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Abstract. In this paper, we study the quasilinear Schrödinger equations

−∆u + V(x)u + ∆(u2)u = f (x, u), ∀x ∈ RN ,

where V ∈ C(RN ; R) may change sign and f is only locally defined for |u| small. Under
some new assumptions on V and f , we show that the above equation has a sequence
of solutions converging to zero. Some recent results in the literature are generalized
and significantly improved and some examples are also given to illustrate our main
theoretical results.
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1 Introduction

The aim of this paper is to establish the existence of multiple small solutions for the following
quasilinear Schrödinger equations

−∆u + V(x)u + ∆(u2)u = f (x, u), ∀x ∈ RN , (QSE)

where V ∈ C(RN ; R) may change sign and f is only locally defined near the origin with
respect to u and satisfies some weak and general sublinear assumptions.

Quasilinear Schrödinger equations (QSE) are widely used in non-Newtonian fluids,
reaction-diffusion problems and other physical phenomena. More information on the physical
background of these equations can be found in [6].

In recent years, with the aid of variational methods, the existence, nonexistence and mul-
tiplicity results of various solutions for (QSE) have been extensively investigated in the litera-
ture see [1, 5, 8, 10, 13] and the references therein. Here we emphasize that in all these papers
V is a positive constant or possesses some kind of periodicity or radially symmetric, and the
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nonlinear term f (x, u) is always required to satisfied various growth conditions at infinity
with respect to u.

Recently, Chong et al. in [8] studied the equation (QSE) and proved the existence of mul-
tiple small solutions under the following conditions:

(C1) There exist δ > 0 and C > 0 such that f ∈ C(RN × [−δ, δ], RN), f is odd in x and

| f (x, u)| ≤ C|u|, uniformly in x ∈ RN ;

(C2) There exist x0 ∈ RN and r0 > 0 such that

lim inf
u→0

(
inf

x∈Br0 (x0)

F(x, u)
|u|2

)
> −∞

and

lim sup
u→0

(
inf

x∈Br0 (x0)

F(x, u)
|t|2

)
= +∞,

where
F(x, u) =

∫ u

0
f (x, s)ds.

(V) For all x ∈ RN , 0 < V(x).

Motivated by the work of Chong et al. [8] and the [17, Lemma 2.3], in [5] the authors replaced
the Condition (C2) by a weak condition and proved the existence of multiple small solutions.
Precisely, they supposed the following assumption:

(C′
2) There exist x0 ∈ RN, two sequences (δn), (Mn) and constants α, r0 > 0 such that

δn, Mn > 0 and
lim
n→∞

δn = 0, lim
n→∞

Mn = +∞,

F(x, u)
δn

2 ≥ Mn for |x − x0| ≤ r0 and |u| = δn,

F(x, u) ≥ −αu2 for |x − x0| ≤ r0 and |u| ≤ δ.

In the present paper, different from the references mentioned above, we are going to study
the existence of infinitely many solutions for (QSE) without any growth condition assumed
on f (x, u) at infinity with respect to u and the potential V ∈ C(RN ; R) may change sign. In
fact, we will only require that f (x, u) is locally defined for u small and satisfies some general
and weak sufficient sublinear condition in u and V is neither of constant sign nor periodic.
More precisely, we make the following assumptions:

(V0) There exists a constant a0 > 0 such that

V(x) + a0 ≥ 1, ∀x ∈ RN ,∫
RN

(V(x) + a0)
−1dx < ∞,

and
{

x ∈ RN/V(x) ≡ 0
}
⊃ B(0, 1), where B(0, 1) is the unit ball in RN .
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(F1) F ∈ C1(RN × (−δ, δ)) is even, and there exists a constant a1 > 0 such that

| f (x, u)| ≤ a1, ∀(x, u) ∈ RN × (−δ, δ),

where δ > 0.

For ρ > 0, x ∈ B(0, 1) satisfying B(x, ρ) ⊂ B(0, 1) and for u ∈ (0, δ), we define

F(x, u, ρ) := inf
{

F(y, u)
u2 ρ2 : y ∈ B(x, ρ)

}
, (1.1)

F(x, u, ρ) := inf
{

F(y, mu)
u2 ρ2 : y ∈ B(x, ρ), 0 ≤ m ≤ 1

}
. (1.2)

Substituting m = 0 into F(y,mu)
u2 ρ2, we see that F(x, u, ρ) ≤ 0. We assume:

(F2) There exists a positive integer k0 satisfying the following condition:
For each k ≥ k0, there exist µk ∈ (− δ

2 , 0) ∪ (0, δ
2 ), xk,i ∈ B(0, 1), with 1 ≤ i ≤ 2k and

ρk > 0 such that B(xk,i, ρk) ⊂ B(0, 1), B(xk,i, ρk) ∩ B(xk,j, ρk) = ∅ for i ̸= j and

min
1≤i≤2k

F(xk,i, µk, ρk) + (2N+1 − 1) min
1≤i≤2k

F(xk,i, µk, ρk) > 2N+2. (1.3)

In (1.3), N is the dimension of the domain RN .

Our main results reads as follows.

Theorem 1.1. Suppose that (V0) and (F1), (F2) are satisfied. Then, equation (QSE) possesses a
sequence of solutions {uk} such that uk(x) → 0 in L∞ as k → ∞.

Remark 1.2.

• We insist on the fact that in the hypotheses (F1)–(F2), the conditions on the nonlinearity
F(x, u) are supposed only near u = 0 and there are no conditions for large |u|. This is
essential and important. Indeed, this assumptions allows us to study equations having
singularity or supercritical terms as |u| → ∞.

• Under (F1)–(F2), F(x, u) can be subquadratic, superquadratic or asymptotically quadratic
at infinity. Our Theorem 1.1 is in some sense an improvement for some related results
in the existing literature.

• To the best of our knowledge, there is no result concerning the existence and multiplicity
of solutions for the equation (QSE) with the conditions.

