 .

Define Zk : R+ → R by

Zk(x) = γx2 − λC2xq − Cp−2xp − C1 max{Cθ−2, C}xθ −
(

C1(2n)1/2

k
+

∥ψ∥L2(−n,n)

k

)
x.

We would like to find r > 0 such that

γr2 − Cp−2rp − C1 max{Cθ−2, C}rθ >
r2

2
γ (2.14)

or equivalently,
γ

2
> Cp−2rp−2 + C1 max{Cθ−2, C}rθ−2.

For this, if we take

δ1 = min

{( γ

4Cp−2

)1/(p−2)
,
(

γ

4C1 max{Cθ−2, C}

)1/(θ−2)
}

,

then for 0 < r < δ1 (2.14) is true. Consequently,

Zk(r) ≥
r2

2
γ − λC2δ

q
1 −

(
C1(2n)1/2

k
+

∥ψ∥L2(−n,n)

k

)
δ1.
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Define ρ1 = r2

2 γ − λC2δ
q
1. We will adjust λ > 0 so that ρ1 > 0; for this if ρ1 > 0 it would imply

that
r2

2
γ − λC2δ

q
1 > 0 ⇔ r2γ

2C2δ
q
1
> λ.

Take λ∗ = r2γ

2C2δ
q
1

and 0 < λ < λ∗. Thus, ρ1 > 0 and we can find k∗ ∈ N such that for k > k∗,

ρ1 >
(C1(2n)1/2

k +
∥ψ∥L2(−n,n)

k

)
δ1 > 0. Therefore, for 0 < r < δ1, 0 < λ < λ∗ and k > k∗

Zk(r) > 0,

and so, with ∥u∥W1,2 = r,
⟨F(ξ), ξ⟩ > 0. (2.15)

By Lemma 2.9, there exists yM ∈ B[0, r] such that F(yM) = 0 that is, identifying vM =

T−1(yM), for all j ∈ {1, . . . , M}

∫ n

−n
A(vM)v′Me′j +

∫ n

−n
vMej (2.16)

=
∫ n

−n
λa1|vM|q−1ej +

∫ n

−n
|vM|p−1ej +

∫ n

−n
fk(|v′M|)ej +

∫ n

−n

ψ

k
ej.

Therefore (2.16) holds for all φ ∈ VM, because {e1, . . . , eM} is a basis of VM. Notice that

∥vM∥W1,2 ≤ r for all M ∈ N. (2.17)

Remark 2.18. Our choice of r does not depend on M,n, λ or k. This free determination of r
will be useful further down in the argumentation, because using the embedding W1,2(R) ↪→
L∞(R) we will be able to obtain a uniform upper bound, in the norm of L∞(R), for the
sequence of solutions of the problem (Pk

n). Then this upper bound will naturally be transferred
to also bound the sequence of solution of (Pn).

Since ∥vM∥W1,2 ≤ r there is v0 ∈ E1
0(−n, n) such that vM ⇀ v0 in H1

0(−n, n). By the
compact embedding W1,2(−n, n) ↪→ L2(−n, n) we conclude vM → v0 in L2(−n, n). Our goal
is to show that v0 is a weak solution of (Pk

n). Let ΓM : VM → V∗
M and BM : VM → V∗

M be defined
by

⟨ΓM(v), φ⟩ =
∫ n

−n
A(v)v′φ′ (2.18)

and

⟨BM(v), φ⟩ =
∫ n

−n

(
−v + λa1|v|q−1 + |v|p−1 + fk(|v′|) +

ψ

k

)
φ. (2.19)

Hence, ⟨ΓM(vM)− BM(vM), φ⟩ = 0 for all φ ∈ VM.
Denoting PM : E1

0(−n, n) → VM the projection of E1
0(−n, n) onto VM, (that is, if u =

∑∞
i=1 αiei then PM(u) = ∑M

i=1 αiei) we have

⟨ΓM(vM)− BM(vM), vM − PMv0⟩ = 0,

so

⟨ΓM(vM), vM − PMv0⟩ = ⟨BM(vM), vM − PMv0⟩ (2.20)

=
∫ n

−n

(
−vM + λa1|vM|q−1 + |vM|p−1 + fk(|v′M|) + ψ

k

)
(vM − PMv0).
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Letting M → ∞ one can see without difficulties that ⟨ΓM(vM), vM − PMv0⟩ → 0. This conver-
gence allows us to prove the following

Lemma 2.19. vM → v0 strongly, i.e. in the norm of H1
0(−n, n).

Remark 2.20. The idea to consider the operators ΓM and BM was an inspiration from the
arguments presented in [7].

Proof. The limit ∥vM − v0∥L2(−n,n) → 0 has been established before, thus we will focus our
efforts demonstrating the same for ∥v′M − v′0∥L2(−n,n). Let ΦM, Φ, ΨM, ζM ∈ (E1

0(−n, n))∗ be
given by

ΦM(w) =
∫ n

−n
A(vM)v′0w′ (2.21)

Φ(w) =
∫ n

−n
A(v0)v′0w′ (2.22)

ΨM(w) =
∫ n

−n
A(vM)PMv′0w′ (2.23)

ζM(w) =
∫ n

−n
A(v0)PMv′0w′. (2.24)

Then, by a straightforward calculation, |ΦM − Φ| → 0,|ΨM − ΦM| → 0 and |ζM − Φ| → 0 in
(E1

0(−n, n))∗. Thus, |ΨM − ζM| → 0 in (E1
0(−n, n))∗, since |ΨM − ζM| ≤ |ΨM − ΦM|+ |ΦM −

Φ| + |Φ − ζM|. Writing ΨM = (ΨM − ζM) + ζM yields that ΨM → Φ in (E1
0(−n, n))∗. Re-

membering the weak convergence vM ⇀ v0 one can conclude (vM − PMv0) ⇀ 0 in E1
0(−n, n)

because for all f ∈ (E1
0(−n, n))∗

| f (vM)− f (PMv0)| ≤ | f (vM)− f (v0)|+ ∥ f ∥∥v0 − PMv0∥W1,2 .

