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Abstract. Let Ω = (a, b) ⊂ R, 0 ≤ m, n ∈ L1(Ω), λ, µ > 0 be real parameters, and
ϕ : R → R be an odd increasing homeomorphism. In this paper we consider the
existence of positive solutions for problems of the form{

−ϕ (u′)′ = λm(x) f (u) + µn(x)g(u) in Ω,
u = 0 on ∂Ω,

where f , g : [0, ∞) → [0, ∞) are continuous functions which are, roughly speaking, sub-
linear and superlinear with respect to ϕ, respectively. Our assumptions on ϕ, m and n
are substantially weaker than the ones imposed in previous works. The approach used
here combines the Guo–Krasnoselskiı̆ fixed-point theorem and the sub-supersolutions
method with some estimates on related nonlinear problems.
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1 Introduction

Let Ω = (a, b) ⊂ R, m, n ∈ L1 (Ω) and λ, µ > 0 be a real parameters. In this article we consider
problems of the form {

−ϕ (u′)′ = λm (x) f (u) + µn(x)g(u) in Ω,

u = 0 on ∂Ω,
(1.1)

where ϕ : R → R is an odd increasing homeomorphism and f , g : [0, ∞) → [0, ∞) are con-
tinuous functions which are, roughly speaking, sublinear and superlinear with respect to ϕ,
respectively. When the nonlinearities f and g are concave and convex, the problem (1.1) with
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ϕ(x) = x was first studied by Ambrosetti, Brezis and Cerami in their celebrated paper [1].
More precisely, in that article the authors studied the N-dimensional problem

−∆u = λuq + up, x ∈ Ω,

u > 0, x ∈ Ω,

u = 0, x ∈ ∂Ω,

(1.2)

with 0 < q < 1 < p and Ω a bounded domain in RN . They proved the following facts: there
exists Λ > 0 such that: if λ ∈ (0, Λ) then (1.2) has at least two positive solutions, if λ = Λ
there is at least one positive solution, and if λ > Λ then there are no positive solutions.

Several authors have studied generalizations of (1.2), see for instance [2, 11, 14] and their
references, where the corresponding problem for the p-Laplacian is considered. Also, in [12]
the authors have treated the N-dimensional problem for the ϕ-Laplacian operator.

Regarding the one-dimensional ϕ-Laplacian problem that we will deal with in this article,
Wang in [15, Theorem 1.2] and [16, Theorem 1.2] studied the case m = n ≥ 0, m ̸≡ 0 on any
subinterval in Ω, m ∈ C(Ω) and λ = µ. In these papers it is proved that there exist λ0, λ1 > 0
such that if λ ∈ (0, λ0), then (1.1) has at least two positive solutions; and if λ > λ1, then there
are no positive solutions. Let us note that the hypothesis on ϕ imposed in [15, 16] are much
stronger than the ones that we shall require here. More precisely, Wang assumes

(Φ) There exist increasing homeomorphisms ψ1, ψ2 : [0, ∞) → [0, ∞) such that ψ1 (t) ϕ (x) ≤
ϕ (tx) ≤ ψ2 (t) ϕ (x) for all t, x > 0.

On other hand, (1.1) is also considered in [8] with m = n ≥ 0, m ̸≡ 0 on any subinterval in Ω
and λ = µ like in [15,16]. However, the regularity assumptions for m allow some m ∈ L1

loc(Ω).
Regarding the hypothesis on ϕ they require that

(Φ′) There exist an increasing homeomorphism ψ1 : [0, ∞) → [0, ∞) and a function ψ2 :
[0, ∞) → [0, ∞) such that ψ1 (t) ϕ (x) ≤ ϕ (tx) ≤ ψ2 (t) ϕ (x) for all t, x > 0.

The authors prove that there exist λ1 ≥ λ0 > 0 such that (1.1) has at least two positive solutions
for λ ∈ (0, λ0), one positive solution for λ ∈ [λ0, λ1], and no positive solution for λ > λ1.

In this article, employing the method of sub and supersolutions and the Guo–Krasnoselskiı̆
fixed-point theorem along with some estimates for related problems, we shall prove that there
are at least two positive solutions for λ ≈ 0, under much weaker assumptions on ϕ, m and
n. Moreover, as a consequence of Theorem 4.4 we shall see that (Φ) and (Φ′) are in fact
equivalent.

To be more precise, let us introduce the following hypothesis.