Corollary 1.3. Suppose that (V0) and (F1) are satisfied and δ > 0 be as in (F1). We assume that
there exist sequences Mn → ∞ as n → ∞, un ∈ (− δ

2 , 0) ∪ (0, δ
2 ) and ρn > 0, vn ∈ B(0, 1) such that

B(vn, ρn) ⊂ B(0, 1) and a constant c ≥ 0, satisfy

F(x, un)ρ
2
n ≥ Mnu2

n, F(x, lun)ρ
2
n ≥ −cu2

n for x ∈ B(vn, ρn), 0 ≤ l ≤ 1. (1.4)

Then, equation (QSE) possesses a sequence of solutions {uk} such that uk(x) → 0 in L∞ as k → ∞.

Corollary 1.4. Suppose that (V0) and (F1) are satisfied and δ > 0 be as in (F1). We assume that there
exist sequences un ∈ (0, δ

2 ), ρn > 0 and vn ∈ B(0, 1) such that B(vn, ρn) ⊂ B(0, 1), and they satisfy

lim
n→∞

F(vn, un, ρn) = ∞, (1.5)

lim inf
n→∞

F(vn, un, ρn) > −∞. (1.6)

Then, equation (QSE) possesses a sequence of solutions {uk} such that uk(x) → 0 in L∞ as k → ∞.
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Corollary 1.5. Suppose that (V0), (F) and (F1) are satisfied. Then, equation (QSE) possesses a
sequence of solutions {uk} such that uk(x) → 0 in L∞ as k → ∞.

Corollary 1.6. Suppose that (V0), (F1) and

inf
x∈B(x0,r0)

u−2F(x, u) → ∞ as u → 0, (1.7)

are satisfied. Then, equation (QSE) possesses a sequence of solutions {uk} such that uk(x) → 0 in L∞

as k → ∞.

2 Preliminary results and variational setting

We employ an argument inspired by the work of Costa, Wang [11], the quasilinear problem
was can be established:

−div(h2(u)∇u) + h(u)h′(u)|∇u|2 + V(x)u = f (x, u), x ∈ RN , (2.1)

where h : [0,+∞) → R satisfying

h(t) =


√

1 − 2t2 if 0 ≤ t < 1√
6
,

1
6t +

1√
6

if t ≥ 1√
6
,

and h(t) = h(−t) for t < 0. It deduces that h ∈ C1(R, (
(

1√
6

)
, 1)) and is increasing in (−∞, 0)

and decreasing in [0,+∞). Then, we define

H(t) :=
∫ t

0
h(s)ds.

It is well known that H(t) is an odd function and inverse function H−1(t) exists. We now
summarize some properties of H−1(t) as follow.

Lemma 2.1 ([1]). We have:

1. |t| ≤ |H−1(t)| ≤
√

6|t| for all t ∈ R;

2. |H(t)| ≤ |t| for all t ∈ R;

3. − 1
2 ≤ t

h(t)h′(t) ≤ 0 for all t ≥ 0.

As in [11], in the present paper we are concerned to provide that the problem (2.1) has a
sequence of weak solution {un} satisfying ∥un∥L∞ < min{δ/2, 1√

6
}, in this situation

h(un) =
(

1 − 2|un|2
)1/2

.

In order to prove our main result via the critical point theory, we need to establish the
variational setting for (QSE). Before this, we have the following remark:
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Remark 2.2. Let V0(x) = V(x) + a0, F0(x, H−1(v)) = F(x, H−1(v)) + a0
2 (H−1(v))2 and

F0(x, u) :=
∫ u

0 f0(x, s)ds. Consider the following equation

−∆v + V0(x)
H−1(v)

h(H−1(v))
=

f0(x, H−1(v))
h(H−1(v))

, ∀x ∈ RN . (2.2)

Then, equation (2.2) is equivalent to equation (QSE). It is easy to check that the hypotheses
(V0) and (F1), (F2) still hold for V0 and F0 provided that those hold for V and F. Hence, in
what follows, we always assume without loss of generality that V(x) ≥ 1 for all x ∈ RN and∫

RN (V(x))−1dx < ∞.

In view of Remark 2.2, we consider the space E := {u ∈ H1(RN) |
∫

RN V(x)u2dx < ∞}
equipped with the following inner product

(u, v) :=
∫

RN
(∇u · ∇v + V(x)uv)dx.

Then E is a Hilbert space and we denote by ∥ · ∥ the associated norm. In what follows, E
becomes our working space. Moreover, we write E∗ for the topological dual of E, and ⟨·, ·⟩:
E∗ × E → R for the dual pairing. Evidently, E is continuously embedded into H1(RN). Using
the Sobolev embedding theorem, we immediately get the following lemma.

Lemma 2.3. If V satisfies (V0), then E is continuously embedded in L1.

Proof. By (V0) and Hölder inequality, we have for all u ∈ E∫
RN

|u| dx =
∫

RN

∣∣∣(V(x))
−1
2 (V(x))

1
2 u
∣∣∣ dx

≤
∫

RN
(V(x))

−1
2

∣∣∣(V(x))
1
2 u
∣∣∣ dx

≤
(∫

RN
(V(x))−1 dx

) 1
2
(∫

RN
V(x)u2dx

) 1
2

≤
(∫

RN
(V(x))−1 dx

) 1
2

∥u∥ .

(2.3)

Lemma 2.4. If V satisfies (V0) then E is compactly embedded into L1.

Proof. Let (un) ⊂ E be a bounded sequence such that un ⇀ u in E. We will show that un → u
in L1. By Hölder’s inequality, we have∫

RN
|un − u| dx

=
∫
|x|≤R

|un − u| dx +
∫
|x|>R

|un − u| dx

≤ ωRN
(∫

|x|≤R
|un − u|2 dx

) 1
2

+
∫
|x|>R

∣∣∣(V(x))
−1
2 (V(x))

1
2 (un − u)

∣∣∣ dx

≤ ωRN
(∫

|x|≤R
|un − u|2 dx

) 1
2

+
∫
|x|>R

(V(x))−
1
2

∣∣∣(V(x))
1
2 (un − u)

∣∣∣ dx

≤ ωRN
(∫

|x|≤R
|un − u|2 dx

) 1
2

+

(∫
|x|>R

(V(x))−1 dx
) 1

2
(∫

|x|>R
V(x)(un − u)2dx

) 1
2

≤ ωRN
(∫

|x|≤R
|un − u|2 dx

) 1
2

+

(∫
|x|>R

(V(x))−1 dx
) 1

2

∥un − u∥ ,

(2.4)
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where R > 0, ω the volume of the unit ball in RN . Then by (V0) and the Sobolev embedding
Theorem, for any ε > 0 there exits R0 > 0 such that for R > R0, we have∫

RN
|un − u| dx ≤ ε.