Consequently, letting M → ∞, ΨM(vM − PMv0) → Φ(0) = 0. This means that∫ n

−n
A(vM)PMv′0(v

′
M − PMv′0) → 0. (2.25)

Also, rewriting (2.20) ∫ n

−n
A(vM)v′M(v′M − PMv′0) → 0 as M → ∞. (2.26)

Therefore, from (2.26)–(2.25)∫ n

−n
A(vM)(v′M − PMv′0)

2 → 0 as M → ∞. (2.27)

Since A(x) ≥ γ > 0 for all x ∈ R we conclude ∥v′M − PMv′0∥L2(−n,n) → 0 as M → ∞.
Then ∥v′M − v′0∥L2(−n,n) → 0 as result of ∥v′M − v′0∥L2(−n,n) ≤ ∥v′M − PMv′0∥L2(−n,n) + ∥v′0 −
PMv′0∥L2(−n,n), proving the lemma.

We know that for every φ ∈ VM∫ n

−n
A(vM)v′M φ′ +

∫ n

−n
vM φ (2.28)

=
∫ n

−n
λa1|vM|q−1φ +

∫ n

−n
|vM|p−1φ +

∫ n

−n
fk(|v′M|)φ +

∫ n

−n

ψ

k
φ.
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By the previous lemma, taking a subsequence if necessary, we may assume that v′M(x) con-
verges a.e. to v′0(x) and there exists h ∈ L2(−n, n) such that |v′M(x)| ≤ h(x) a.e. Then notice
that ∣∣∣∣∫ n

−n

(
A(vM)v′M − A(v0)v′0

)
φ′
∣∣∣∣ ≤ (∫ n

−n
|A(vM)v′M − A(v0)v′0|2

)1/2

∥φ′∥L2 (2.29)

and exists Q > 0 such that ∥vM∥∞ < Q for all M ∈ N, because vM converges to v0 in
C0[−n, n] due to the embedding W1,2(−n, n) ↪→ C0[−n, n]. We can suppose Q big enough so
that Q > 2 (r + A(0)) and we take Ã = supx∈[−Q,Q] A(x). Since

|A(vM(x))v′M(x)− A(v0(x))v′0(x)| → 0 a.e. (2.30)

and

|A(vM(x))v′M(x)− A(v0(x))v′0(x)|2 ≤
(
|A(vM(x))v′M(x)|+ |A(v0(x))v′0(x)|

)2

= |A(vM(x))|2|v′M(x)|2

+ 2|A(vM(x))||A(v0(x))||v′M(x)||v′0(x)|
+ |A(v0(x))|2|v′0(x)|2

≤ Ã2Q2h2(x) + 2Ã2Q2|v′0(x)|h(x)

+ Ã2Q2|v′0(x)|2

almost everywhere, we conclude by (D.C.T) that∫ n

−n
A(vM)v′M φ′ →

∫ n

−n
A(v0)v′0φ′ as M → ∞. (2.31)

Also, by direct calculation, the following convergences are true∫ n

−n
vM φ →

∫ n

−n
v0φ (2.32)∫ n

−n
λa1|vM|q−1φ →

∫ n

−n
λa1|v0|q−1φ (2.33)∫ n

−n
|vM|p−1φ →

∫ n

−n
|v0|p−1φ (2.34)∫ n

−n
fk(|v′M|)φ →

∫ n

−n
fk(|v′0|)φ (2.35)

as M → ∞. Thus, for every φ ∈ VM∫ n

−n
A(v0)v′0φ′ +

∫ n

−n
v0φ =

∫ n

−n
λa1|v0|q−1φ +

∫ n

−n
|v0|p−1φ +

∫ n

−n
fk(|v′0|)φ +

∫ n

−n

ψ

k
φ. (2.36)

Furthermore, for every u ∈ E1
0(−n, n), it follows that∫ n

−n
A(v0)v′0PMu′ →

∫ n

−n
A(v0)v′0u′ (2.37)∫ n

−n
v0PMu →

∫ n

−n
v0u (2.38)∫ n

−n
λa1|v0|q−1PMu →

∫ n

−n
λa1|v0|q−1u (2.39)∫ n

−n
|v0|p−1PMu →

∫ n

−n
|v0|p−1u (2.40)∫ n

−n
fk(|v′0|)PMu →

∫ n

−n
fk(|v′0|)u (2.41)
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as M → ∞. Thus, for every u ∈ E1
0(−n, n)∫ n

−n
A(v0)v′0u′ +

∫ n

−n
v0u =

∫ n

−n
λa1|v0|q−1u +

∫ n

−n
|v0|p−1u +

∫ n

−n
fk(|v′0|)u +

∫ n

−n

ψ

k
u. (2.42)

So v0 is an E-weak solution of (Pk
n); by Lemma 2.13 v0 is also a weak solution. Notice that

∥v0∥W1,2 ≤ r,

and our choice of r does not depend on n, λ or k. This finishes the proof of Proposition
2.16.

