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Abstract. We show the theoretical solvability of the system of difference equations

Yns1Yn —cd y __ Xni¥n — cd
Ynsl tyn—c—d’ ik Xpy1 +Xp—c—d’

xn+k = ne INO/

wherek € IN,l € Ny, [ <k,c,d € Cand x,y; €C, j= 0,k — 1. For several special cases
of the system, we give some detailed explanations on how some formulas for their gen-
eral solutions can be found in closed form, that is, we show their practical solvability.
To do this, among other things, we use the theory of homogeneous linear difference
equations with constant coefficients and the product-type difference equations with in-
teger exponents, which are theoretically solvable.

Keywords: symmetric system of difference equations, solvable system, solution in
closed form.
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1 Introduction

Finding general solutions to difference equations and systems of difference equations is a
classical problem which can be traced back to the beginning of the 18th century, [5,8,9]. During
the century many important results on the problem have been obtained [10,16,18-20]. A
majority of the results were on linear difference equations and systems of difference equations,
but some of them were also on the nonlinear ones (see also [6,12,17,21,22]). For some later
presentations and applications of the equations, see [11,13,23,26,37]. Since the solvability
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theory for linear difference equations was essentially completed during that time, and since it
is practically impossible to find some general methods for solving nonlinear equations, interest
in the topic diminished during the 19th century. Although from time to time, some solvable
difference equations occurred, for example, in computational mathematics [7], problem books
[2,14,24,25] and in some popular journals for a wide audience. Solvable difference equations
are also useful in some comparison results [4,15,40]. One can study the invariants of the
equations and systems, as it was the case, e.g., in [28-30,32,38,39], but only some of their very
special classes were considered therein.

During the last two decades there has been a renewed interest in the area. It seems mostly
because of the use of some computer calculations. We have analysed some of the recent papers
and given many comments and theoretical explanations related to them (see, for example, [47]
where some of the analyses, comments and explanations are given). An interesting fact is that
the solvability of almost all of the recently presented classes of solvable difference equations
and systems rely on the solvability of some linear ones (see, for example, [3,35,47,49] and
the related references therein). However, it is of some interest to enlarge the list of solvable
nonlinear difference equations and systems which are not obtained from linear ones in an
obvious way.

There has been some interest in systems of difference equations which are close to sym-
metric ones since the mid of the nineties [27,31, 33, 34,38,39], which attracted our attention.
We have devoted a part of our investigation also in this direction (see, e.g., [41-47]).

Motivated by the equation

_ Xp—sXp—t+4a

X ——— , n € NNy, 1.1
n Xp ot Xn s 0 ( )

where s,t € N,a € Cand x_; € C, j = 0,max{s, t} ([36,48]), in [49] we studied the equation

Xp+tXy — ab
Xpts = , n € Ny, 1.2
n+s xn+t—|—xn—a—b 0 ( )

where s € N, t € Np, t <s,a,b € Cand x; € C, j = 0,5 —1, and showed its theoretical
solvability. Equation (1.1) is a natural generalization of its special case with s =1 and t = 2,
which can be obtained by using the secant method [7]

Xn—2f (Xn-1) = Xn-1f (¥n—2)

flna) = fn2) 7

Xy = n € Ny,
for f(x) = x> —a (see, e.g., [15]).

On the other hand, motivated by our studies of the systems which stem from equation (1.1)
(see the nonlinear systems of difference equations in [41-45]), in [46] we investigated a non-
linear system of difference equations which is related to equation (1.2), showed its solvability
and discussed some special cases of the system in detail.

Here, we continue above mentioned investigations on solvability by studying the system

Ynt+1Yn — cd Xn1Xn — cd

, = , INo, 1.3
Yntl +Yn—c—d Ytk Xpil + Xy —c—d m € No (13)

Xntk =

where k € N, € Ny, [ <k, ¢,d € C and x,y; €C, j= 0,k — 1, which is a symmetric relative
to equation (1.2) and has not been considered in the literature yet.
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Definition 1.1. We say that a nonlinear difference equation or system is theoretically solvable if
by some changes of variables it can be transformed to a linear difference equation or system
with constant coefficients. If the general solution to the linear difference equation or sys-
tem can be found in closed form, we say that the nonlinear difference equation or system is
practically solvable.