Lemma 2.5 ([2]). E is continuously embedded into Lp(RN) for all p ∈ [2, 6], and hence there exists
τp > 0 such that

∥v∥Lp(RN) ≤ τp∥u∥, ∀u ∈ E and p ∈ [2, 6]. (2.5)

3 Proofs of main results

In order to define the corresponding variational functional on our working space E, we need
modify f (x, u) for u outside a neighborhood of the origin to get a globally defined f̃ (x, u) as
follows: Choose a constant b ∈ (0, δ

2 ) and define a cut-off function χ ∈ C(R, R) satisfying

χ(t) :=

1 if − b ≤ t ≤ b

0 if t ≥ 2b
and, − 2

b
≤ χ′(t) < 0 for b < |t| < 2b. (3.1)

Let f̃ (x, u) := χ(u) f (t, u), for all (x, u) ∈ RN × R, and F̃(x, u) :=
∫ u

0 f̃ (x, s)ds, for all (x, u) ∈
RN × R. By (3.1) and assumption (F1) we have, for all (x, u) ∈ RN × R,∣∣∣F̃(x, u)

∣∣∣ ≤ a1 |u| and
∣∣∣ f̃ (x, u)

∣∣∣ ≤ a2, (3.2)

where a1 is the constant given in assumption (F1) and a2 is a positive constant.

Remark 3.1. As we have mentioned above, it is easy to verify that the equation (3.2) becomes∣∣∣F̃(x, H−1(v))
∣∣∣ ≤ a1

∣∣∣H−1(v)
∣∣∣ and

∣∣∣ f̃ (x, H−1(v))
∣∣∣ ≤ a2

∣∣∣h(H−1(v))
∣∣∣ . (3.3)

Now, we consider the following modified equation

−∆v + V(x)
H−1(v)

h(H−1(v))
=

f̃ (x, H−1(v))
h(H−1(v))

, ∀x ∈ RN . (Q̃SE)

To find the weak solutions of (Q̃SE) with desired properties, we focus on a Lagrangian func-
tional defined by

Φ(v) :=
1
2

∫
RN

(
|∇v|2 + V(x)|H−1(v)|2

)
dx − Ψ(H−1(v)), (3.4)

with the change of variable v = H(u) and Ψ(v) =
∫

RN F̃(x, H−1(v))dx.

Lemma 3.2. Suppose that conditions (V0) and (F1) are satisfied. If v ∈ E is a critical point of Φ, then
u = H−1(v) ∈ E and this u is a weak solution for (Q̃SE).

Proof. Since v ∈ E and by Lemma 2.1, we can conclude that u = H−1(v) ∈ E. Furthermore, v
is a critical point for Φ, it follows that

∫
RN

∇v∇φdx +
∫

RN
V(x)

H−1(v)
h(H−1(v))

φdx =
∫

RN

f̃ (x, H−1(v))
h(H−1(v))

φdx, for all φ ∈ E.
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If we take the function φ = h(u)ψ, where u = H−1(v) and ψ ∈ C∞
0 (RN), then we can obtain∫

RN
∇v∇uh′(u)ψdx +

∫
RN

∇v∇ψh(u)dx +
∫

RN
V(x)uψdx −

∫
RN

f̃ (x, u)ψdx = 0.

Then, we get∫
RN

(
− div(h2(u)∇u) + h(u)h′(u)|∇u|2 + V(x)u − f̃ (x, u)

)
ψdx = 0.

According to [8], we know that in order to find solutions of (Q̃SE) it suffices to obtain
the critical points of Φ. For this purpose we recall the following definitions and results (see
[14, 15]).

Definition 3.3 ([15]). Let E be a real Banach space and ϕ ∈ C1(E, R).

• ϕ is said to satisfy (PS) condition if any sequence (uk) ⊂ E for which (ϕ(uk)) is bounded
and ϕ′(uk) → 0 as k → +∞, possesses a convergent subsequence in E. Here ϕ′(u)
denotes the Fréchet derivative of ϕ(u).

• Set Γ := {A ⊂ E\ {0} : A is closed and symmetric with respect to the origin} . For A ∈
Γ, we say genus of A is n (denoted by σ(A) = n), if there is an odd mapping φ ∈
C(A, Rn\{0}), and n is the smallest integer with this property.

Theorem 3.4 ([14, Theorem 1]). Let ϕ be an even C1 functional on E with ϕ(0) = 0. Suppose that
ϕ satisfies the (PS) condition and

(1) ϕ is bounded from below.

(2) For each k ∈ N, there exists an Ak ∈ Γ such that supu∈Ak ϕ(u) < 0, where Γk = {A ∈ Γ :
σ(A) ≥ k}.

Then either (i) or (ii) below holds.

(i) There exists a critical point sequence (uk) such that ϕ(uk) < 0 and limk→∞ uk = 0.

(ii) There exist two critical point sequences (uk) and (vk) such that ϕ(uk) = 0, uk ̸= 0, limk→∞ uk =

0, ϕ(vk) < 0, limk→∞ ϕ(vk) = 0, and (vk) converges to a non-zero limit.

Lemma 3.5. Let (V0) and (F1) be satisfied. Then Ψ ∈ C1(E, R), and hence Φ ∈ C1(E, R). Moreover,

⟨Ψ′(v), φ⟩ =
∫

RN

f̃ (x, H−1(v))
h(H−1(v))

φ dx, (3.5)

and

⟨Φ′(v), φ⟩ =
∫

RN

(
∇v∇φ + V(x)

H−1(v)
h(H−1(v))

φ
)

dx − ⟨Ψ′(v), φ⟩,

=
∫

RN

(
∇v∇φ + V(x)

H−1(v)
h(H−1(v))

φ
)

dx −
∫

RN

f̃ (x, H−1(v))
h(H−1(v))

φ dx,

(3.6)

for all v, φ ∈ E, and nontrivial critical points of Φ on E are solutions of equation (Q̃SE).