In what follows we will make k → ∞ thus we can consider ψ ≡ 1, because the term ψ
k will

converge to 0 as k → ∞.

Proposition 2.21. The above weak solution v0 satisfies:

1. there exist β(L/γ) and Ĉ(L/γ, n), such that v0 ∈ C1,β[−n, n] ∩ C2(−n, n) and

|v0|1+β ≤ Ĉ,

where
L > 2 max{Cr + λa1(n)|Cr|q−1 + |Cr|p−1 + 1, 2C1, A(Cr), Ã};

2. v0(t) ≥ 0.

Proof. To prove 1, we will use [12, Theorem 1]. Let F : [−n, n] × [−Cr, Cr] × R → R be
defined by F(x, z, p) = A(z)p, where C is the embedding constant for W1,2(R) ↪→ L∞(R), and
B(x, z, p) = z − (λa1(x)|z|q−1 + |z|p−1 + fk(|p|) + 1

k ) be defined in the same domain. Then,
problem (Pk

n) may be rewritten as

divx F(x, u(x), u′(x)) + B(x, u(x), u′(x)) = 0.

In order to use [12, Theorem 1] we must verify the existence of nonnegative constants
l, L, M0, m, κ with l ≤ L such that

∂F
∂p

(x, z, p)ξ2 ≥ l(κ + |p|)mξ2, (2.43)∣∣∣∣∂F
∂p

(x, z, p)
∣∣∣∣ ≤ L(κ + |p|)m, (2.44)

|F(x, z, p)− F(y, w, p)| ≤ L(1 + |p|)m+1 · |z − w|, (2.45)

|B(x, z, p)| ≤ L(1 + |p|)m+2, (2.46)

for all (x, z, p) ∈ {−n, n} × [−M0, M0] × R, w ∈ [−M0, M0] and ξ ∈ R. Since ∂F
∂p (x, z, p) =

A(z), inequality (2.43) follows from A(z)ξ2 ≥ γξ2, that is, l = γ.
To prove the remaining inequalities take M0 = Cr,

T > max{Cr + λa1(n)|Cr|q−1 + |Cr|p−1 + 1, 2C1, A(Cr), Ã},

L = 2T, κ = 0 and m = 0, where Ã is the Lipchitz constant of A. Then:
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(2.44) ∣∣∣∣∂F
∂p

(x, z, p)
∣∣∣∣ = A(z) ≤ A(Cr) < L;

(2.45)
|F(x, z, p)− F(y, w, p)| = |A(z)p − A(w)p| ≤ Ã|p||z − w| ≤ L(1 + |p|)|z − w|;

(2.46)

|B(x, z, p)| =
∣∣∣∣z −(λa1(x)|z|q−1 + |z|p−1 + fk(|p|) +

1
k

)∣∣∣∣ (2.47)

≤ Cr + λa1(n)|Cr|q−1

+ |Cr|p−1 + 1/k + C1(1 + |p|θ−1)

≤ T + C1(1 + (1 + |p|)θ−1)

≤ T + 2C1(1 + |p|)2

≤ T(1 + (1 + |p|)2)

≤ 2T(1 + |p|)2 = L(1 + |p|)2.

Therefore, by [12, Theorem 1] there exists β ∈ (0, 1) and a constant Ĉ, independent of k, such
that v0 ∈ C1,β([−n, n]) and

|v0|1+β ≤ Ĉ. (2.48)

It follows from [6, p. 317, Chap. 6, Theorem 4] that v0 ∈ W2,2(−n, n) and since v0 is a weak
solution of (Pk

n) we have

v′′0 =
v0 − λa1|v0|q−1 − |v0|p−1 − fk(|v′0|)− 1/k − A′(v0)|v′0|2

A(v0)
(2.49)

showing that v′′0 is continuous, thus v0 ∈ C2(−n, n).
To prove that v0(t) ≥ 0 for all t ∈ (−n, n) we first notice that v−0 (t) = max{0,−v0(t)} ∈

H1
0(−n, n). Using v−0 (t) as a test function in the definition of weak solution provides

−
∫ n

−n
A(v0)|v−0 |

2 −
∫ n

−n
|v−0 |

2 =
∫ n

−n
λa1|v0|q−1v−0 +

∫ n

−n
|v0|p−1v−0

+
∫ n

−n
fk(|v′0|)v−0 +

∫ n

−n

1
k

v−0 . (2.50)

Then −γ∥v−0 ∥2
W1,2 ≥ 0, thus ∥v−0 ∥W1,2 = 0 implying v−0 ≡ 0 a.e. Since v0 is continuous,

v0(t) ≥ 0 for all t ∈ (−n, n). This finishes the proof of Proposition 2.21.

Thus, by Proposition 2.16 and Proposition 2.21 we obtain the proof of Theorem 2.8.

2.2 Constructing a solution to problem (Pn)

Let vk be the (strong) solution of problem (Pk
n), obtained just above, with k varying. By the

previous constructions, we have that ∥vk∥W1,2(−n,n) ≤ r independent of k, as noticed in Remark
2.18. Then there exists un ∈ H1

0(−n, n), ∥un∥W1,2(−n,n) ≤ r, so that vk has a subsequence
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converging weakly in H1
0(−n, n) to un. From now on vk will denote this subsequence. Since

the function

H1
0(−n, n) ∋ w 7→

∫ n

−n
A(un)u′

nw′

belongs to (H1
0(−n, n))∗, we have, by the weak convergence, that∫ n

−n
A(un)u′

n(vk − un)
′ → 0 as k → ∞.