Remark 1.2. Not all linear difference equations with constant coefficients are practically solv-
able. For example, the difference equation

Xp4+5 —6x,401+3x, =0, n € Ny,
is one of them, since we cannot find the roots of the associated characteristic polynomial
g5(A) = A° —6A 43
by radicals (see, e.g., [50]), due to the famous result by Abel and Ruffini [1].

Here we show the theoretical solvability of system (1.3), and give a detailed explanation
on how in some cases can be found the general solution, that is, how to show their practical
solvability.

2 Main results

Here we state and prove our main results.

Theorem 2.1. Suppose k € N, | € Ny, | < k, and c,d € C. Then, system (1.3) is theoretically
solvable.

Proof. Suppose ¢ # d. Note that

g~ Wt —d)(yn —d)

ek Ynittyn—c—d’
oy — = Wnit =) (yn =)
" Ynp1 Tyn—c—d’

g (xp11 —d)(xn — d)
yﬂ+k d_ xn+l+xn—c—d,
Yok — € = (Xp1 — ) (xn — €)

Xpal+Xxp—c—d
for n € Ny.
Dividing the first two relations we get

Xpik —d (yn+l —d) (yn —d)

Xptk — C (yi’l+l _C)(yn _C)’

for n € INp, whereas dividing the last two relations we get

Ynyk —d _ (Xp41 — d) (xn - d)

Yy —C (%41 _C)(xn _C)’

for n € Ny.
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Now we define two auxiliary sequences as follows

_xp—d Yn—d
Cn = oo = pr— (2.1)

for n € Ny.
They obviously satisfy the relations

Sk = MMy Mtk = GniGn, (2.2)
for n € Ny, which yields that , and 7, are two solutions to the equation
Whyok = wn+21wi+lwnl n € Ny, (2.3)

a product-type difference equation with integer exponents, which is theoretically solvable.
Hence, such one is the system (1.3).
Note also that from (2.1) we have

_clp—d oy —d

X , ’ 2.4
n Tn—1 Yn iy — 1 (2.4)
for n € Ny.
Now suppose ¢ = d. Note that
tpup— ¢ = Wnit =) yn—¢), (2.5)
Yntl +Yn —2c
_ (g —c)(xn—¢)
yn+k c= xn+l + X, — ZC 7 (26)
for n € Ny.
Now we define the two auxiliary sequences
1 1
Cn = oo M= — (2.7)
for n € Ny.
Combining (2.5)—(2.7), we get
Cnik = Ml T s Motk = Cn1+ Cn, (2.8)
for n € INp, which implies that , and #, satisfy the equation
Wy2k — Wiyol — 2Wp 4 — wy =0, (2.9)

for n € Ny, which according to Definition 1.1 means that system (1.3) is theoretically solvable
in this case. O

A natural problem is to find special cases of system (1.3) for which it is possible to find
some closed-form formulas for their general solutions.
The polynomial
gor(A) = A2 — A2 oAl 1,

is the characteristic one associated to equation (2.9) [11,13,23,25]. Note that

gor(A) = A — (A4 1)2 = (AP A —1) (AR + Al 4 1). (2.10)
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In some cases it is possible to find its roots (but, of course, not always [1]), for instance,
if 0 <1 < k < 4 (there are ten cases). In all these cases, among other ones, equation (2.9)
is practically solvable. Now we present the general solution to system (1.3) in some of these

cases.

Theorem 2.2. Consider the system (1.3) withk =1,1 =0and c,d € C.

(a) If c =d, xo # ¢ # yo, then

Xg—C

x2m:C+ 4Wl 7
_ Yo—c
x2m+1—c+ 24m1
—C

. Xgp—C
y2m+1—C+W/

for m € No.