8 S. Bridaa, A. B. Hassine and T. Talbi

Proof. First, we show that Φ and Ψ are both well defined. For any v ∈ E, by (2.3) and (3.2), we
have ∫

RN
|F̃(x, H−1(v))|dx ≤ a1

∫
RN

|H−1(v)| dx

≤ a1

∫
RN

|v| dx

≤ a1

(∫
RN

(V(x))−1dx
) 1

2

∥v∥.

This implies that Φ and Ψ are both well defined.
Next, we prove Ψ ∈ C1(E, R). For any given v ∈ E, define an associated linear operator

J(v) : E → R by

⟨J(v), φ⟩ =
∫

RN

f̃ (x, H−1(v))
h(H−1(v))

φ dx, ∀φ ∈ E.

By (2.3) and (3.2), there holds

|⟨J(v), φ⟩| =
∫

RN

∣∣∣∣∣ f̃ (x, H−1(v))
h(H−1(v))

∣∣∣∣∣ |φ| dx

≤ a2

∫
RN

|φ| dx

≤ a2

(∫
RN

(V(x))−1 dx
) 1

2

∥φ∥.

This implies that J(v) is well defined and bounded. Observing (2.3) and (3.2), for any v, φ ∈ E,
by the Mean Value Theorem and Lebesgue’s Dominated Convergence Theorem, we have

lim
s→0

Ψ(H−1(v) + sφ)− Ψ(H−1(v))
s

= lim
s→0

∫
RN

f̃ (x, H−1(v) + θ(x)sφ)

h(H−1(v) + θ(x)sφ)
φ dx

=
∫

RN

f̃ (x, H−1(v))
h(H−1(v))

φ dx

= ⟨J(v), φ⟩,

(3.7)

where θ(x) ∈ [0, 1] depends on v, φ, s. This implies that Ψ is Gâteaux differentiable on E and
the Gâteaux derivative of Ψ at v ∈ E is J(v). Now for any ϵ > 0, by (V0), there exists Rϵ > 0
such that (∫

|x|>Rϵ

(V(x))−1dx
) 1

2

<
ϵ

4a2
. (3.8)

For this end, we claim that if H−1(vn) ⇀ H−1(v) in E, then for any R > 0, f̃ (x,H−1(vn))
h(H−1(vn))

→
f̃ (x,H−1(v))
h(H−1(v)) in L2(BR), where BR denotes the ball in RN centered at 0 with radius R. Arguing

indirectly, by Lemma 2.5, we assume that there exist constants Rϵ, ϵ > 0 and a subsequence
{H−1(vnk)}k∈N such that

H−1(vnk) → H−1(v) in L2(BRϵ) and H−1(vnk) → H−1(v) a.e. in BRϵ as k → ∞, (3.9)

but using (F1), we have

∫
|x|≤Rϵ

∣∣∣∣∣ f̃ (x, H−1(vnk))

h(H−1(vnk))
− f̃ (x, H−1(v))

h(H−1(v))

∣∣∣∣∣
2

dx ≥ ϵ, ∀k ∈ N. (3.10)
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By (3.9), passing to a subsequence if necessary, we can assume that

∞

∑
k=1

∥H−1(vnk)− H−1(v)∥L2(BRϵ )
< +∞.

By virtue of (3.3), we get

∫
|x|≤Rϵ

∣∣∣∣∣ f̃ (x, H−1(vnk))

h(H−1(vnk))
− f̃ (x, H−1(v))

h(H−1(v))

∣∣∣∣∣
2

dx < +∞. (3.11)

For the Rϵ given above, combining (3.9), (3.11) and Lebesgue’s Dominated Convergence The-
orem, we have

lim
k→∞

∫
|x|≤Rϵ

∣∣∣∣∣ f̃ (x, H−1(vnk))

h(H−1(vnk))
− f̃ (x, H−1(v))

h(H−1(v))

∣∣∣∣∣
2

dx = 0,

which contradicts (3.10). Thus the claim is true. Consequently, there exists Nϵ ∈ N such that

∫
|x|≤Rϵ

∣∣∣∣∣ f̃ (x, H−1(vnk))

h(H−1(vnk))
− f̃ (x, H−1(v))

h(H−1(v))

∣∣∣∣∣
2

dx <
ϵ

2
, ∀n ≥ Nϵ. (3.12)

Combining (3.3), (3.8), (3.12) and the Hölder inequality, for each n ≥ Nϵ, we have

∥J(vn)− J(v)∥E∗ = sup
∥H−1(v)∥=1

|⟨J(vn)− J(v), φ⟩|

≤ sup
∥H−1(v)∥=1

∣∣∣∣∣
∫

RN

[
f̃ (x, H−1(vn))

h(H−1(vn))
− f̃ (x, H−1(v))

h(H−1(v))

]
φdx

∣∣∣∣∣
≤ sup

∥H−1(v)∥=1

∣∣∣∣∣
∫
|x|≤Rϵ

[
f̃ (x, H−1(vn))

h(H−1(vn))
− f̃ (x, H−1(v))

h(H−1(v))

]
φdx

∣∣∣∣∣
+ sup

∥H−1(v)∥=1

∣∣∣∣∣
∫
|x|>Rϵ

[
f̃ (x, H−1(vn))

h(H−1(vn))
− f̃ (x, H−1(v))

h(H−1(v))

]
φdx

∣∣∣∣∣
≤ sup

∥H−1(v)∥=1

∫
|x|≤Rϵ

∣∣∣∣∣ f̃ (x, H−1(vn))

h(H−1(vn))
− f̃ (x, H−1(v))

h(H−1(v))
dx

∣∣∣∣∣
2
 1

2(∫
|x|≤Rϵ

|φ|2 dx
) 1

2

+ 2a2 sup
∥H−1(v)∥=1

(∫
|x|>Rϵ

(V(x))−1dx
) 1

2
(∫

|x|>Rϵ

V(x)φ2dx
) 1

2

≤ ϵ

2
+

2a2ϵ

4a2
= ϵ.