This convergence will be useful in our next task: to prove that vk → un strongly in H1
0(−n, n).

Lemma 2.22. The following convergence is true∫ n

−n
A(un)v′k(vk − un)

′ → 0 as k → ∞.

Proof. We might write∫ n

−n
A(un)v′k(vk − un)

′ =
∫ n

−n
[A(un)− A(vk) + A(vk)]v′k(v

′
k − u′

n)

=
∫ n

−n
[A(un)− A(vk)]v′k(v

′
k − u′

n)︸ ︷︷ ︸
I1

+
∫ n

−n
A(vk)v′k(v

′
k − u′

n)︸ ︷︷ ︸
I2

and analyze I1 and I2 separately.

Analysis of I2 By the weak formulation of (Pk
n)∫ n

−n
A(vk)v′k(v

′
k − u′

n)

=
∫ n

−n
−vk(vk − un) + λa1|vk|q−1(vk − un) + |vk|p−1(vk − un) +

(vk − un)

k︸ ︷︷ ︸
E1

+
∫ n

−n
fk(|v′k|)(vk − un)︸ ︷︷ ︸

E2

.

Since we have compact injection of H1
0(−n, n) onto L2(−n, n), the weak convergence of vk to

un in H1
0(−n, n) implies ∥vk − un∥L2 → 0. Thus, it is straightforward to see that (E1) converges

to 0 as k → ∞. Remains to verify what happens with (E2) in the limit. We have that∫ n

−n
fk(|v′k|)(vk − un) ≤

∫ n

−n
C1(|v′k|θ−1 + |v′k|)|vk − un|

by Lemma 2.4. Using Proposition 2.21, item 1, that is, the estimation |vk|1,β ≤ Ĉ which is
independent of k, we have that

|v′k|θ−1 + |v′k| ≤ (Ĉ)θ−1 + Ĉ.

Then, ∫ n

−n
fk(|v′k|)(vk − un) ≤ C1[(Ĉ)θ−1 + Ĉ]

∫ n

−n
|vk − un|

≤ (2n)1/2C1[(Ĉ)θ−1 + Ĉ]∥vk − un∥L2︸ ︷︷ ︸
→0 as k→∞

.

Thus, limk→∞ I2(k) = 0.
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Analysis of I1 We also have that limk→∞ I1(k) = 0, as one can see through∣∣∣∣∫ n

−n
[A(un)− A(vk)]v′k(v

′
k − u′

n)

∣∣∣∣ ≤ ∫ n

−n
|A(un)− A(vk)||v′k||v′k − u′

n|

≤ Ĉ
∫ n

−n
|A(un)− A(vk)||v′k − u′

n|

≤ ĈÃ
∫ n

−n
|un − vk||v′k − u′

n|

≤ ĈÃ∥un − vk∥L2∥v′k − u′
n∥L2

≤ ĈÃ2r∥un − vk∥L2 .

Thus,

∫ n

−n
A(un)u′

n(vk − un)
′ → 0 as k → ∞ (2.51)∫ n

−n
A(un)v′k(vk − un)

′ → 0 as k → ∞. (2.52)

Subtracting (2.52) from (2.51) we have∫ n

−n
A(un)(v′k − u′

n)
2 → 0 as k → ∞ (2.53)

implying that v′k → u′
n in L2(−n, n), since γ is a uniform lower-bound for A. Hence vk → un

in H1
0(−n, n).

Remark 2.23. Since vk → un in H1
0(−n, n) we conclude that un is also an even function; due

to the embedding W1,2(−n, n) ↪→ C[−n, n].

Proposition 2.24. The function un satisfies:

1. un is strictly positive in (−n, n);

2. un is a solution to (Pn).

Proof.

Item 1. Let ã := infx∈[−n,n] a1(x). We will divide our argument into two cases:

Remark 2.25. This division of cases is a geometric argument that we borrowed from [3].

Case 1. There exists a subsequence (vki)i∈N of (vk) such that v′ki
≥ 0 in (−n, 0) for all i.

Consider the problem 
−(A(u)u′)′ + u = λã|u|q−1 in (−n, n)

u > 0 in (−n, n)

u(−n) = u(n) = 0.

(2.54)

Since v′ki
≥ 0 in (−n, 0) we get that vki > 0 in (−n, 0), because, due to Proposition 2.21, vki is an

even solution of (Pk
n), thus it can not be identically zero in an interval and vki ≥ 0; i.e., supposing

the existence of xi ∈ (−n, 0) such that vki(xi) = 0 implies the existence of yi ∈ (−n, 0) such
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that v′ki
(yi) < 0, which would be a contradiction. Thus, we see that vki is a sup-solution for

equation (2.54). Let ϕ1 be an even and positive eigenfunction for the eigenvalue problem{
−u′′ = λ1u in (−n, n)

u(−n) = u(n) = 0
(2.55)

where λ1 = π2

(2n)2 . Thus, choosing τ such that

τ2−q(1 + γλ1)

λã
≤ ϕ

q−2
1

we have that τϕ1 is as sub-solution of (2.54). By Theorem 2.11

vki(t) ≥ τϕ1(t) ∀t ∈ (−n, n),

therefore, in the limit,
un(t) ≥ τϕ1(t) > 0 ∀t ∈ (−n, n).