(F) There exist c0, t0, q > 0 such that

f (t) ≥ c0tq for all t ∈ [0, t0] and lim
t→0+

tq

ϕ(t)
= ∞. (1.3)

(G1) There exist c1, t1, r1 > 0 such that

g(t) ≤ c1tr1 for all t ∈ [0, t1] and lim
t→0+

tr1

ϕ(t)
= 0. (1.4)
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(G2) There exist c2, t2, r2 > 0 such that

g(t) ≥ c2tr2 for all t ≥ t2 and lim
t→∞

tr2

ϕ(t)
= ∞. (1.5)

Note that when ϕ(t) = |t|p−2 t, f (u) = uq and g(u) = ur, the limits in (F) and (G1) are satisfied
if and only if 0 < q < p − 1 < r. Let us set C1

0(Ω) := {u ∈ C1(Ω) : u = 0 on ∂Ω} and

P◦ :=
{

u ∈ C1
0(Ω) : u > 0 in Ω and u′ (b) < 0 < u′ (a)

}
.

Our main result is the following theorem:

Theorem 1.1. Let 0 ≤ m, n ∈ L1 (Ω).

(I) Assume that m ̸≡ 0 and (F) and (G1) hold. Then for all µ > 0 there exists λ0(µ) > 0 such that
(1.1) has a solution uλ ∈ P◦ for all 0 < λ < λ0(µ). Moreover, the solutions uλ can be chosen
such that

lim
λ→0+

∥uλ∥∞ = 0. (1.6)

(II) Assume that n ̸≡ 0 and (G1) and (G2) hold. Then for all µ > 0 there exists λ1(µ) > 0 such that
(1.1) has a solution vλ ∈ P◦ for all 0 < λ < λ1(µ). Furthermore, there exists ρ > 0 such that
∥vλ∥∞ > ρ for all 0 < λ < λ1(µ).

(III) Assume that {λ > 0 : (1.1) has a solution in P◦} ̸= ∅ and (F) holds for all t0 > 0. Let

Λ := sup{λ > 0 : (1.1) has a solution in P◦}.

Then, for 0 < λ < Λ (1.1) has at least one solution in P◦.

As an immediate consequence of the above theorem we have the following

Corollary 1.2. Let µ > 0 and 0 ≤ m, n ∈ L1(Ω) with m, n ̸≡ 0. Assume that (F), (G1) and (G2)
hold. Then (1.1) has at least two solutions in P◦ for λ ≈ 0.

The rest of the paper is organized as follows. In the next section we state some necessary
facts about nonlinear problems involving the ϕ-Laplacian, and in Section 3 we prove our main
results. Finally, in Section 4 we introduce some concepts about Orlicz spaces indices which we
use to prove Theorem 4.4 (and, in particular, the equivalence of (Φ) and (Φ′)), and at the end
of the section we give several examples of functions ϕ illustrating our conditions and their
relations with the ones used in the previous works. Let us mention that all the ϕ’s constructed
in Example (e) satisfy conditions (F), (G1) and (G2) but do not fulfill condition (Φ).

2 Preliminaries

Let ϕ : R → R be an odd increasing homeomorphism. We start considering problems of the
form {

−ϕ (v′)′ = h (x) in Ω,

v = 0 on ∂Ω.
(2.1)
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It is well known that for all h ∈ L1(Ω), (2.1) possesses a unique solution v ∈ C1
0(Ω) such that

ϕ (v′) is absolutely continuous and that the equation holds pointwise a.e. x ∈ Ω. Furthermore,
the solution operator Sϕ : L1(Ω) → C1(Ω) is completely continuous and nondecreasing, see
[3, Lemma 2.1] and [6, Lemma 2.2].

We need now to introduce some notation. For 0 ≤ h ∈ L1(Ω) with h ̸≡ 0, set

Ah := {x ∈ Ω : h (y) = 0 a.e. y ∈ (a, x)} ,

Bh := {x ∈ Ω : h (y) = 0 a.e. y ∈ (x, b)} ,

and

αh :=

{
supAh if Ah ̸= ∅,

a if Ah = ∅,
βh :=

{
infBh if Bh ̸= ∅,

b if Bh = ∅,

θh := min
{

1
βh − a

,
1

b − αh

}
, θh :=

αh + βh

2
.

(2.2)

We observe that θh is well defined because h ̸≡ 0, and αh < βh (and so, θh ∈ (αh, βh)). We also
write

δΩ (x) := dist (x, ∂Ω) = min (x − a, b − x) .

We shall utilize the following estimates on several occasions in the sequel. For the proof,
see [6, Lemma 2.3 and (2.6)] and [7, Corollary 2.2].

Lemma 2.1. Let 0 ≤ h ∈ L1(Ω) with h ̸≡ 0.