(b) If ¢ # d, then well-defined solutions to the system are given by

Xom =
xo—d 4m B 1 7
Xp—C
Am
c yo—d 2-4 _
X e
2m+1 — m
yo—d 24 9
Yo—c¢
4m
c (yo_d> d
Yo—c¢
Yom = 4m ’
Yo—d -1
Yo—¢
Am
c [ xo=d 2
Xp—C
Yom+1 =
X

for m € No.

Proof. (a) First, note that (2.8) is

€n+1 - 2;711/ 7’/n+1 - Zgn/

for n € INg. Thus
€n+2 = 4CI’[/ NMnt2 = 47711/
for n € INg, which yields

Com =4"C0, Com+1 =4"01, 12m =4"10,

Nom+1 = 4711,

for m € INp. This and (2.7) imply (2.11)=(2.14), under the assumption c = d.

(b) If we assume that ¢ # d, then from (2.3) we have

Cnia = éﬁf Mny2 = Wﬁ, n € INo.

(2.11)
(2.12)
(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)
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Therefore
Cn=00, Comr1 =0, Mm=1o, Noms1 =11,
for m € INp.
These four relations, the transformation in (2.1), and (2.4), imply (2.15)—(2.18), completing
the proof. O

Remark 2.3. Assume that in Theorem 2.2, ¢ = d, and that xo = ¢ or yp = c. Note that from
(1.3) we have

)
Yo— ¢
X1 = V0———— 2.19
B Ty (2.19)
and
2 2
_ X —c
= S (2.20)

Hence, if xg = ¢, then from (2.20) we see that y; is not defined, whereas if 1o = ¢, then from
(2.19) we see that x; is not defined.

Corollary 2.4. The system (1.3) with c,d € C,1 = 0and k € N\ {1} is practically solvable.
Proof. Under these conditions, we have

y:—cd x2 —cd

= ———, n¢&Ny,

Xn+k = zyn_c—d’

which is a system with interlacing indices ([47]).
Let
x%) = Xmk+j, ]/1(14) = Ymk+jr
form € Ngand j =0,k — 1.
Then, (x%),y%))meNo, j =0,k —1, are k solutions to the system

y2, —cd x2, —cd

= , = 7 N.
Xm+1 2y —c—d Ym+1 2%, —Cc—d m € Mo

Note that it is the system (1.3) withk =1 and [ = 0.
Thus, if c = d, x(()]) #c # y(()]),j =0,k — 1, by Theorem 2.2 we get

(/)

xgr)lzc—i—xoélm_c,
()

; y) —c

xéjrf)1+1zc+ 20,4m ’
()

‘ —c

y§Z=C+y04m ,

(/)
G _ Xg —¢
Yomer =€+ 5. am
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for m € Ny, j = 0,k — 1, whereas if ¢ # d, then well-defined solutions to the system are
0\
xg —d .
o _° (xé”—c) !
x2m =
0\ 24"
yg —d _
0o (yé”c> !
(

2m+1 i 2.4m
() -
v e

X

i 2.4m
c (x(((’].))_d> —d

R J

7 _ X

Yom+1 =

formeIN,j=0k—1
Hence, if ¢ = d we have

x]‘—C

Xomk+j = €+ TR
Yyj—c¢

Xem+1)k+j = €T 5 gm7
yi—c¢

yka+j =c+ 4m 7
Xi—cC

j
Yom+1)k+j =€+ > am’

for m € Ny, j = 0,k — 1, whereas if ¢ # d we have

4m
x]'—d -
(i)
Xomk+j = N
i~ _
(=) -1
g 24
c (ff—) —d
_ yi—¢
X2m+1)k+j = y—d 2.4 7
(V/—C> -1
_d 4”1
c (?—c) —d
]
Yomk+j = T
j _
(=) -1
2.4m
x]-fd .
(=)
x]-—d 2.4
(xf—'f) -1

Yoem+1)k+j =

formeN,j=0k—1
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Theorem 2.5. The system (1.3) with c,d € C, | = 1 and k = 2 is practically solvable.