This, means that J is continuous in u. Thus, Ψ ∈ C1(E, R) and (3.5) holds. Due to the form of
ϕ, we know that Φ ∈ C1(E, R) and (3.6) also holds.

Finally, a standard argument shows that nontrivial critical points of Φ on E are solutions
of (Q̃SE) (see, e.g., [8]). The proof is completed.

Lemma 3.6. Let (V0) and (F1) be satisfied. Then Φ is bounded from below and satisfies (PS) condition.
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Proof. We first prove that Φ is bounded from below. Combining (F1), (2.3), (3.2) and the
Hölder inequality, we have

Φ(v) ≥ 1
2
∥v∥2 − a1

∫
RN

|H−1(v)|dx

≥ 1
2
∥v∥2 − a1

(∫
RN

(V(x))−1dx
) 1

2

∥v∥, ∀v ∈ E,
(3.13)

where a2 is the constant given in (3.2). Then it follows that Φ is bounded from below.
Next, we show that Φ satisfies (PS)-condition.
Let {vn} ⊂ E be a (PS)-sequence, i.e.,

|Φ(vn)| ≤ D2 and Φ′(vn) → 0 as n → ∞ (3.14)

for some D2 > 0. By (3.13) and (3.14), we have

D2 ≥ 1
2
∥vn∥2 − a2

( ∫
RN

(V(x))−1dx
) 1

2

∥vn∥, ∀n ∈ N.

This implies that {vn} is bounded in E. Thus, there exists a subsequence {H−1(v)nk} such
that

H−1(vnk) ⇀ H−1(v0) as k → ∞ (3.15)

for some v0 ∈ E. By Lemma 2.4, it holds that

H−1(vnk) → H−1(v0) in L1 as k → ∞. (3.16)

This together with (3.3) yields

∣∣∣∣∣
∫

RN

[
f̃ (x, H−1(vnk))

h(H−1(vnk))
− f̃ (x, H−1(v0))

h(H−1(v0))

]
(H−1(vnk)− H−1(v0))dx

∣∣∣∣∣
≤ 2a2

∫
RN

|H−1(vnk)− H−1(v0)|dx → 0 as k → ∞. (3.17)

Noting that {ξn} is bounded in E, we infer from (3.14) and (3.15) that

⟨Φ′(ξnk)− Φ′(ξ0), H−1(ξnk)− H−1(ξ0)⟩ → 0 as k → ∞. (3.18)

Combining (3.6), (3.17) and (3.18), we have

∥H−1(ξnk)− H−1(ξ0)∥2

= ⟨Φ′(ξnk)− Φ′(ξ0), H−1(ξnk)− H−1(ξ0)⟩

+
∫

RN

(
f̃ (x, ξnk)

h(H−1(ξnk))
− f̃ (x, ξ0)

h(H−1(ξ0))

)
(H−1(ξnk)− H−1(ξ0))dx → 0 as k → ∞.

(3.19)

This means that H−1(ξnk) → H−1(ξ0) in E as k → ∞. Thus Φ satisfies (PS)-condition.

We introduce a closed symmetric set Vk as below:

Vk ≡ {(l1, l2, . . . , l2k) ∈ R2k; |li| ≤ 1 for all i, card{i : |li| = 1} ≥ k}. (3.20)
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Lemma 3.7 ([15, Lemma 4.5]). Vk has the genus of k + 1.

Lemma 3.8. Let (V0), (F1) and (F2) be satisfied. Then for each k ∈ N, there exists an Ak ⊆ E with
genus σ(Ak) = k + 1 such that supu∈Ak

Φ(v) < 0.

Proof. Let µk, xk,i and ρk with k ≥ k0 be given in assumption (F2). Since Γk ⊂ Γk−1 by definition,
it is enough to construct an Ak ∈ Γk for k ≥ k0 such that supu∈Ak

Φ(u) < 0. Fix k ≥ k0. Instead
of µk, xk,i and ρk we write µ, xi and ρ for simplicity. Using F and F given by (1.1) and (1.2)
respectively, we define

Fi := F(xi, µ, ρ), Fi := F(xi, µ, ρ), 1 ≤ i ≤ 2k.

It follows from (1.1) and (1.2) and for x ∈ B(xi, ρ), that

F(x, µ) ≥ 1
ρ2 Fi(H−1(µ))2 ≥ 1

ρ2 Fiµ
2, (3.21)

F(x, l(µ)) ≥ 1
ρ2 Fi(H−1(µ))2 ≥ 1

ρ2 Fiµ
2, |l| ≤ 1. (3.22)

We define a function φ(t) on R by φ(t) = 1 for |t| ≤ 1/2, φ(t) = 2(1 − |t|) for 1/2 ≤ |t| ≤ 1,
φ(t) = 0 for |t| ≥ 1. Put φi(x) = φ(|x − xi|/ρ) for x ∈ RN . Then φi ∈ W1,∞(RN). Define
Bi := B(xi, ρ) and Di := B(xi, ρ/2). Then 0 ≤ φi(x) ≤ 1 in RN , φi(x) = 0 for x ∈ RN\Bi and

φi(x) = 1 for x ∈ Di, |∇φi(x)| ≤ 2
ρ

for x ∈ RN . (3.23)

Let Vk be given by (3.20). We define

Ak :=

{
µ

2k

∑
i=1

li φi(x) : (l1, . . . , l2k) ∈ Vk

}
.

Since all the supports of φi (1 ≤ i ≤ 2k) are disjoint, they are linearly independent. De-
fine g(l1, . . . ., l2k) := µ ∑2k

i=1 li φi(x). Then g is a mapping from Vk onto Ak and it is an odd
homeomorphism. By Lemma 3.7, the genus of Vk is k + 1 and so is Ak. Thus Ak ∈ Γk.

