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Abstract. The authors consider the general third order functional differential equation(
a2(ν)

[(
a1(ν)

(
x′(ν)

)α1
)′]α2

)′
+ q(ν)xβ(τ(ν)) = 0, ν ≥ ν0,

and obtain sufficient conditions for the oscillation of all solutions. It is important to
note that αi for i = 1, 2, and β are somewhat independent of each other. The results
obtained are illustrated with examples.
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1 Introduction

The primary objective of this work is to study the oscillatory behavior of solutions of the
nonlinear third order differential equation(

a2(ν)

[(
a1(ν)

(
x′(ν)

)α1
)′]α2

)′
+ q(ν)xβ(τ(ν)) = 0, ν ≥ ν0, (1.1)

where αi, i = 1, 2, and β are quotients of odd positive integers. A solution x of (1.1) is a
continuous function on [Tx, ∞), Tx ≥ ν0 that satisfies (1.1) on [Tx, ∞). We consider only those
solutions x(ν) of (1.1) that are continuable, i.e., they satisfy sup{|x(ν)| : ν ≥ T} > 0 for all
T > Tx ≥ ν0. Such a solution is said to be oscillatory if it is neither eventually positive nor
eventually negative, and to be nonoscillatory otherwise.

Throughout, we always assume that
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(A1) ai(ν), q(ν) ∈ C ([ν0, ∞), R+) for i = 1, 2, with q(ν) ̸≡ 0 and∫ ∞

ν0

a
− 1

α1
1 (s)ds = ∞ =

∫ ∞

ν0

a
− 1

α2
2 (s)ds; (1.2)

(A2) τ ∈ C1 ([ν0, ∞), R) with τ(ν) ≤ ν, τ′(ν) ≥ 0, and limν→∞ τ(ν) = ∞.

As equation (1.1) is regarded as a useful instrument for simulating processes in various fields
of applied mathematics, physics, and chemistry (see the monographs [6,22,24]), it is important
to analyze the qualitative properties of equation (1.1). For several years now, there has been
a growing interest in the asymptotic behavior of solutions of various forms of linear and
nonlinear third order differential equations and their applications; see, e.g., [1–5, 7–16, 18, 21]
and the references therein.

In particular, Baculíková and Džurina [4] considered the third-order nonlinear delay dif-
ferential equation of the form(

a1(ν)
[
x′′(ν)

]α1
)′

+ q(ν)xβ(τ(ν)) = 0. (1.3)

They used a comparison theorem with appropriate lower-order equations to derive sufficient
condition for the asymptotic and oscillatory behaviour of Eq. (1.3). This work allows us to
note the following:

(1) Eq. (1.3) is a particular case of Eq. (1.1);

(2) There is no general rule to choose the function ξ(ν) that plays a very important role in
deriving the oscillation of Eq. (1.1).

Chatzarakis et al. [9] considered the third-order linear differential equation of the form(
a2(ν)

[(
a1(ν)

(
x′(ν)

))′])′
+ q(ν)x(τ(ν)) = 0, (1.4)

and using the integral technique, comparison method, and Gronwall inequality, they im-
proved the results reported in [4] by relaxing the above mentioned second observation. In-
spired by the papers referenced here, we wish to the study of the general equation (1.1) and
derive some easily verifiable sufficient conditions for the oscillation of all it solutions.

2 Basic lemmas

In view of (1.2), we introduce the following notation:

A(ν, ν0) =
∫ ν

ν0

a
− 1

α2
2 (s)ds and A∗(ν, ν0) =

∫ ν

ν0

(
A(s, ν0)

a1(s)

) 1
α1

ds.

Setting G1(x(ν)) = (x′(ν))α1 and G2(x(ν)) =
[
(a1(ν)G1(x(ν)))′

]α2 , we can write equation
(1.1) as the equivalent equation

(a2(ν)G2(x(ν)))′ + q(ν)xβ(τ(ν)) = 0 for ν ≥ ν0. (2.1)

To obtain our main results, we will utilize the following lemmas, the first of which is well
known.
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Lemma 2.1. Let (A1) and (A2) hold. If x is an eventually positive solution of (1.1) for ν ≥ ν0, then
there exists ν1 > ν0 such that either

(I) G1(x(ν)) ≥ 0 and G2(x(ν)) ≥ 0, or (II) G1(x(ν)) ≤ 0 and G2(x(ν)) ≥ 0

for ν ≥ ν1.