Proof. Suppose ¢ # d. From (2.3) we get that ({,)nen, and (#x)nen, are the solutions to

Wht4 = wn+2w%+1wn/ ne INO/ (221)
with the initial values

Co, C1, Co=mmno, (3= C10on1, (2.22)

o, M, M2=2018o, 13 =1l (2.23)

respectively.
Rewrite (2.21) as follows

4 by c1 dy
Wy = w, ,w,! w,! w5, 1=, (2.24)

where
a = 1, bl = 2, C1 = 1, dl :=0. (225)

Further, we have

2 a;, b c d
Wy = (Wy—4Wy;_swn—6)"w," W) 4wl o

_ b a1+c1, 201+dy , aq
=Wy 3Wy g Wy 5 Wy g

b d
= Wil a W@y s (226)
for n > 6, where a, := by, b, := a1 +¢1, ¢ :=2a; +d; and dy := a;.
A simple inductive argument shows that

Wn = wzkfkflwftkfkuW:lkfkakafk%’ (2.27)
forn > k+4, and
ag=br1, bi=a1+tc1, =21 +dr1, dp=ar (2.28)
for k > 2.
For k = n — 4 from (2.27) and (2.28), we get
Wy = WA Wt
= wy" twy" P w T W, (2.29)
for n > 6, whereas from (2.28), we get
Ag = (-2 + 2ax_3 + a4, (2.30)
fork > 5, and
=1 a=2 a3=2, a4=4 (2.31)

The polynomial

ga(A) = A= A2 20 —1=(A2 = A -1)(A2+ A +1), (2.32)
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is the characteristic one associated to (2.30), with the zeros

1+ -1+
Ma= LEYS g A, = 1EVE (2.33)
’ 2 ’ 2
Since
Ag—4 = A — Ak — 2053, (2.34)
by using (2.31) we can find a; for k <0, and get
a_4=a3=a,=0, a_1=1 and ay=0. (2.35)
Using [41, Lemma 1] we obtain
/\111+4 /\;—0—4 Ag+4 Az+4
a, = + + + , (2.36)
() gi(A2)  gi(As)  g(As)
forn € Z.
Since
Go(A) =423 =20 —2=2(2A° = A —1) =2(A = 1)(2A2 420 + 1),
we have
gy(\1) =5+3v5, g4(A) =5—3V5, (2.37)
gy(A3) =3—iV3, q4(As) =3+iV3. (2.38)
Using (2.37) and (2.38) in (2.36) imply
An+4 An+4 /\n+4 /\n+4
=t e e
5+3V5 5-3V5 3-iV3 3+iV3
)\n+2 _ AVH—Z AVH—Z _ AVH—Z
_M 2 73 4 (2.39)

2v/5 2iV/3
for n € Z. Employing this formula it is not difficult to check that (2.29) holds for all n € IN.
Relations (2.22) and (2.29) imply
én — ggn—zl égn—s gtlln—Z*lln—zL ggn—s

= (11Q0C1)™*(mmo) ™72~ "Ly °
— ggn—4+an—5Ctlln—zngn—syﬁn—ﬁ‘un—zl/ (240)

for n € INp, and due to the symmetry

My = ’767;174+ﬂn—517?n—2 ggn—s g‘lln—3+’1n—4, (241)

for n € Ny.
By some simple calculation and use of the Viete formulas we get

(M +DATT = Ao+ DAFT | (As+ DATT — (A + DATT
2/5 2iv/3

_ /\il+3 _ /\El+3 B )\§+3 _ AZ+3 (242)
2v/5 2iv3

ap +ay1 =
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forn € Z.
From (2.39)—-(2.42) we get