Case 2. There exists a subsequence (vki)i∈N of (vk) and there exists a sequence (zi)i∈N ⊂
(−n, 0) such that v′ki

(zi) < 0.

Remark 2.26. Although the geometric argument is an inspiration from [3], we still need to
adjust it to our necessity. Lemma 2.27 is one such adjustment.

Lemma 2.27. Let x ∈ (−n, n) such that v′′ki
(x) ≥ 0, then vki(x) > (λã)

1
2−q .

Proof. Since vki is a solution for the problem (Pk
n), with k = ki, for all t

− A′(vki(t))|v
′
ki
(t)|2 − A(vki(t))v

′′
ki
(t) + vki(t)

= λa1(t)|vki(t)|
q−1 + |vki(t)|

p−1 + fki(|v
′
ki
(t)|) + 1

ki

≥ λa1(t)|vki(t)|
q−1 + |vki(t)|

p−1 +
1
ki

.

Here we used that sign( fki(s)) = sign(s), thus fki(|v′ki
|) ≥ 0. Using that |vki |p−1 ≥ 0 and

a1(t) ≥ ã > 0 we obtain:

−A′(vki(t))|v
′
ki
(t)|2 − A(vki(t))v

′′
ki
(t) + vki(t) ≥ λã|vki(t)|

q−1 +
1
ki

. (2.56)

Then, with t = x,

−A(vki(x))v′′ki
(x) ≥ λã|vki(x)|q−1 − vki(x) + A′(vki(x))|v′ki

(x)|2 + 1
ki

> λã|vki(x)|q−1 − vki(x).

Where, in the last inequality, we used that A is non-decreasing, |v′ki
| ≥ 0 and 1/ki > 0.

Notice that the resulting estimation is strict because 1/ki > 0. By hypotheses v′′ki
(x) ≥ 0, then

−A(vki(x))v′′ki
(x) ≤ 0. Using the previous inequality,

vki(x) > λã|vki(x)|q−1,

thus vki(x) ̸= 0 and vki(x) > (λã)
1

2−q .
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Now, in order to use this lemma, we ought to find a xi ∈ (−n, n) such that v′′ki
(xi) ≥ 0. Us-

ing the fact that vki is even and v′ki
(zi) < 0 we have that v′ki

(−zi)> 0. Let xi = minx∈[zi ,−zi ] vki(x)
and notice that xi ̸= zi and xi ̸= −zi; indeed, there exist δ > 0 such that, if x ∈ (zi, zi + δ) ∪
(−zi − δ,−zi), then vki(x) < vki(zi) = vki(−zi). Hence xi ∈ (zi,−zi) and v′ki

(xi) = 0; therefore
v′′ki

(xi) must be greater or equal than 0, because if v′′ki
(xi) < 0 there would be ξ > 0 such that,

for x ∈ (xi, xi + ξ) ⊂ (zi,−zi), v′ki
(x) < 0; and for this neighborhood vki(x) < vki(xi) – a

contradiction with the minimality of xi. Thus, v′′ki
(xi) ≥ 0. By Lemma 2.27, we obtain for all i

vki(xi) > (λã)
1

2−q .

From the compactness of [−n, n], there exist x0 ∈ [−n, n] such that xi → x0 when i → ∞;
taking a subsequence if necessary. Then

un(x0) = lim
i→∞

vki(xi) ≥ (λã)
1

2−q > 0.

Finally, we will conclude item 1 showing that, also in this case, un is strictly positive in (−n, n).
Suppose by contradiction that there exists y ∈ (−n, n) such that un(y) = 0. Let (d, s) ⊂

(−n, n) be the biggest interval containing y satisfying the property: if x ∈ (d, s) then un(x) <
(λã)

1
2−q

2 . Since un(x0) = un(−x0) > (λã)
1

2−q

2 we have that d ̸= −n or s ̸= n. Thus we can
suppose without loss of generality that d > −n, because on the contrary, we would apply our
following arguments using the interval (d′, s′), where d′ = −s and s′ = −d, and the point
y′ = −y.

By the maximality of (d, s) and the continuity of un we have that un(d) = (λã)
1

2−q

2 . Since

un(x) < (λã)
1

2−q

2 for all x ∈ (d, s) and vki converges uniformly to un, there exists i1 ∈ N such
that, for i > i1 and x ∈ (d, s),

vki(x) < (λã)
1

2−q .

Then, by Lemma 2.27 v′′ki
(x) < 0. Using that un(d) = (λã)

1
2−q

2 , there exist i2 ∈ N such that
i > i2 implies

vki(d) >
(λã)

1
2−q

4
.

Let i0 > max{i1, i2} and define f : (d, s) → R by

f (x) =
(λã)

1
2−q

4
· x − s

d − s
.