Lemma 2.2. Let (A1) and (A2) hold. If x is a positive solution of (1.1) such that Case I of Lemma 2.1
holds for ν ≥ ν1, then

x(ν) ≥ A∗(ν, ν1)
(
(a2(ν)G2(x(ν)))

1
α1α2

)
(2.2)

for ν ≥ ν2 > ν1.

Proof. Let x be a nonoscillatory solution of Eq. (1.1) such that x(ν) > 0, x(τ(ν)) > 0, and
which satisfies Case I of Lemma 2.1 for ν ≥ ν1 for some ν1 > ν0. Then,

a1(ν)G1(x(ν)) ≥
∫ ν

ν1

(a1(s)G1(x(s)))′ ds =
∫ ν

ν1

a
1

α2
2 (s)G

1
α2
2 (x(s))

a
1

α2
2 (s)

ds,

that is,

a1(ν)(x′(ν))α1 ≥ A(ν, ν1)a
1

α2
2 (ν)G

1
α2
2 (x(ν)),

so

x′(ν) ≥
(

A(ν, ν1)

a1(ν)

) 1
α1
(a2(ν)G2(x(ν)))

1
α1α2 . (2.3)

Integrating from ν1 to ν gives

x(ν) ≥ (a2(ν)G2(x(ν)))
1

α1α2

∫ ν

ν1

(
A(s, ν1)

a1(s)

) 1
α1

ds = A∗(ν, ν1)
(
(a2(ν)G2(x(ν)))

1
α1α2

)
,

which completes the proof.

For convenience, we let

B(ν, s) =
(

A(ν, s)
a1(s)

) 1
α1

and
Â∗(ν, τ(ν)) =

∫ ν

τ(ν)
B(ν, s)ds.

Lemma 2.3. Let (A1) and (A2) hold. If x is a positive solution of (1.1) such that Case II of Lemma 2.1
holds for ν ≥ ν1, then

x(τ(ν)) ≥ Â∗(ν, τ(ν))

(
a2(ν)G2(x(ν))

) 1
α1α2

(2.4)

for ν ≥ ν2 > ν1.

Proof. Let x be a nonoscillatory solution of Eq. (1.1) such that x(ν) > 0, x(τ(ν)) > 0, and
Case II of Lemma 2.1 is satisfied for ν ≥ ν1 for some ν1 > ν0. For ν ≥ s > ν1, we have

a1(ν)G1(x(ν))− a1(s)G1(x(s)) =
∫ ν

s
(a1(u)G1(x(u)))′ du =

∫ ν

s

a
1

α2
2 (u)G

1
α2
2 (x(u))

a
1

α2
2 (s)

du.
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That is,

−a1(s)(x′(s))α1 ≥ A(ν, s)a
1

α2
2 (ν)G

1
α2
2 (x(ν)),

so

−x′(s) ≥
(

A(ν, s)
a1(ν)

) 1
α1
(a2(ν)G2(x(ν)))

1
α1α2 ≥ B(ν, s) (a2(ν)G2(x(ν)))

1
α1α2 . (2.5)

Integrating from τ(ν) to ν, we obtain

−x(ν) + x(τ(ν)) ≥
(

a2(ν)G2(x(ν))
) 1

α1α2
∫ ν

τ(ν)
B(ν, s)ds,

or

x(τ(ν)) ≥ Â∗(ν, τ(ν))

(
a2(ν)G2(x(ν))

) 1
α1α2

.

This proves the lemma.

Remark 2.4. In view of Lemma 2.3, from (1.1) and (2.4), we see that

− (a2(ν)G2(x(ν)))′ = q(ν)xβ(τ(ν)) ≥ q(ν)
(

Â∗(ν, τ(ν))
)β
(

a2(ν)G2(x(ν))
) β

α1α2
.

Integrating this inequality from τ(ν) to ν, we have

lim sup
ν→∞

∫ ν

τ(ν)
q(u)

(
Â∗(u, τ(u))

)β
du > 1

in the case where β
α1α2

= 1.

We also have the following lemma.

Lemma 2.5. In addition to the hypotheses of Lemma 2.3, assume that there exists a constant γ > 1
such that γτ(ν) ≤ ν for ν ≥ ν2 > ν1. Then

x(τ(ν)) ≥ Â∗(γτ(ν), τ(ν))

(
a2(γτ(ν))G2(x(γτ(ν)))

) 1
α1α2

(2.6)

for ν ≥ ν2 > ν1.

Proof. If we integrate (2.5) from τ(ν) to γτ(ν), we can obtain (2.6).

3 Oscillation results

Our first oscillation result is as follows.