D R R e T A e Ve e Y U VR VY
Cn _ CO 25 2iV3 Cl 2\5 + 2iv/3 Mo 2V5 + 2iv/3 " 25 2iv3
4
D R e R I R e T e S e I
_ 26 23 25 + 2i\/3 25 + 2iv/3 25 2iv3
T =1 M Co Gy ’
for n € INp, from which together with (2.1) with n = 0,1, we get
A 1 /\n 1 Al 1 )\n 1 AN n _\n
1 _3 Mo 4
7, = <x0—d> 5 Ve (x1—d> NG +3 23
n = MR
Xg—C X1 —¢C
)\"7]7/\”7] Al 1 )\n 1 A1 AN
1 2 3 1% N
X(yo—d) PR (yl_d)zﬁ PTG (2.43)
—  — , .
Yo—c¢ Yy1—¢
/\nfli/\n—l /\n 17)\71 1 /\ _An A_\n
1 2 Mo A3y
iy = (JC()—d) 2.5 +-2 zlf (X1—d> 2v5 2iv/3
n= (= 7
Xg—C X1 —¢C
A 1 /\n] Al 1 )\n 1 A\ n_jn
1 A3 M A3y
0o—d 2 T2 1—d\ 35 T
y (5@44447) 7 W (gg;;;;ﬁ) R (2.44)
Yo—c¢ Yy1—¢
for n € INp.
Combining (2.4), (2.43) and (2.44), we have
B Y AR AR anmlpn-l -l yn-l AR AR
C(%} 25 21\/ (9;17*‘5) VR \f (]/0 d) ENCEE z;f (Zl;”cl) 25 2V3 —
0— 1= 1=
X =
" o B Y o MM ARl yod /\’17_1—A'27_1+/\§ 11 » AR-AR ARl
(ﬁ) 25 2iV3 (ﬁ) 25 2iV3 (ﬁ) 2V5 z,f (%) 25 23 — 1
“1_yn—1 “1_yn—1 —-1_,n-1 “1_,n-1
Jo—d AT A Ay .—/\Z y—d A =A% /\'31.7/\2 ro_d AT -Ay +/\§’ ‘7)\2 o AgtAgi/\gf/\Z
(y07c) 2/5 2i\/3 (F) zf 2i\/3 (ﬁ) 25 2i\/3 (m) 25 2ivV3  — (]
]/n = n—1_, n-1 n—1_, n-1 n—1_,n—1 n—1_,n—1 4
A1y A1) PUESY DY By A1y A1y MN=A3 AB-Al
yo—d L 2 g 2y 3‘\[ xg—d L \[2 423 ‘\[4 vy —d _ 3‘\[4
(yo—C) 25 2i\/3 (F) 2\/5 2i\/3 (xo—c) 2/5 2i\/3 (xl—c) 2\/ PV — |
for n € INy.

Now assume that ¢ = d. In this case, we have
Cnv2 = sl s Mns2 = Cng1 + Qo (2.45)
for n € Ny, implying that ({,)nen, and (171 )nenN, are the two solutions to the equation
Wyta — Wyt — 2Wp41 — wp =0, (2.46)
for n € Ny, with the initial values

Co, G1, Co=m+mno, G{3=m+0C+Co (247)

o, M, NW2=70+C, mn =704 +n1+n0, (2.48)

respectively (see (2.45)).
If we write equation (2.46) in the form

Wy = Wy—2 + 2wn73 +wy4+ 0- Wyn-5

= M Wp—2 + biwy—3 + crwy—4 + di1w, s,
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where a1, by, c1,d; are given in (2.25), then by a simple inductive argument we can prove that
Wy = AWy k-1 + by k2 + kW k3 + dkWy k4, (2.49)

for n > k + 4, where (ax)ken, (Uk)keN, (Ck)ken and (di ke, satisfy (2.28). Thus (2.39) holds.
For k = n — 4 we have

Wy = Ay—4w3 + Ay—3W2 + (An—2 — Ap—4)wW1 + an—500, (2.50)
for n > 6, from which along with (2.47), we get