We shall show that supAk
Φ(v) < 0. Fix (l1, . . . , l2k) ∈ Vk arbitrary. Let v := µ ∑2k

i=1 li φi(x) ∈
Ak and µ ∈ (0, 1

2
√

6
δ) be arbitrary. Since the support of φi is Bi and Bi ∩ Bj = ∅ for i ̸= j, we

have

Φ(v) =
1
2

∫
RN

(|∇v|2 + V0(x)(H−1(v))2)dx −
∫

RN
F̃0(x, H−1(v))dx

=
1
2

∫
RN

(|∇v|2 + V(x)(H−1(v))2)dx −
∫

RN
F̃(x, H−1(v))dx

=
2k

∑
i=1

∫
Bi

1
2

µ2|li|2|∇φi|2dx −
2k

∑
i=1

∫
Bi

F(x, H−1(µli φi))dx.

By the assumption (V0) and (3.23), we have

Φ(v) ≤ 4kωµ2ρN−2 −
2k

∑
i=1

∫
Bi

F(x, H−1(µli φi))dx. (3.24)
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To estimate the second term, we define

Λ1 := {i ∈ {1, . . . , 2k} : |li| = 1},

Λ2 := {i ∈ {1, . . . , 2k} : |li| < 1}.

By the definition of Vk, the cardinal number of Λ1 greater than or equal to k. We compute
the integral of F on Bi for i ∈ Λ1, and for i ∈ Λ2, separately. Recall that F(x, v) is even with
respect to v and φi(x) = 1 on Di. Clearly, the volume of Di is 2−NωρN . By (3.21) and (3.22),
we obtain, for i ∈ Λ1,∫

Bi

F(x, H−1(µli φi))dx =
∫

Di

F(x, H−1(µ))dx +
∫

Bi\Di

F(x, H−1(µli φi))dx

≥ 2−Nωµ2ρN−2Fi + (1 − 2−N)ωµ2ρN−2Fi.
(3.25)

We define
α := min

1≤i≤2k
Fi, β := min

1≤i≤2k
Fi.

As stated after (1.2), it holds that Fi ≤ 0, and hence β ≤ 0. We rewrite (1.3) as

α + (2N+1 − 1)β > 2N+2. (3.26)

We reduce (3.25) to ∫
Bi

F(x, µli φi)dx ≥
[

2−Nα + (1 − 2−N)β

]
ωµ2ρN−2.

The right hand side is positive because of (3.26) with β ≤ 0. Recall that the cardinal number of
Λ1 is greather than ou equal to k. Summing up both sides of the inequality above over i ∈ Λ1,
we obtain

∑
i∈Λ1

∫
Bi

F(x, µli φi)dx ≥
[

2−Nα + (1 − 2−N)β

]
kωµ2ρN−2. (3.27)

Next, by (3.22), for i ∈ Λ2, we have∫
Bi

F(x, µli φi)dx ≥ ωµ2ρN−2Fi ≥ βωµ2ρN−2. (3.28)

Recall that the cardinal number of Λ2 is less than or equal to k. Summing up both sides
over i ∈ Λ2 and using β ≤ 0, we find

∑
i∈Λ2

∫
Bi

F(x, µli φi)dx ≥ kβωµ2ρN−2. (3.29)

The set Λ2 may be empty. In this case, we consider the left hand side to be zero. Then the
inequality above is still valid because β ≤ 0. Substituting (3.27) and (3.29) into (3.24) and using
(3.26), we obtain

Φ(v) ≤ −
[

α(2N+1 − 1) + β − 2N+2
]

kωµ2ρN−2 < 0,

which implies that supv∈Ak
Φ(v) < 0.

In order to prove our main results, we further need the following lemma.

Lemma 3.9. If {vk} is a critical point sequence of Φ satisfying vk → 0 in E as k → ∞, then vk → 0
in L∞(RN) as k → ∞.
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Proof. Let v ∈ E be a weak solution of (Q̃SE), i.e.,∫
RN

∇v∇φdx +
∫

RN
V(x)

H−1(v)
h(H−1(v))

φdx (3.30)

−
∫

RN

f̃ (x, H−1(v))
h(H−1(v))

φdx for all φ ∈ C∞
0 (RN).

Set T > 0, and denote

vT :=


−T, if v ≤ T,

v, if − T < v < T,

T, if v ≥ T.

(3.31)

Taking φ = |vT|2(η−1)vT as the text function, where η > 1 to be determined later, we obtain∫
RN

|vT|2(η−1)∇v∇vTdx + 2(η − 1)
∫

RN
|vT|2(η−1)−1∇v∇vTdx

+
∫

RN
V(x)

H−1(v)
h(H−1(v))

|vT|2(η−1)vTdx

=
∫

RN

f̃ (x, H−1(v))
h(H−1(v))

|vT|2(η−1)vTdx.

(3.32)

By using the facts

(η − 1)
∫

RN
|vT|2(η−1)−1∇v∇vTdx ≥ 0,∫

RN
V(x)

H−1(v)
h(H−1(v))

|vT|2(η−1)vTdx ≥ 0

and Lemma 2.1, we have

1
η2

∫
RN

|∇|vT|η |2dx ≤
∫

RN

f̃ (x, H−1(v))
h(H−1(v))

|vT|2η−1dx ≤ a2

∫
RN

|v|2η−1dx. (3.33)

On the other hand, it follows from the Sobolev inequality that

S
η2 ∥vT∥2η

2∗η ≤ 1
η2

∫
RN

|∇|vT|η |2dx, (3.34)

where S = inf{
∫

RN |∇v|2dx \
∫

RN |v|2∗dx = 1} and 2∗ = 2N/(N − 2). In what follows, by
(3.33) and (3.34), we get

1
η2 ∥vT∥2η

2∗η ≤ a2

∫
RN

|v|2η−1dx. (3.35)

From Fatou’s lemma, sending T → ∞ in (3.35), it follows that

∥v∥2∗η ≤ (cη)1/η∥v∥(2η−1)/2η
2η−1 . (3.36)