(i) In Ω it holds that

θh min

{∫ θh

a
ϕ−1

(∫ θh

y
h

)
dy,

∫ b

θh

ϕ−1
(∫ y

θh

h
)

dy

}
δΩ ≤ Sϕ (h) ≤ ϕ−1

(∫ b

a
h
)

δΩ. (2.3)

(ii) In Ω it holds that
Sϕ(h) ≥ θh

∥∥Sϕ(h)
∥∥

∞ δΩ. (2.4)

(iii) For M > 0 there exists c > 0 not depending on M such that it holds that

min

{∫ θh

a
ϕ−1

(∫ θh

y
Mh

)
dy,

∫ b

θh

ϕ−1
(∫ y

θh

Mh
)

dy

}
≥ cϕ−1(cM). (2.5)

Observe that, since θh ∈ (αh, βh), the constant that appears in the first term of the inequalities
in (2.3) is strictly positive. Note also that, since θh ∥δΩ∥∞ ≥ 1/2, using the lower bound of
(2.3) and taking into account the monotonicity of the infinite norm we get

1
2

min

{∫ θh

a
ϕ−1

(∫ θh

y
h

)
dy,

∫ b

θh

ϕ−1
(∫ y

θh

h
)

dy

}
≤
∥∥Sϕ (h)

∥∥
∞ . (2.6)

Observe also that for h as in Lemma 2.1 Sϕ (h) ∈ P◦.
Let h : Ω × R → R be a Carathéodory function (that is, h (x, ·) is continuous for a.e. x ∈ Ω

and h (·, ξ) is measurable for all ξ ∈ R). We now consider problems of the form{
−ϕ (u′)′ = h (x, u) in Ω,

u = 0 on ∂Ω.
(2.7)
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We shall say that v ∈ C(Ω) is a subsolution of (2.7) if there exists a finite set Σ ⊂ Ω such that
ϕ(v′) ∈ ACloc(Ω \Σ), v′(τ+) := limx→τ+ v′(x) ∈ R, v′(τ−) := limx→τ− v′(x) ∈ R for each
τ ∈ Σ, and {

−ϕ (v′)′ ≤ h (x, v (x)) a.e. x ∈ Ω,

v ≤ 0 on ∂Ω, v′(τ−) < v′(τ+) for each τ ∈ Σ.
(2.8)

If the inequalities in (2.8) are inverted, we shall say that v is a supersolution of (2.7).

For the sake of completeness, we state an existence result in the presence of well-ordered
sub and supersolutions, and a particular case of the well-known Guo–Krasnoselskiı̆ fixed-
point theorem (for a proof, see e.g. [13, Theorem 7.16] and [4, Theorem 2.3.4], respectively).

Lemma 2.2. Let v and w be sub and supersolutions respectively of (2.7) such that v ≤ w in Ω.
Suppose there exists g ∈ L1 (Ω) such that

|h (x, ξ)| ≤ g (x) for a.e. x ∈ Ω and all ξ ∈ [v (x) , w (x)] .

Then there exists u ∈ C1
0(Ω) solution of (2.7) with v ≤ u ≤ w in Ω.

Lemma 2.3. Let X be a Banach space and let K be a cone in X. Let Ω1, Ω2 ⊂ X be two open sets with
0 ∈ Ω1 and Ω1 ⊂ Ω2. Suppose that T : K ∩ (Ω2 \ Ω1) → K is a completely continuous operator and

∥Tv∥ ≥ ∥v∥ , for v ∈ K ∩ ∂Ω2,

∥Tv∥ ≤ ∥v∥ , for v ∈ K ∩ ∂Ω1.

Then, T has a fixed point in K ∩ (Ω2 \ Ω1).

3 Proof of the main results

3.1 Proof of item (I)

We start this section with two lemmas concerning sub and supersolutions that shall be used
to prove item (I) of Theorem 1.1.

Lemma 3.1. Let m, n ∈ L1(Ω) such that 0 ̸≡ m+ n ≥ 0. Assume that (G1) holds. Then for all µ > 0
there exists λ0(µ) > 0 such that for each 0 < λ < λ0(µ) there exists wλ ∈ P◦ supersolution of (1.1).
Moreover,

lim
λ→0+

∥wλ∥∞ = 0. (3.1)

Proof. Let c1, t1, r1 be given by (G1). Let us define cΩ := maxΩ δΩ. By the continuity of ϕ−1

and the fact that ϕ−1(0) = 0, there exists K0 > 0 such that

ϕ−1
(

κ
∫ b

a
m(s) + n(s)ds

)
≤ t1

cΩ
for all κ ≤ K0. (3.2)

We observe that by the second condition on (1.4), for ρ > 0 fixed we have

lim
t→0+

[ϕ−1(ρt)]r1

t
= 0. (3.3)

We now define

ϵ :=
1

c1µcr1
Ω

, ρ :=
∫ b

a
m(s) + n(s)ds.
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We can deduce from (3.3) that there exists K1 = K1(ϵ, ρ) > 0 such that

[ϕ−1(κρ)]r1 ≤ κϵ for all κ ≤ K1. (3.4)