Cn = ay—a(m + 01+ Qo) + an—3(m +no) + (an—2 — ay_4)01 + an—5Q0
= (ay—a+ay—5)00 + an—201 + an—3no + (an—3 + an_a)m1, (2.51)

for n € INg. Therefore
n = (Ap—a + an_5)10 + an—2t1 + an—300 + (an—3 + an—4)C1, (2.52)

for n € Ny.
Combining (2.39), (2.42), (2.51) and (2.52) it follows that

MO AT A e e AT A by ey
o 2v/5 2i\/3 2v/5 2iy/3 24/5 2iy/3 2v/5 2i\/3
Tn = + + + ,
Xp—¢C X1 —¢ Yo—¢C Yy —¢
i D Ve Vi S VD e VPV 0 S S/
_ 24/5 2i\/3 2v/5 2iy/3 24/5 2i\/3 2¢/5 2i\/3
M = + + + /
Yo—C y1—¢C Xg—C X1 —¢C
for n € Ny.
Thus
T T g e o g oy g
2v5 2iy/3 2V5 2iy/3 2V5 2iV3 2V5 2iy/3
C( Xp—¢C + X1—C + Yo—¢ + y1—c¢ ) + 1
Xy =
" e I Y A AR e N AL et ARAE ARl !
25 2i\/3 + 25 2i\/3 + 25 2i\/3 4 25 2i\/3
Xp—C X1—C Yo—¢ y1—¢
g g oy g gt g oy Mo
2vV5 2iV/3 2v5 2iV/3 2v5 2i/3 2vV5 2iV/3
C< Yo—C + y1—cC + Xg—C + xX1—cC ) +1
IETUNT T T gy o AT ag e ey
215 2i\/3 + 2V5 2i\/3 + 2v/5 2iv/3 + 2v/5 2i\/3
Yo—c¢ Yy1i—c¢ Xp—¢ X1—c¢
for n € Ny, where we have used the change of variables (2.7). O

Corollary 2.6. The system (1.3) with c,d € C, k = 25, = s, for some s € IN, is practically solvable.
Proof. Under these conditions we have

Yn+tsYn — cd Xn+sXn — cd

7 == 7 GN/
Ynss tm—c—d T v, —c—d 5

Xn42s =

which is a system with interlacing indices ([47]).

Let
(/)

’ ()
Xm :xms-i-j/ yré :yms+j/
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s — 1. Then, (X;Sq),y;(n))me]No/] - O §—
Xppin = Ym+1Ym — cd
m+ ym+1+ym—c—d’
Xa1Xm — cd
Yrio = m+14Am

7
X1+ Xm —C—d

for m € INy. Note that it is the system (1.3) withk =2 and [ = 1.
Thus, Theorem 2.5 can be applied, and if ¢ # d, we get

1, are s solutions to the system

) =
() g ML ARTLART Gy  MeA AReag gy APTIART ARTIagTh Gy A aea
c(2=%)" 2 s (B e T (o TeE T s (U T g
x(()])_c ng)_c yé” c ygl)_c
O, Mg g T g g gl T G Ty gy
("0_‘ G ("1,‘ ) 25 zi\/E(yU__ ) 2 23 (Vl;) 5 2 —1
x(()/)_c ng)_c y(()ﬂ c ygf)_c
(/)
Y =
() g ML ARl gy Ay apeay <0 Mg gl Gy Ay Ay
C(y(()‘) e 23 (yl(‘7 ) 25 ZI\F( ) 25 203 (x%,)f Y s T avs
v —c vy —c xoj —c x/ —c
g g M T )y AR gy < ALt ARl Gy e e
((())7) 25 2i\/3 ( },) ) 25 2;[( ) 25 21\/ ( 1(,) ) 25 2ivV3 — 11
v —c v —c xO —c xy)—c
for m € Ng and j = 0,5 — 1, whereas if ¢ = d, we get
apmlom=l melymel e pm gmoym melomel melmel o gmam o am
. C( P e e (Pl dh (N )*1
x(]) _ Yo —¢ o B Yo —¢ yi —¢
mo a1 =l m-1 gmme mym w1 meT gmel meT m g amym ¢
26 23 25 2i\/3 25 2iV/3 256 23
0 + ) + 0 + 0
x5 —¢ xy’ —c vy —¢ ¥y —c
pTlogl gl g agoag gl melomel o apog gy
e e i (I dh e [l I
(47 _ Yo —¢€ Yy —¢ xg —c¢ xy —c
Ym = /\1”71—/\5"71 )‘glil’/\grfil /\7]71,)\51 Agl,/\f‘n A;"il—)\glfl /\3m—17)‘2n—1 AT7A2m /\7371,)‘21 4
256 23 25 23 25 2i\/3 25 23
0 + 0 T 0 + 0
vy —¢ ¥y —c Xy —¢ xy’ —c
for m € Ng and j = 0,5 — 1, that is, if ¢ # d, we have
Xms+j =
AmfliAmfl Amfli)tmfl AM_p Mmoo Am_ym Amfli/\mfl Amfli)tmfl /\m Am A _p\m
_dM 2 M3 4 _ 2 M3 _a.h 2 3 4 _ St
(=) 2E e (S ThE T (U T aE s () TeE T 4
Xj—c Ys4j—C yji—¢ Ystj—¢
/\mfl_)\m—l Amfl_/\m—l AM Mmoo Am_ym Amfl_/\m—l Amfl_/\mfl AM_p\m ym_ym
_4.M 2 M3 4 g M AT 3 4 g M Ay
(A=~ R e i R TV Bl Y TV B - M SV R TV R |
xXj—c Xsj—¢ Yj—¢ Yst+j—¢
Yms+j =
i am—l_m=1 jm-1_,m—1 g M gy am=ljm=1 jm-1_jm-1 g Mg gy
(i] C) 25 23 (%) 25 2iv/3 (’;fic) 25 213 (%) 25 2V —(
i~ s+j T i~ s+j T
)meli/\m 1 )\m 1 Am 1 A _p\m )\ ,)Lm )melfAmfl )\m 1 )Lm 1 A mo am_ym
4N 2 PN ) aM 2 yerimd MM A3y
(y, ) 2 2z\f (ysﬂ ) 25 21[( ) 25 21f (L) 2V5 2vV3 — 1]
yjfc ys+]'7C ] —C XH,]‘*C
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for m € INg and j = 0,5 — 1, whereas if ¢ = d, we get