Theorem 3.1. Let (A1) and (A2) hold and assume that there exists a constant γ > 1 such that
γτ(ν) ≤ ν for ν ≥ ν2 > ν1. If the first-order delay equations

Y′(ν) + q(ν) (A∗(τ(ν), ν1))
β (Y(τ(ν)))

β
α1α2 = 0 (3.1)

and
Z′(ν) + q(ν)

(
Â∗(γτ(ν), τ(ν))

)β
(Z(γτ(ν)))

β
α1α2 = 0 (3.2)

are oscillatory, then Eq. (1.1) is oscillatory.
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Proof. Let x be a nonoscillatory solution of (1.1) such that x(ν) > 0 and x(τ(ν)) > 0 for
ν ≥ ν1 > ν0. According to Lemma 2.1, we distinguish the following two cases.

Case I. Using (2.2) in (2.1), we obtain

− (a2(ν)G2(x(ν)))′ = q(ν)xβ(τ(ν))

≥ q(ν)
(

A∗(τ(ν), ν1)
)β
((

a2(τ(ν))G2(x(τ(ν)))
) 1

α1α2
)β

.

Setting Y(ν) = a2(ν)G2(x(ν)), this becomes

Y′(ν) + q(ν) (A∗(τ(ν), ν1))
β (Y(τ(ν)))

β
α1α2 ≤ 0.

By [3, Lemma 2.1(I)], the related differential equation (3.1) also has a positive solution, which
is a contradiction.

Case II. Using (2.6) in Eq. (2.1), we obtain

− (a2(ν)G2(x(ν)))′ = q(ν)xβ(τ(ν))

≥ q(ν)
(

Â∗(γτ(ν), τ(ν))
(
(a2(γτ(ν))G2(x(γτ(ν))))

1
α1α2

))β

.

Setting Z(ν) = a2(ν)G2(x(ν)), this becomes

Z′(ν) + q(ν)
(

Â∗(γτ(ν), τ(ν))
)β

(Z(γτ(ν)))
β

α1α2 ≤ 0.

Again by [3, Lemma 2.1(I)], the corresponding differential equation (3.2) must have a positive
solution. This contradiction proves the theorem.

Example 3.2. Consider the third-order delay equationν

[(
1
ν2

(
x′(ν)

))′
]3
′

+
c

ν2 x
1
3

(ν

3

)
= 0, ν ≥ 1, (3.3)

where c > 0 is a constant, α1 = 1, α2 = 3, a1(ν) = 1
ν2 , a2(ν) = ν, q(ν) = c

ν2 , β = 1
3 , and

τ(ν) = ν
3 . Clearly, (A1), (A2) and (1.2) hold. Using

A(ν, 1) =
∫ ν

1
a
− 1

α2
2 (s)ds =

∫ ν

1
s−

1
3 ds =

3ν
2
3 − 3
2

and

A∗(τ(ν), 1) =
∫ τ(ν)

1

(
A(s, 1)
a1(s)

) 1
α1

ds =
∫ ν

3

1

 s2
(

3s
2
3 − 3

)
2

 ds =
1
2

(
ν

11
3

33 · 3
2
3
− ν3

27
+

2
11

)
,

it is not difficult to see that equation (3.1) becomes

Y′(ν) +
c

2ν2

(
ν

11
3

33 · 3
2
3
− ν3

27
+

2
11

) 1
3

Y
1
9

(ν

3

)
= 0. (3.4)



6 J. R. Graef, S. R. Grace and G. N. Chhatria

Also, using γ = 2 and

B(ν, s) =
(

A(ν, s)
a1(s)

) 1
α1

=

∫ ν
s u− 1

3 du
1
ν2

=
3ν2(ν

2
3 − s

2
3 )

2
,

we see that

Â∗(γτ(ν), τ(ν)) =
∫ γτ(ν)

τ(ν)
B(ν, s)ds =

∫ 2ν
3

ν
3

3ν2(ν
2
3 − s

2
3 )

2
ds =

ν
11
3

2
− 2

5
3 ν

11
3 − ν

11
3

3
5
3

,

and so equation (3.2) becomes

Z′(ν) +
c

2ν2

(
ν

11
3

2
− 2

5
3 ν

11
3 − ν

11
3

3
5
3

) 1
3

Z
1
9

(
2ν

3

)
= 0. (3.5)

Clearly, [19, Theorem 5] guarantee that all solutions of Eqs. (3.4) and (3.5) are oscillatory. Thus,
every solution of Eq. (3.3) oscillates.