Let C = max[0,t1] f (t) and choose λ0 > 0 such that

λ0C ≤ min{K0, K1}. (3.5)

Also, for each 0 < λ < λ0, pick κλ such that

λC ≤ κλ ≤ min{K0, K1}, (3.6)

and for such κλ define wλ := Sϕ(κλ(m + n)). Since κλ ≤ K0, the upper bound in (2.3) and
(3.2) tell us that ∥wλ∥∞ ≤ t1. Taking into account (3.4), (3.5) and (3.6), employing (G1) and the
upper bound in (2.3) we deduce that

λm(x) f (wλ) + µn(x)g(wλ) ≤ λm(x)C + c1µn(x)wr1
λ

≤ κλm(x) + c1µn(x)
[

ϕ−1(κλ

∫ b

a
m(s) + n(s)ds)δΩ

]r1

≤ κλ(m(x) + n(x)) = −ϕ(w′
λ)

′ in Ω,

and hence wλ is a supersolution of (1.1).
In order to prove (3.1), we choose κλ satisfying (3.6) and such that κλ → 0 when λ → 0+.

Hence, using the second inequality (2.3) we get that

0 ≤ wλ(x) = Sϕ(κλ(m + n)) ≤ ϕ−1
(∫ b

a
κλ(m + n)

)
δΩ(x) → 0

uniformly in Ω when λ → 0+. Thus, limλ→0+ ∥wλ∥∞ = 0.

Lemma 3.2. Let 0 ≤ m, n ∈ L1(Ω) with m ̸≡ 0. Assume that (F) holds. Then for all λ, µ > 0 (1.1)
has a subsolution v ∈ P◦.

Proof. Let λ, µ > 0 and let c0, t0, q be given by (F). Recall that cΩ := maxΩ δΩ. Since ϕ−1 is
continuous and ϕ−1(0) = 0, there exists ε0 > 0 such that

ϕ−1
(

ε
∫ b

a
m(s)δq

Ω(s)ds
)
≤ t0

cΩ
for all ε ≤ ε0. (3.7)

By the second condition in (1.3), for ρ > 0 fixed

lim
t→0+

[ϕ−1(ρt)]q

t
= ∞. (3.8)

Let us define
M :=

1
λc0cq ,

where c is the constant in (2.5) with h = mδ
q
Ω. It follows from (3.8) that there exists ε1 =

ε1(M, ρ) such that
[ϕ−1(ερ)]q ≥ Mε for all ε ≤ ε1. (3.9)

Let us choose
0 < ε < min{ε0, ε1} (3.10)
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and for such ε define v := Sϕ(εmδ
q
Ω). Since ε ≤ ε0, the upper bound of Lemma 2.1 and (3.7)

tell us that ∥v∥∞ ≤ t0. Consequently, taking into account (3.9) and (3.10), employing (F) and
(2.5) we deduce that

λm(x) f (v) + µn(x)g(v) ≥ λc0m(x)vq ≥ λc0m(x)[cϕ−1(cε)δΩ]
q ≥ εm(x)δq

Ω in Ω.

In other words, v is a subsolution of (1.1).

Proof of Theorem 1.1 (I). Given µ > 0, let λ0(µ) be as in Lemma 3.1. For 0 < λ < λ0(µ), let
wλ ∈ P◦ be a supersolution provided by the aforementioned lemma, and let vλ ∈ P◦ be a
subsolution given by Lemma 3.2 with ελ chosen such that ελm(x)δq

Ω(x) ≤ κλ(m(x) + n(x))
for a.e.x ∈ Ω. It follows that vλ, wλ are a pair of well-ordered sub and supersolutions of (1.1).
Hence, Lemma 2.2 gives a solution of (1.1) uλ ∈ P◦. Moreover, (1.6) follows from (3.1).

3.2 Proof of item (II)

Proof of Theorem 1.1 (II). We shall use Lemma 2.3 with the operator

Tv := Sϕ(λm(x) f (v) + µn(x)g(v)),

the cone
K := {v ∈ C(Ω) : v ≥ θn ∥v∥∞ δΩ}

(θn as in (2.2)) and the open balls BR(0), Bρ(0) ⊂ C(Ω) with 0 < ρ < R. Observe that C1
0(Ω) ∩

(K \ {0}) ⊂ P◦ and that any fixed point of T belongs to C1
0(Ω).