We have that f (d) = (λã)
1

2−q

4 and f (s) = 0. Let Ui(x) = vki(x)− f (x) for i ≥ i0, then{
U′′

i (x) < 0, for x ∈ (d, s)

Ui(d) > 0, Ui(s) = vki(s) ≥ 0.
(2.57)

By the maximum principle, the minimum of Ui is reached on the border of the interval (d, s),
implying that Ui(x) > 0 for all x ∈ (d, s), that is, vki(x) > f (x) for all x ∈ (d, s) and i ≥ i0.
Thus, taking x = y and making i → ∞, we obtain

un(y) ≥ f (y) > 0,

which is a contradiction.
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Item 2. Since the estimation from Proposition 2.21 item 1 holds, that is,

|vk|1+β ≤ Ĉ

for all k ∈ N; and, for all 1 < α < β, we have compact embedding C1,β[−n, n] ↪→ C1,α[−n, n],
we may assume, taking a subsequence, if necessary, that there exist ũn ∈ C1,α[−n, n] such that
vk → ũn in C1,α[−n, n] as k → ∞. Thus,

vk → un in C0[−n, n] as k → ∞

vk → ũn in C1,α[−n, n] as k → ∞.

Then for all x ∈ [−n, n] we have

un(x) = lim
k→∞

vk(x) = ũn(x),

i.e., un = ũn ∈ C1,α[−n, n].
Considering the definition of weak solution, for all φ ∈ H1

0(−n, n)∫ n

−n
A(vk)v′k φ′ +

∫ n

−n
vk φ =

∫ n

−n
(λa1|vk|q−1 + |vk|p−1)φ +

∫ n

−n
fk(|v′k|)φ +

∫ n

−n

φ

k
.

By (D.C.T), it is straightforward to see that the following convergences are true:∫ n

−n
A(vk)v′k φ′ →

∫ n

−n
A(un)u′

n φ′,∫ n

−n
vk φ →

∫ n

−n
un φ,∫ n

−n
(λa1|vk|q−1 + |vk|p−1)φ →

∫ n

−n
(λa1|un|q−1 + |un|p−1)φ,∫ n

−n

φ

k
→ 0,

as k → ∞. Let us examine the remaining integral. First notice that fk(|v′k|) converges uni-
formly to g(|u′

n|); indeed, g is uniformly continuous in compacts, then for the compact [−Ĉ, Ĉ]
given ϵ > 0 there exists δ > 0 such that if |x − y| < δ, then

|g(x)− g(y)| < ϵ

2
. (2.58)

Also there exists k0 ∈ N such that k > k0 implies

||v′k(x)| − |u′
n(x)|| < δ ∀x ∈ [−n, n]. (2.59)

thus for k > k0

|g(|v′k(x)|)− g(|u′
n(x)|)| < ϵ

2
∀x ∈ [−n, n]. (2.60)

In the perspective of Theorem 2.2, fk converges to g uniformly in bounded sets; since ∥u′
n∥∞ ≤

Ĉ, for x ∈ [−Ĉ, Ĉ] there exist k1 ∈ N such that k > k1 implies

| fk(x)− g(x)| < ϵ

2
∀x ∈ [−Ĉ, Ĉ] (2.61)

and with all these ingredients we obtain the uniform convergence, because for k > max{k0, k1}

| fk(|v′k(x)|)− g(|u′
n(x)|)| ≤ | fk(|v′k(x)|)− g(|v′k(x)|)|+ |g(|v′k(x)|)− g(|u′

n(x)|)|
< ϵ ∀x ∈ [−n, n].
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Thus, by (D.C.T) ∫ n

−n
fk(|v′k|)φ →

∫ n

−n
g(|u′

n|)φ

as k → ∞. All these convergences together show that un is a weak solution for the problem
(Pn).

From [6, Pag. 317, Chap. 6, Theorem 4] we conclude that un ∈ W2,2(−n, n); and similarly,
to the argument showed in equation (2.49) we obtain that u′′

n ∈ C0(−n, n). Thus, un is a strong
solution to the problem (Pn).

3 Asymptotic solution to problem (Pn)

In this section we will briefly study the solution’s behavior of problem (Pn) when λ → 0 or
λ → λ∗. Our main result is the following:

Theorem 3.1. Denoting by uλ the solution of (Pn):

1. as λ → 0, we get that ∥uλ∥W1,2 → 0;

2. one can take λ = λ∗ and still obtain a solution to problem (Pn).

Proof. Let vk be the strong solution of problem (Pk
n), with ψ ≡ 1. In the previous section, we

proved, among other things, that vk → uλ as k → ∞, (taking a subsequence, if necessary).
Using vk as test function in the Definition 2.12, we get:

∫ n

−n
A(vk)|v′k|2 +

∫ n

−n
|vk|2 =

∫ n

−n
λa1|vk|q−1vk +

∫ n

−n
|vk|p−1vk +

∫ n

−n
fk(|v′k|)vk +

∫ n

−n

vk

k
.

Thus, following the estimations done in Proposition 2.16, we can estimate these integrals to
obtain

γ∥vk∥2
W1,2 ≤ λC2∥vk∥

q
W1,2 + Cp−2∥vk∥

p
W1,2 + C1 max{Cθ−2, C}∥vk∥θ

W1,2

+

(
C1(2n)1/2

k
+

(2n)1/2

k

)
∥vk∥W1,2 .

Rearranging we obtain

∥vk∥2
W1,2

(
γ − Cp−2∥vk∥

p−2
W1,2 − C1 max{Cθ−2, C}∥vk∥θ−2

W1,2

)
≤ λC2∥vk∥

q
W1,2 +

(
C1(2n)1/2

k
+

(2n)1/2

k

)
∥vk∥W1,2 . (3.1)

Notice that ∥vk∥W1,2 ≤ r independent of k and

r < min

{( γ

4Cp−2

)1/(p−2)
,
(

γ

4C1 max{Cθ−2, C}

)1/(θ−2)
}

.