Theorem 3.3. Let (A1) and (A2) hold. If the first-order delay equation (3.1) is oscillatory and

lim sup
ν→∞

∫ ν

τ(ν)
q(u) (A∗(τ(ν), τ(s)))β ds > 1 (3.6)

for β = α1α2, then Eq. (1.1) is oscillatory.

Proof. Let x be a nonoscillatory solution of Eq. (1.1) such that x(ν) > 0 and x(τ(ν)) > 0 for
ν ≥ ν1 > ν0. We again consider the two cases in Lemma 2.1.

Case I. Proceeding as in the proof of Theorem 3.1, we again obtain a contradiction.

Case II. Clearly, for v ≥ u > ν1,

a1(v)G1(x(v))− a1(u)G1(x(u)) =
∫ v

u
(a1(s)G1(x(s)))′ds =

∫ v

u

a
1

α2
2 (s)G

1
α2
2 (x(s))

a
1

α2
2 (s)

ds,

that is,

−a1(u)G1(x(u)) ≥ a
1

α2
2 (v)G

1
α2
2 (x(v))

∫ v

u

1

a
1

α2
2 (s)

ds,

and so

−a1(u)(x′(u))α1 ≥ a
1

α2
2 (v)G

1
α2
2 (x(v))

∫ v

u

1

a
1

α2
2 (s)

ds,

Hence,

−x′(u) ≥ (a2(v)G2(x(v)))
1

α1α2

 1
a1(u)

∫ v

u

1

a
1

α2
2 (s)

ds

 1
α1

,

and integrating from u to v gives

x(u)− x(v) ≥ (a2(v)G2(x(v)))
1

α1α2

∫ v

u

 1
a1(y)

∫ v

y

1

a
1

α2
2 (s)

ds

 1
α1

dy,
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or
x(u) ≥ (a2(v)G2(x(v)))

1
α1α2 A∗(v, u).

Now, for any ν ≥ s > ν2, for some ν2 > ν1, if we set u = τ(s) and v = τ(ν) in the preceding
inequality, gives

x(τ(s)) ≥
(

a2(τ(ν))G2(x(τ(ν)))
) 1

α1α2
A∗(τ(ν), τ(s)). (3.7)

Integrating Eq. (1.1) from τ(ν) to ν and then applying (3.7),

a2(τ(ν))G2(x(τ(ν))) ≥
∫ ν

τ(ν)
q(s)xβ(τ(s))ds

≥
(

a2(τ(ν))G2(x(τ(ν)))
) β

α1α2
∫ ν

τ(ν)
q(s)(A∗(τ(ν), τ(s))

)βds,

which implies ∫ ν

τ(ν)
q(s) (A∗(τ(ν), τ(s)))β ds ≤ 1,

and contradicts (3.6).

Example 3.4. Consider the equation 1
ν2

[(
1

9ν2

(
x′(ν)

))′
]3
′

+
δ

ν7 x3
(ν

2

)
= 0, ν ≥ 1, (3.8)

where we have α1 = 1, α2 = 3, a1(ν) = 1
9ν2 , a2(ν) = 1

ν2 , q(ν) = δ
ν7 for δ > 0, β = 3 and

τ(ν) = ν
2 . Clearly, (A1), (A2) and (1.2) hold. Using

A(ν, 1) =
∫ ν

1
a
− 1

α2
2 (s)ds =

∫ ν

1

(
1
s2

)− 1
3

ds =

(
3ν

5
3 − 3

)
5

and

A∗(τ(ν), 1) =
∫ τ(ν)

1

(
A(s, 1)
a1(s)

) 1
α1

ds =
∫ ν

2

1

s2
(

3s
5
3 − 3

)
5

ds

=
1
5

(
9ν

14
3

224 · 2
2
3
− ν3

8
− 5

14

)
,

it is not difficult to see that (3.1) becomes

Y′(ν) +
42

125 · ν7

(
9ν

14
3

7 · 2
17
3
− ν3

8
− 5

14

)3

Y
(ν

2

)
= 0. (3.9)

Indeed, following [20, Theorem 2.1.1], Eq. (3.9) is oscillatory if

lim
ν→∞

∫ ν

ν
2

δ

125 · s7

(
9s

14
3

7 · 2
17
3
− s3

8
− 5

14

)3

ds >
1
e

.
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And using

A(ν, u) =
∫ ν

u
a
− 1

α2
2 (s)ds =

∫ ν

u

(
1
s2

)−1
3

ds =
3ν

5
3 − 3u

5
3

5
.