Let c2, t2 and r2 be given by (G2). We consider the function h := c2µ (θn)
r2 nδr2

Ω . Taking into
account (2.5), we can find c = c(µ) > 0 such that for all M > 0

min

{∫ θn

a
ϕ−1(M

∫ θn

y
h)dy,

∫ b

θn

ϕ−1(M
∫ y

θn

h)dy

}
≥ cϕ−1(cM). (3.11)

On other hand, the second condition in (G2) is equivalent to

lim
t→∞

ϕ−1(ρtr2)

t
= ∞

for all fixed ρ > 0, and then there exists t > 0 such that

ϕ−1(ctq2) ≥ 2t
c

for all t ≥ t. (3.12)

Let us fix R > max{t2, t}. Taking into account that Sϕ and ϕ−1 are nondecreasing, the
inequality (2.6), (G2), (3.11) and (3.12) we obtain that for v ∈ K ∩ ∂BR(0),

∥Tv∥∞ =
∥∥Sϕ(λm(x) f (v)) + µn(x)g(v))

∥∥ ≥
∥∥Sϕ(µn(x)g(v))

∥∥
∞

≥ 1
2

min

{∫ θn

a
ϕ−1

(∫ θn

y
µng(v)

)
dy,

∫ b

θn

ϕ−1
(∫ y

θn

µng(v)
)

dy

}

≥ 1
2

min

{∫ θn

a
ϕ−1

(
c2µ

∫ θn

y
nvr2

)
dy,

∫ b

θn

ϕ−1
(

c2µ
∫ y

θn

nvr2

)
dy

}

≥ 1
2

min

{∫ θn

a
ϕ−1

(
c2µ (θn ∥v∥∞)

r2

∫ θn

y
nδr2

Ω

)
dy,

∫ b

θn

ϕ−1
(

c2µ (θn ∥v∥∞)
r2

∫ y

θn

nδr2
Ω

)
dy

}

≥ 1
2

cϕ−1(c ∥v∥r2
∞)

≥ ∥v∥∞ .
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That is, ∥Tv∥∞ ≥ ∥v∥∞ for such v.
On other side, let N := c1

∫ b
a n. The second condition in (G1) implies that there exists

t > 0 such that ϕ(t/cΩ) > µNtr1 for all t ∈ (0, t). Set C := max[0,R] f (t) and M :=
∫ b

a m. Let
0 < ρ < min{t, R/2, t1} be fixed and define

λ1 :=
ϕ(ρ/cΩ)− µNρr1

MC
. (3.13)

Note that λ1 > 0 by our election of t.
Now, taking into account (2.3), (G1), (3.13) and the monotonicity of ϕ−1 we see for 0 <

λ ≤ λ1 and all v ∈ K ∩ ∂Bρ(0),

Tv ≤ ϕ−1
(∫ b

a
λm(x) f (v) + µn(x)g(v)dx

)
δΩ

≤ ϕ−1
(

λC
∫ b

a
m(x)dx + c1µ

∫ b

a
n(x)vr1 dx

)
δΩ

≤ ϕ−1 (λ1MC + µNρr1) δΩ

≤ ρ in Ω.

This tells us that ∥Tv∥∞ ≤ ρ = ∥v∥∞ for all v ∈ K ∩ ∂Bρ(0).
Thus, Lemma 2.3 says that T has a fixed point in K ∩ (BR(0) \ Bρ(0)).

3.3 Proof of item (III)

Proof of Theorem 1.1 (III). In order to prove (III) we combine Lemma 3.2 and the inequality
(2.4). Let 0 < λ < Λ. By the definition of Λ there exists λ ∈ (λ, Λ] and uλ ∈ P◦ solution of
(1.1) associated to λ. Since λ < λ it follows that uλ is a supersolution (1.1) associated to λ.
Now, thanks to Lemma 3.2 there exists ε > 0 such that v = Sϕ(εmδ

q
Ω) is a subsolution of (1.1)

associated to λ. Moreover, taking ε smaller if necessary, we get that v ≤ uλ. Now, (III) follows
from Lemma 2.2.

4 Comments about the hypothesis

Let us introduce some concepts about Orlicz spaces indices. Given a nonbounded, increasing,
continuous function ϕ : [0, ∞) → [0, ∞) with ϕ(0) = 0, we define

M(t, ϕ) := sup
x>0

ϕ(tx)
ϕ(x)

.

This function is nondecreasing and submultiplicative with M(1, ϕ) = 1. Then, thanks to e.g.
[9, Chapter 11], the following limits exist:

αϕ := lim
t→0+

ln M(t, ϕ)

ln t
, βϕ := lim

t→∞

ln M(t, ϕ)

ln t
,

and moreover, 0 ≤ αϕ ≤ βϕ ≤ ∞. These numbers are called Orlicz space indices or
Matuszewska–Orlicz’s indices, who introduced them in [10].

As usual, we say that ϕ satisfies the ∆2 condition if there exists k > 0 such that

ϕ(2x) ≤ kϕ(x) for all x ≥ 0.
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Remark 4.1.