m—1_,m—1 m—1_,m—1 m_\m m_m m—=1_, m—1 m—=1_, ym—1 m_m m_\m
M oA A A M Ay Ay Mo MA AA
c 2V/5 2i\/3 + 2\/5 2i\/3 + 25 2i\/3 + 25 2i\/3 +1
Xj—c¢ Xs4j—C yj—¢ Ysj—¢
Xms+j =
m—1 m—1 m—1 m—1 m_\m m_m m—1_, ym—1 m—1_, ym—1 m_\m m_\m 4
D . A2 +A3 A A A7 +/\3 Ay APARE AR A
25 2iv/3 + 25 2i\/3 + 25 2i\/3 4 25 2i\/3
Xj—c¢ Xs4j—C yj—¢ Ysyj—¢
m—1_ ym—1 m—1_,m—1 m_m m_\m m—1_,ym—1 m—1_,m—1 m_\m m_m
AT-ART A Ay AJE-ARE AR A A7 +)\3 Ay AP AR AR A
c 25 2i\/3 + 2\/5 2i\/3 + 2V/5 2i\/3 + 2\/5 2i\/3 +1
yj—¢ Ys+j—C Xj—¢ Xsj—C
ym5+f = m—1_,m—1 m—1_, ym—1 m_m m_\m m—1_,ym—1 m—1_,m—1 m_\m m_m 4
s R AL AR AT AT -AT Ag Ay APADE AR A
25 2i\/3 + 25 2i\/3 4 25 2iv/3 + 25 2i\/3
yj—C ys+]'—C x]'—C .XH,I'—C
form € Npand j =0,5s — 1. O

Remark 2.7. Theorem 2.2, Corollary 2.4, Theorem 2.5 and Corollary 2.6, show the practical
solvability of system (1.3) in the following six cases: k =1,/ =0,k =2,1=0k=2,1=1;
k=3,1=0,k=4,1=0and k =4, = 2. Practical solvability of the system (1.3) in the cases:
k=31=1k=31=2k=41=1and k =4, ] = 3 is shown similarly, but with more
technical details.

Remark 2.8. Employing the formulas for the general solutions to system (1.3), one can describe
their well-defined solutions. The standard problem is left to the reader as an exercise.
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