Thus,

∥vk∥2
W1,2 ≤

2
γ

(
λC2rq +

(
C1(2n)1/2

k
+

(2n)1/2

k

)
r
)

. (3.2)
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Making k → ∞ we end up with

∥uλ∥2
W1,2 ≤ λ ·

(
2C2rq

γ

)
. (3.3)

Then, as λ → 0 we see that ∥uλ∥2
W1,2 → 0. This proves item 1.

To prove item 2, one can take a sequence (λn) in (0, λ∗) such that λn → λ∗. Noticing that
∥uλn∥W1,2 ≤ r independent of λn, one can obtain a candidate uλ∗ ∈ H1

0(−n, n) such that uλn

converges weakly to uλ∗ in H1
0(−n, n). Then, following similar argumentation as exposed in

Section 2, one can prove that uλ∗ is an even, positive solution to (Pn) with λ = λ∗.

Remark 3.2. Let

r̃ = min

{
r, λ1/2

(
2C2rq

γ

)1/2
}

.

Then, by inequality (3.3) and the estimations from Proposition 2.16, we get that ∥uλ∥W1,2 ≤ r̃.
Notice that r̃ → 0 as λ → 0.

Remark 3.3. For now, on we will resume the previous notation, that is, we will call the strong
solution of problem (Pn) by un. This will be useful in the next section.

4 Solution in R

To obtain the homoclinic solution, we can proceed similarly as in [3]. However, we present a
slightly different approach.

To obtain a solution defined in R we will utilize a subsequence construction wrapping it
up with the arguments presented in Section 2. The reader should notice that the notation
“un” used for the solution of (Pn), previously obtained, in (−n, n) is not accidental: extending
un by zero out of [−n, n] we obtain a sequence (un) in H1(R). Throughout this section, we
will use un to denote the solution “un” and its extension. Also, one can see that ∥un∥H1(R) =

∥un∥W1,2(−n,n) ≤ r̃ for all n.
Let K1 = [−1, 1]; then for all n ≥ 1 we have that u1

n := un|K1 is well defined and
u1

n ∈ H1(−1, 1). By the limitation
∥∥u1

n
∥∥

W1,2(−1,1) ≤ r̃ there exists a subsequence un,1 and s1 ∈
H1(−1, 1) such that un,1 ⇀ s1 in H1(−1, 1). Notice that the compact injection H1(−1, 1) ↪→
C0[−1, 1] implies that, passing to a subsequence, un,1 → s1 in C0[−1, 1].

Let K2 = [−2, 2]. Taking n in the set of indices of the subsequence un,1, for n ≥ 2 we have
that u2

n := un|K2 is well defined and
∥∥u2

n
∥∥

W1,2(−2,2) ≤ r̃. Thus, there exists a subsequence un,2

of u2
n and s2 ∈ H1(−2, 2) such that un,2 ⇀ s2 in H1(−2, 2).
Repeating the same argument, by induction we get that for all j ∈ N there exists a

subsequence un,j of un,j−1 and sj ∈ H1(−j, j) such that un,j ⇀ sj in H1(−j, j). Notice that
∥sj∥H1(−j,j) ≤ r̃ for all j ∈ N.

Remark 4.1. un,j is the subsequence of un that converges weakly in H1(−j, j) to sj. As men-
tioned, this weak convergence implies convergence in C0[−j, j] which gives us, in particular,
that sj is an even function, since un,j is even for all n ∈ N.

Lemma 4.2. sj|[1−j,j−1] = sj−1
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Proof. Given x ∈ [1 − j, j − 1] we have that

sj−1(x) = lim
n→∞

un,j(x) = sj(x),

because un,j is a subsequence of un,j−1.

Fix j ∈ N; from here and forward we will focus our attention on proving that, in fact, sj is
smooth and positive.

Define W : [−n, n]× [−Cr, Cr]× R −→ R by

W(x, z, p) = z − (λa1(x)|z|q−1 + |z|p−1 + g(|p|))

one can see that the estimation (2.47) also holds, with W taking part as B (remember that C is
the constant for the embedding W1,2(R) ↪→ L∞(R)). Then, for any n ≥ j, by Theorem 1 from
[12] there exist Ĉ(j) > 0 and 0 < β ≤ 1 such that

|un|1+β ≤ Ĉ(j) in C1,β[−j, j].

Taking 0 < α < β ≤ 1 we get (see the argumentation on item 2 Proposition 2.24)

un,j → sj in C1,α[−j, j].

Let ãj := infx∈[−j,j] a1(x). We will use the arguments presented on Item 1 from Proposition
2.24 to prove that sj is strictly positive on the interval [−j, j].

Case 1. There exists a subsequence (uni ,j)i∈N of (un,j) such that u′
ni ,j

≥ 0 in (−j, 0) for all i.

The analysis of this case follows exactly the same parameters of Case 1 from Item 1, Propo-
sition 2.24. The main difference is the change of ã to ãj.

Case 2. For all subsequence of (un,j) there exists a sub-subsequence (uni ,j)i∈N and exists a
sequence (zi)i∈N ⊂ (−j, 0) such that u′

ni ,j
(zi) < 0.