(i) For ε > 0, there exists t1 > 0 such that ϕ(tx) ≤ tαϕ−εϕ(x) for all x > 0 and t ∈ [0, t1].

(ii) Suppose that βϕ < ∞. Then, for ε > 0, there exists t2 > 0 such that ϕ(tx) ≤ tβϕ+εϕ(x)
for all x > 0 and t ∈ [t2, ∞). So, if βϕ < ∞ then ϕ satisfies the ∆2 condition.

(iii) If x−pϕ(x) is nondecreasing for all x > 0, then αϕ ≥ p.

(iv) If x−pϕ(x) is nonincreasing for all x > 0, then βϕ ≤ p.

(v) The following relationships between the Orlicz space indices of ϕ and ϕ−1 hold:

βϕ =
1

αϕ−1
and αϕ =

1
βϕ−1

.

As usual, we set 1/0 = ∞ and 1/∞ = 0.

We shall need the next two useful lemmas to prove Theorem 4.4 below.

Lemma 4.2 ([5, page 34]). If 0 < αϕ ≤ βϕ < ∞ then there exist C, p, q > 0 such that

C−1 min{tp, tq}ϕ(x) ≤ ϕ(tx) ≤ C max{tp, tq}ϕ(x) for all t, x ≥ 0.

Lemma 4.3 ([9, Theorem 11.7]). The function ϕ satisfies the ∆2 condition if and only if the constant
βϕ is finite.

Theorem 4.4. The following hypothesis for ϕ are equivalent:

(i) 0 < αϕ ≤ βϕ < ∞.

(ii) (Φ).

(iii) (Φ′).

Proof. It is obvious that (ii) implies (iii), and Lemma 4.2 shows that (i) implies (ii). Let us prove
that (iii) implies (i).

Since αϕ = 1/βϕ−1 , Lemma 4.3 and Remark 4.1 (v) tell us that αϕ > 0 if and only if ϕ−1

satisfies ∆2. Let us check that the first inequality in (Φ′) implies that ϕ−1 satisfies ∆2. Indeed,
taking into account that

ψ1(t)ϕ(x) ≤ ϕ(xt) for all t, x > 0,

setting y = ϕ(x) and s = ψ(t) we get that

sy ≤ ϕ(ψ−1
1 (s)ϕ−1(y)) for all s, y > 0.

Since ϕ−1 is increasing its follows that

ϕ−1(sy) ≤ ψ−1
1 (s)ϕ−1(y) for all s, y > 0.

This implies that ϕ−1 satisfies ∆2. Thus, αϕ > 0. Moreover, the second inequality in (Φ′)

implies that ϕ satisfies ∆2. Then, βϕ < ∞.

The following two lemmas will be useful to compare the indices αϕ and βϕ with our
hypotheses (F), (G1) and (G2) stated in Section 1.
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Lemma 4.5. Let q > 0.

(i) If lim
t→0+

tq

ϕ(t)
= 0 then αϕ ≤ q.

(ii) If lim
t→∞

tq

ϕ(t)
= 0 then βϕ ≥ q.

(iii) If lim
t→0+

tq

ϕ(t)
= ∞ then βϕ ≥ q.

(iv) If lim
t→∞

tq

ϕ(t)
= ∞ then αϕ ≤ q.

Proof. We start proving (i). If αϕ > q, by Remark 4.1 (i) there exists t1 > 0 such that

ϕ(tx) ≤ tqϕ(x) for all x > 0 and t ∈ (0, t1).

Let us set C = ϕ(1)−1 and fix x = 1. Using the above inequality we have that C ≤ tq

ϕ(t) for all

t ∈ (0, t1), which contradicts that limt→0+
tq

ϕ(t) = 0. Therefore, we must have αϕ ≤ q. Item (ii)
follows similarly. Indeed, if βϕ < q, by Remark 4.1 (ii) we have that there exists t1 > 0 such
that

ϕ(tx) ≤ tqϕ(x) for all x > 0 and t > t1.

We now again define C = ϕ(1)−1 and fix x = 1. Employing the above inequality we have that
C ≤ tq

ϕ(t) for all t > t1, contradicting that limt→∞
tq

ϕ(t) = 0. Thus, βϕ ≥ q.
We prove (iii). We notice first that

lim
t→0+

tq

ϕ(t)
= ∞ if and only if lim

t→0+

t1/q

ϕ−1(t)
= 0. (4.1)

Indeed, the first limit is true if for every sequence {tk} with 0 < tk → 0, it holds that tq
k

ϕ(tk)
→ ∞.