Let us define ηk := 2∗ηk−1
2 , where k = 1, 2, . . . . and η0 = 2∗−1

2 . Next, we present the first step
of Moser’s iteration, which is shown below:

∥v∥η12∗ ≤ (Cη1)
1/η1∥v∥(2η1−1)/2η1

2η1−1 (3.37)

≤ (Cη1)
1/η1(Cη0)

1/η0(2η1−1)/2η1∥v∥(2η0−1)/2η0(2η1−1)/2η1
2η0−1 . (3.38)



14 S. Bridaa, A. B. Hassine and T. Talbi

We can assume, without loss of generality, that C > 1. Moreover, for any i < j, we we have
the inequality given by equation

(Cηi)
(2ηj−1)/2ηj ≤ Cηj. (3.39)

Using equations (3.37) and (3.39), we obtain the inequality

∥v∥η12∗ ≤ (Cη1)
1/η1(Cη0)

1/η0∥v∥(2η0−1)/pη0(2η1−1)/2η1
2η1−1 .

Applying Moser’s iteration method, we can now derive the following result.

∥v∥2ηk+1−1 ≤ exp
( k

∑
i=0

ln(Cηi)

ηi

)
∥v∥µk

2∗ ,

where µk = Πk
i=0

2ηi−1
2ηi

. Taking the limit as k → ∞, we obtain the following result.

∥v∥∞ ≤ exp
( k

∑
i=0

ln(Cηi)

ηi

)
∥v∥µ

2∗ ,

where µ = Πk
i=0

2ηi−1
2ηi

(0 < µ < 1) and exp
(

∑k
i=0

ln(Cηi)
ηi

)
is a positive constant. This, together

with the Sobolev embedding theorem, we can conclude that if vk is a sequence of critical
points of Φ such that vk → 0 strongly in E as k → ∞, then vk converges strongly to zero in
L∞(RN).

Now we are in the position to give the proofs of our main results.

4 Proofs of Theorem 1.1 and Corollaries 1.3–1.6

The aim of this section is to establish the proofs of Theorem 1.1 and Corollaries 1.3–1.6.

4.1 Proof of Theorem 1.1

Lemmas 3.6, 3.7 and 3.8 shows that the functional Φ satisfies conditions (1) and (2) in The-
orem 3.4. Therefore, there exist a sequence of nontrivial critical points (uk) of Φ such that
Φ(uk) ≤ 0 for all k ∈ N and uk → 0 in E as k → ∞. By virtue of Lemma 3.5, {uk} is a
sequence of solutions of (Q̃SE) with uk → 0 in E as k → ∞. Hence, there exists k0 ∈ N such
that uk is a solution of (QSE) for each k ≥ k0.

4.2 Proof of Corollary 1.3 and 1.4

It is enough to show that (1.5) and (1.6) ⇒ (1.4) ⇒ (1.3). Impose (1.5) and (1.6). Then we
shall construct µk, xk,i and ρk satisfying (1.3). Fix k arbitrarily. Let Cn be the inscribed cube
in B(vn, ρn). Then its edge has the length of 2ρn/

√
N. Let q be the smallest positive integer

satisfying qN ≥ 2k. We divide the cube Cn equally into qN small cubes by planes parallel to
each face of Cn and denote them by Cn,i with 1 ≤ i ≤ qN . More precisely, denote Cn by

Cn := [0, a]× · · · × [0, a] with a := 2ρn/
√

N.

Put Ij := [a(j − 1)/q, aj/q] with 1 ≤ j ≤ q and define

I(j1, . . . , jN) := Ij1 × · · · × IjN with 1 ≤ j1, . . . , jN ≤ q.
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This, is a cube in RN and Cn is the union of all these cubes. We rename all I(j1, . . . , jN) to Cn,i
with 1 ≤ i ≤ qN . Then the edge of each Cn,i has the length of 2ρn/q

√
N. Denote the inscribed

ball in Cn,i by B(xn,i, rn). Then rn = ρ/q
√

N. Since qN ≥ 2k, xn,i is defined for all 1 ≤ i ≤ 2k.
We shall show that assumption (F2) is fulfilled with µk, xk,i and ρk replaced by un, xn,i

and rn, respectively, if n is large enough. It is clear that B(xn,i, rn) ⊂ B(0, 1) and B(xn,i, rn) ∩
B(xn,j, rn) = ∅ when i ̸= j. Define Mn := F(vn, un, ρn), which implies that

F(x, un)

u2
n

ρ2
n ≥ Mn for x ∈ B(vn, ρn).

By (1.6), there exists a c ≥ 0 such that

F(x, lun)

u2
n

ρ2
n ≥ −c for x ∈ B(vn, ρn), 0 ≤ l ≤ 1.

Then we obtain (1.4). On the other hand, substituting ρn = q
√

N rn in the two inequalities
above, we have

NF(x, un)

u2
n

q2r2
n ≥ Mn,

NF(x, lun)

u2
n

q2r2
n ≥ −c,

for x ∈ B(vn, ρn) and 0 ≤ l ≤ 1. Since B(xn,i, rn) ⊂ B(vn, ρn), the inequalities above are valid
for x ∈ B(xn,i, rn) also. Taking the infimum on B(xn,i, rn), we have

F(xn,i, un, rn) ≥
Mn

Nq2 , F(xn,i, un, rn) ≥ − c
Nq2 .

Then we get

min
1≤i≤2k

F(xn,i, un, rn) + (2N+1 − 1) min
1≤i≤2k

F(xn,i, un, rn) ≥
1

Nq2

(
Mn − (2N+1 − 1)c

)
.

Since limn→∞ Mn = ∞ by (1.5), the right hand side is larger than 2N+2 for n large enough.

4.3 Proof of Corollary 1.5

To prove this corollary, it is enough to show that the assumption (F) implies (1.5) and (1.6).
By (F) there exists a sequence un converging to zero such that

inf
x∈B(x0,r0)

u−2
n F(x, un) → ∞ as n → ∞.