For this case we can reformulate Lemma 2.27 as follows: If x ∈ (−j, j) and u′′
ni ,j

(x) ≥ 0,

then uni ,j(x) > (λãj)
1

2−q . This is true because we already know that uni ,j is strictly positive in
(−j, j), then the estimation

−A′(uni ,j(t))|u
′
ni ,j(t)|

2 − A(uni ,j(t))u
′′
ni ,j(t) + uni ,j(t) > λãj|uni ,j(t)|

q−1 (4.1)

is immediately established. The remaining argumentation is similar.
Thus, we conclude that sj > 0, as in Proposition 2.24. At last, let φ ∈ C∞

0 (−j, j). Then

∫ j

−j
A(un,j)u′

n,j φ
′ +

∫ j

−j
un,j φ =

∫ j

−j
(λa1|un,j|q−1 + |un,j|p−1)φ +

∫ j

−j
g(|u′

n,j|)φ.

When n → ∞ we get

∫ j

−j
A(sj)s′j φ

′ +
∫ j

−j
sj φ =

∫ j

−j
(λa1|sj|q−1 + |v|p−1)φ +

∫ j

−j
g(|s′j|)φ.

Since φ ∈ C∞
0 (−j, j) is arbitrary, we conclude that sj is a weak solution for the problem

−(A(u)u′)′(t) + u(t) = λa1(t)|u(t)|q−1 + |u(t)|p−1 + g(|u′(t)|) (4.2)
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in (−j, j); by [6, sect. 6.3, Theorem 1] we have that sj ∈ H2
loc(−j, j), thus, using the same

arguments as in (2.49), sj ∈ C2(−j, j).
Now we will construct our candidate solution of problem (1.1). Define wn = un,n, that is, wn is

the diagonal sequence. Notice that, for n ≥ j, wn is a subsequence of un,j; thus wn|[−j,j] → sj
in C1,α[−j, j] for all j ∈ N. Let v(x) be defined by

v(x) = lim
n→∞

wn(x).

Then, v(x) = sj(x) for x ∈ [−j, j]. Since R =
⋃

j∈N[−j, j], by Lemma 4.2, v is well defined in
R. Using the properties of sj obtained just above, and the fact that v|[−j,j] = sj for all j ∈ N,
we conclude that v ∈ C2(R), ∥v∥H1(R) ≤ r̃ and v is a positive, even solution of problem (1.1).
From [4, p. 214, Corol. 8.9] we get the homoclinic condition.

4.1 Asymptotic solution

Throughout our previous argumentation, we fixed λ ∈ (0, λ∗]. Denote by vλ the strong
solution – obtained above – to the problem (1.1). We will analyze the behavior of vλ as λ → 0.

Proposition 4.3. As λ → 0, vλ → 0 in C0(R).

Proof. By [4, Theorem 8.8.], we obtain

∥vλ∥L∞(R) ≤ C∥vλ∥H1(R) ≤ Cr̃. (4.3)

But remember that

r̃ = min

{
r, λ1/2

(
2C2rq

γ

)1/2
}

.

Then, as λ → 0, we obtain that ∥vλ∥L∞(R) → 0, completing the proof of Theorem 1.1 .

4.2 Proof of Proposition 1.2

We proceed to prove Proposition 1.2 that says that there is no solution of (1.1) for λ large.

Proof. Suppose on the contrary that λ∗ = ∞. In this way there is a sequence λn → ∞ and
corresponding solutions vλn > 0 in R given by Theorem 1.1.

Fix R > 0 and define P(t, s) = λa1(t)sq−1 + sp−1 and ãR = inf(−R,R) a1(t). Define also

Λ = λ ãR.

We claim that there is a constant CΛ > 0 such that

P(t, s) ≥ Λsq−1 + sp−1 ≥ CΛs for s > 0, t ∈ (−R, R).

Consider the function Q(s) = (Λsq−1 + sp−1)s−1. Then Q(s) → ∞ as s → 0+ and as
s → ∞. The minimum value of Q is achieved at the unique point

m =

(
Λ

2 − q
p − 2

) 1
p−q

.

Thus CΛ = Q(m).
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Let σ1 > 0 and φ1 > 0, respectively, the first eigenvalue and the first eigenfunction satisfy-
ing {

−φ′′
1 = σ1φ1 in (−R, R)

φ1(−R) = φ1(R) = 0.

Since CΛ increases as λn increases, there is λ0 such that the corresponding constant satisfies
CΛ0 ≥ A(Cr̃)σ1 + A(Cr̃)δ + 1, for all δ ∈ (0, 1). Hence, by (H2)–(H3) and (4.3), the solution
vλ0 > 0 in R of (1.1) associated to λ0 satisfies−v′′λ0

≥ (CΛ0−1)
A(vλ0 )

vλ0 ≥
(CΛ0−1)

A(Cr̃) vλ0 ≥ (σ1 + δ)vλ0 in (−R, R)

vλ0(−R), vλ0(R) ≥ 0.

Otherwise, taking ε > 0 small enough we obtain εφ1 < v0 in (−R, R) and{
−(εφ1)

′′ = (εσ1)φ1 ≤ (σ1 + δ)φ1 in (−R, R)

φ1(−R) = φ1(R) = 0.

By the method of subsolution and supersolution, there is a solution εφ1 < ω < v0 in BR(0) of{
−ω′′ = (σ1 + δ)ω in (−R, R)

ω(−R) = ω(R) = 0.

Hence there is a contradiction to the fact that σ1 is isolated. Therefore, λ∗ < ∞, indeed.
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