Thus, taking sk = ϕ(tk) we have that 0 < sk → 0 and [ϕ−1(sk)]
q

sk
→ ∞. Since h(t) = t1/q is

continuous and converges to ∞ as t → ∞, it follows that ϕ−1(sk)

s1/q
k

→ ∞, which is equivalent to

s1/q
k

ϕ−1(sk)
→ 0. Since 0 ≤ t1/q

ϕ−1(t) for all t > 0 it follows that limt→0+
t1/q

ϕ−1(t) = 0. Now, from (4.1)
and item (i) we deduce that αϕ−1 ≤ 1/q, and recalling Remark 4.1 (v) we get that βϕ ≥ q, and
(iii) holds. Analogously, (iv) follows from (ii), taking into account that

lim
t→∞

tq

ϕ(t)
= ∞ if and only if lim

t→∞

t1/q

ϕ−1(t)
= 0,

and using again Remark 4.1 (v).

Lemma 4.6. Let ϕ : [0, ∞)→ [0, ∞) be a nonbounded, increasing, continuous function with ϕ(0) = 0.

(i) If q < αϕ then limt→0+
tq

ϕ(t) = ∞.

(ii) If q > βϕ then limt→∞
tq

ϕ(t) = ∞.

(iii) If q < αϕ then limt→∞
tq

ϕ(t) = 0.
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(iv) If q > βϕ then limt→0+
tq

ϕ(t) = 0.

Let us note that the reciprocals of items (i) and (ii) of the above lemma are not true, see
Example (e.1) below.

Proof. Let us begin by proving (i). Let ε > 0 such that αϕ − ε > q. By Remark 4.1 (i) there
exists t1 > 0 such that ϕ(tx) ≤ tαϕ−εϕ(x) for all x > 0 and t < t1. Taking x = 1 we get that

1
tαϕ−ε ≤ ϕ(1)

ϕ(t) for t < t1. Multiplying by tq on both sides and taking limit as t → 0+ it follows
that

lim
t→0+

tq

tαϕ−ε ≤ lim
t→0+

ϕ(1)tq

ϕ(t)
.

Since q < αϕ − ε, the first limit is infinite, and so also the second one. Thus, (i) is proved.
Analogously, let ε > 0 such that βϕ + ε < q. By Remark 4.1 (ii) there exists t1 > 0 such

that ϕ(tx) ≤ tβϕ−εϕ(x) for all x > 0 and t > t1. Taking x = 1 we have 1
tβϕ−ε ≤ ϕ(1)

ϕ(t) for t < t1.
Multiplying by tq on both sides and taking limit as t → ∞ we get

lim
t→∞

tq

tβϕ+ε
≤ lim

t→∞

ϕ(1)tq

ϕ(t)
.

Since q > βϕ + ε, the first limit is infinite, and thus also the second one.
On other hand, (iii) follows from (ii) noting that

lim
t→∞

tq

ϕ(t)
= 0 if and only if lim

t→∞

t1/q

ϕ−1(t)
= ∞,

and taking into account that αϕ > q if and only if βϕ−1 < 1/q. Similarly, (iv) follows from (i)
noting that

lim
t→0+

tq

ϕ(t)
= 0 if and only if lim

t→0+

t1/q

ϕ−1(t)
= ∞,

and recalling that βϕ < q if and only if αϕ−1 > 1/q.

Corollary 4.7. Let q, r1 and r2 be given by (F), (G1) and (G2) respectively.

1. Suppose that αϕ is positive.

(a) If q < αϕ then the limit in (F) holds.

2. Suppose that βϕ is finite.

(a) If r1 > βϕ then the limit in (G1) holds.

(b) If r2 > βϕ then the limit in (G2) holds.

4.1 Examples

Let us conclude the article with some examples of functions ϕ. We suppose x ≥ 0 and we
extend the function oddly.

a. Let
ϕ(x) = xp1 + xp2 , with p1 ≥ p2 > 0.

Since ϕ(x)/xp1 is nonincreasing and ϕ(x)/xp2 is nondecreasing, we see that βϕ < ∞ and
αϕ > 0.
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b. Let

ϕ(x) =
xp1

1 + xp2
, with p1 > p2 > 0.

Since ϕ(x)/xp1 is nonincreasing and ϕ(x)/xp1−p2 is nondecreasing, we get that βϕ < ∞
and αϕ > 0.

c. Let
ϕ(x) = x (|ln x|+ 1) .

We have that ϕ(x)/x2 is nonincreasing. Then, βϕ < ∞. Furthermore, given p ∈ (0, 1)
there exists T > 0 such that

ϕ(tx) ≤ tpϕ(x) for t ∈ [0, T] and all x ≥ 0.

This inequality implies that αϕ ≥ 1.

d. Let
ϕ(x) := x − ln(x + 1).

As in the above example, ϕ(x)/x2 is nonincreasing and then βϕ < ∞. Also, there exist
C, T > 0 such that

ϕ(tx) ≤ Ctϕ(x) for t ∈ [0, T] and all x ≥ 0.