Put B(xn, rn) := B(x0, r0) for all n. Then the above inequality shows (1.5). Also, by (F), there
exists a constant c ≥ 0 such that

inf
x∈B(x0,r0)

u−2F(x, u) ≥ −c for 0 < |u| ≤ 1.

Putting u := lun, we find

inf
x∈B(x0,r0)

(lun)
−2F(x, lun) ≥ −c for all large n and 0 < l ≤ 1,

which leads to
inf

x∈B(x0,r0)
u−2

n F(x, lun) ≥ −cl2 ≥ −c.

Therefore (1.6) holds.
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4.4 Proof of Corollary 1.6

We observe that (1.7) implies (F). Therefore, Corollary 1.5 yields Corollary 1.6.

5 Example

For the reader’s convenience, we present one example to illustrate our main results.
Let

V(x) =



0 if |x| ≤ p,

(p2 + 1)2(|x| − p), if p ≤ |x| < p + 1
p2+1 ,

p2 + 1, if p + 1
p2+1 ≤ |x| < p + p2

p2+1 ,

(p2 + 1)2(p + 1 − |x|), if p + p2

p2+1 ≤ |x| < p + 1,

and

F(x, u) =
a
s
|u|s − d(x)

r
|u|r, (5.1)

where p ∈ N∗, and s, r, a are constants satisfying 1 < r < 2, 1 < s < 2
3 (r + 1), a > 0 and

d(x) := inf{|x − y| : y ∈ ∂B(0, 1)}.

Then V is neither of constant sign nor periodic. Moreover, we have

inf
x∈B(x0,r0)

F(x, u)
u2 =

a
s
|u|−(2−s) − D

r
|u|−(2−r) → −∞ as u → 0,

for any B(x0, r0) ⊂ B(0, 1), where D := max|x−x0|≤r0
d(x) > 0. Which implies that the assump-

tion (C2) and (C′
2) are not satisfied. Now, we show that V and F match Theorem 1.1. Indeed,

it is clear that V(x) and F(x, u) satisfy (V0) and (F1) respectively. It remains to check that
F(x, u) satisfies (F2). For this purpose we assume that there exists a δ > 0 such that for each
k ∈ N, there exist points ξi ∈ ∂B(0, 1) with 1 ≤ i ≤ 2k which satisfy |ξi − ξ j| ≥ 4δ/k for
i ̸= j, and δ is independent of k. Indeed, for example, choose a smooth curve on ∂B(0, 1)
such that g : [0, 1] → ∂B(0, 1) is a C1-diffeomorphism from [0, 1] onto g([0, 1]). Since g−1 is
Lipschitz continuous, there exists a c0 > 0 such that |g(t)− g(s)| ≥ c0|t − s| for t, s ∈ [0, 1].
Put ξi := g(i/2k) with 1 ≤ i ≤ 2k. Then we have for i ̸= j,

|ξi − ξ j| = |g(i/2k)− g(j/2k)| ≥ c0|(i − j)/2k| ≥ c0/2k.

Define δ := c0/8. Then |ξi − ξ j| ≥ 4δ/k for i ̸= j and δ is independent of k.
Put ρk := δ/k. For each 1 ≤ i ≤ 2k, there exists a unique point xi ∈ B(0, 1) such that

B(xi, ρk) ⊂ B(0, 1) and ∂B(xi, ρk) ∩ ∂B(0, 1) = {ξi}, after replacing δ by a small constant if
necessary. Since |ξi − ξ j| ≥ 4δ/k for i ̸= j, B(xi, ρk) ∩ B(xj, ρk) = ∅ for i ̸= j. Since d(x) ≤ 2ρk
in B(xi, ρk), we have

F(x, u) ≥ a
s
|u|s − 2

r
|u|rρk for x ∈ B(xi, ρk). (5.2)

Define θ as follows
2

2 − s
< θ <

s
2(s − r)

+ 1 when s > r, (5.3)
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2
2 − s

< θ when s ≤ r. (5.4)

It follows from (5.3) and (5.4) and 1 < s < 2(r + 1)/3 that

−(2 − s)θ + 2 < 0, −(2 − s)θ + 2 < −(2 − r)θ + 3. (5.5)

We define µk := ρθ
k . Let us compute F defined by (1.1). Using (5.2), we have

F(xi, µk, ρk) ≥
a
s

ρ
−(2−s)θ+2
k − 2

r
ρ
−(2−r)θ+3
k → ∞, (5.6)

as k → ∞ by (5.5). Using (5.2) and µk := ρθ
k , we compute

F(x, mµk)

µ2
k

ρ2
k ≥

ams

s
ρ
−(2−s)θ+2
k − 2mr

r
ρ−(2−r)θ+3, (5.7)

for x ∈ B(xi, ρk) and 0 ≤ m ≤ 1. We put

αk := aρ
−(2−s)θ+2
k , βk := 2ρ

−(2−r)θ+3
k

and denote the right hand side of (5.7) by

gk(m) :=
αk

s
ms − βk

r
mr for m ∈ [0, 1].

We shall show that gk(m) is bounded from below by a constant independent of k and m ∈ [0, 1].
By (5.6), gk(1) > 0 for k ≥ k0 with a large k0. We divide the proof into two cases.

• s > r. Then gk(m) achieves a negative minimum in [0, 1], which is computed as

min
0≤m≤1

gk(m) = − s − r
sr

α
− r

s−r
k β

s
s−r
k = − s − r

sr
2

s
s−r a−

r
s−r ρν

k ,

where

ν =
1

s − r

(
− 2(s − r)θ + 3s − 2r

)
.

Then ν > 0 because of (5.3). Thus, the minimum of gk converges to zero as k → ∞.

• s ≤ r. Since ms ≥ mr, we have gk(m) ≥
(
(αk/s) − (βk/r)

)
ms ≥ 0 for k ≥ k0 and

m ∈ [0, 1].

By Cases 1 and 2, we have the inequality gk(m) ≥ −c with some c ≥ 0 independent of k and
m ∈ [0, 1], which shows that F(xi, µk, ρk) ≥ −c for all 1 ≤ i ≤ 2k and k ∈ N. This estimate
with (5.6) shows (1.3) for all large k.
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