The above inequality implies that αϕ ≥ 1. Moreover, since

lim
t→∞

tq

ϕ(t)
= ∞ for all q > 1,

thanks to Lemma 4.5 (iv) we deduce that αϕ = 1.

e. Let h : (0, ∞) → (1, ∞) be an increasing differentiable function such that limt→0+ h(t) =
1,

lim
t→∞

qtq−1h(t)
h′(t)

= ∞ for all q > 0, (4.2)

and there exists p1 > 0 such that

lim
t→0+

qtq−1h(t)
h′(t)

=

{
0 if q > p1,

∞ if q < p1.
(4.3)

Define
ϕ(x) := (ln(h(x))p, with p > 0.

By (4.2), ϕ satisfies the limit in (G2). Moreover, from Lemma 4.5 (iv) we can deduce that
αϕ = 0. Then ϕ does not satisfy the hypothesis (Φ) (and (Φ′)) at the introduction. And
since (4.3) holds it follows that

lim
t→0+

tq

ϕ(t)
=

{
0 if q > pp1.

∞ if q < pp1.

Therefore, ϕ satisfies the limits in (F) and (G1). Let us exhibit next a few particular cases.
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e.1 Let
ϕ(x) := (ln(x + 1))p, with p > 0.

A few computations show that h(x) = x + 1 satisfies (4.2) and (4.3). Moreover, we
can see that ϕ(x)/xp is nonincreasing and thus βϕ ≤ p, and since

lim
t→0+

tq

ln(t + 1)
= ∞ for all q < 1,

by Lemma 4.5 it follows that βϕ = p. This shows that the reciprocals of the items
(i) and (ii) in Lemma 4.6 are not true.

e.2 Let
ϕ(x) := arcsinh(x) = ln

(√
x2 + 1 + x

)
.

One can see that h(x) =
√

x2 + 1 + x satisfies (4.2) and (4.3).

e.3 Let
ϕ(x) := ln(ln(x + 1) + 1).

One can verify that h(x) = ln(x + 1) + 1 satisfies (4.2) and (4.3).
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[13] I. Rachůnková, S. Staněk, M. Tvrdý, Solvability of nonlinear singular problems for ordinary
differential equations, Contemporary Mathematics and its Applications, Vol. 5, Hindawi
Publishing Corporation, New York, 2008. MR2572243; Zbl 1228.34003

[14] J. Sánchez, P. Ubilla, One-dimensional elliptic equation with concave and convex non-
linearities, Electron. J. Differential Equations 2000, No. 50, 1–9. MR1772735; Zbl 0955.34013

[15] H. Wang, On the number of positive solutions of nonlinar systems, J. Math. Anal. Appl.
281(2003), 287–306. https://doi.org/10.1016/S0022-247X(03)00100-8; MR1980092;
Zbl 1036.34032

[16] H. Wang, On the structure of positive radial solutions for quasilinear equations in annu-
lar domains, Adv. Differential Equations 8(2003), 111–128. MR1946560; Zbl 1042.34052

https://doi.org/10.1016/j.jmaa.2018.11.001
https://doi.org/10.1016/j.jmaa.2018.11.001
https://www.ams.org/mathscinet-getitem?mr=3906345
https://zbmath.org/?q=an:1404.35190
https://doi.org/10.1007/s40840-018-0691-0
https://doi.org/10.1007/s40840-018-0691-0
https://www.ams.org/mathscinet-getitem?mr=4044894
https://zbmath.org/?q=an:1491.34039
https://www.ams.org/mathscinet-getitem?mr=2264389
https://zbmath.org/?q=an:0874.46022
https://zbmath.org/?q=an:0101.09001
https://doi.org/10.3934/cpaa.2016002
https://www.ams.org/mathscinet-getitem?mr=3538869
https://zbmath.org/?q=an:1351.35035
https://doi.org/10.1007/s11117-015-0395-8
https://doi.org/10.1007/s11117-015-0395-8
https://www.ams.org/mathscinet-getitem?mr=3568178
https://zbmath.org/?q=an:1359.3507
https://www.ams.org/mathscinet-getitem?mr=2572243
https://zbmath.org/?q=an:1228.34003
https://www.ams.org/mathscinet-getitem?mr=1772735
https://zbmath.org/?q=an:0955.34013
https://doi.org/10.1016/S0022-247X(03)00100-8
https://www.ams.org/mathscinet-getitem?mr=1980092
https://zbmath.org/?q=an:1036.34032
https://www.ams.org/mathscinet-getitem?mr=1946560
https://zbmath.org/?q=an:1042.34052

	Introduction
	Preliminaries
	Proof of the main results
	Proof of item (I)
	Proof of item (II)
	Proof of item (III)

	Comments about the hypothesis
	Examples