A∗(τ(ν), τ(s)) =
∫ τ(ν)

τ(s)

(
A(ν, y)
a1(y)

) 1
α1

dy =
∫ ν

2

s
2

27y2
(

ν
5
3 − y

5
3

)
5

dy

=
27
25

(
ν

5
3
(
ν3 − s3)

8
− 3ν

14
3 − 3s

14
3

7 · 2
17
3

)
.

Eq. (3.6) becomes

∫ ν

τ(ν)
q(s) (A∗(τ(ν), τ(s)))β ds =

∫ ν

ν
2

δ

s7

(
27
25

(
ν

5
3
(
ν3 − s3)

8
− 3ν

14
3 − 3s

14
3

7 · 2
17
3

))3

ds

> 1.

By Theorem 3.3, every solution of (3.8) oscillates.

Theorem 3.5. Let (A1) and (A2) hold. If β = α1α2 and there is a nondecreasing function ϕ ∈
C1([ν0, ∞), (0, ∞) such that (3.6) and

lim sup
ν→∞

∫ ν

ν1

[
ϕ(s)q(s)− (ϕ′(s))2(ϕ(s))

1
α1α2

−2

4βτ′(s)

(
A(τ(s), ν1)

a1(s)

)−1
α1

]
ds = ∞ (3.10)

hold, then equation (1.1) is oscillatory.

Proof. Let x be a nonoscillatory solution of Eq. (1.1) such that x(ν) > 0 and x(τ(ν)) > 0 for
ν ≥ ν1 > ν0. We again consider cases.

Case I. Define

W(ν) = ϕ(ν)
a2(ν)G2(x(ν))

xβ(τ(ν))
.

Then W(ν) > 0, and using Lemma 2.2, the decreasing nature of a2(ν)G2(x(ν)), and (2.3)

W ′(ν) =
ϕ(ν)(a2(ν)G2(x(ν)))′

xβ(τ(ν))
+

a2(ν)G2(x(ν))ϕ′(ν)

xβ(τ(ν))
− β

ϕ(ν)(a2(ν)G2(x(ν)))x′(τ(ν))τ′(ν)

xβ+1(τ(ν))

≤ −ϕ(ν)q(ν) +
ϕ′(ν)

ϕ(ν)
W(ν)− βτ′(ν)

(
A(τ(ν), ν1)

a1(ν)

) 1
α1 ϕ(ν)(a2(ν)G2(x(ν)))1+ 1

α1α2

xβ+1(τ(ν))

≤ −ϕ(ν)q(ν) +
ϕ′(ν)

ϕ(ν)
W(ν)− βτ′(ν)

ϕ
1

α1α2 (ν)

(
A(τ(ν), ν1)

a1(ν)

) 1
α1
W2(ν).

If we complete the square on the right hand side, we find that

W ′(ν) ≤ −ϕ(ν)q(ν) +
(ϕ′(ν))2

4βτ′(ν)
(ϕ(ν))

1
α1α2

−2
(

A(τ(ν), ν1)

a1(ν)

)−1
α1

.

Integrating the preceding inequality from ν1 to ν, we see that (3.10) gives a contradiction to
the fact that W(ν) ≥ 0.

Case II. Proceeding as in the proof of Theorem 3.3, leads to a contradiction in this case.
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Example 3.6. Consider the equation1
ν

[(
1
ν

(
x′(ν)

) 1
3

)′
]3
′

+
δ

ν3 x
(ν

3

)
= 0, ν ≥ 1, (3.11)

where we have α1 = 1
3 , α2 = 3, a1(ν) =

1
ν , a2(ν) =

1
ν , q(ν) = δ

ν3 for δ > 0, β = 1 and τ(ν) = ν
3 .

Clearly, (A1), (A2) and (1.2) hold. Using ϕ(ν) = ν4 and A(τ(ν), ν1) = 3
4

[ (
ν
3

) 4
3 − 1

]
in Eq.

(3.10), we have

lim sup
ν→∞

∫ ν

1

[
ϕ(s)q(s)− (ϕ′(s))2(ϕ(s))

1
α1α2

−2

4βτ′(s)

(
A(τ(s), 1)

a1(s)

)−1
α1

]
ds

= lim sup
ν→∞

∫ ν

1

[
δs − 3s6

s4

(
3s
4
(s

4
3 − 1)

)−3
]

ds = ∞.

It is not difficult to see that (3.6) holds, so by Theorem 3.5, every solution of (3.11) oscillates.

4 Concluding remark

Employing the methods of comparison, Riccati substitution, and the integral method, we in-
troduced three novel conditions for the oscillation of a general third-order nonlinear delay
differential equation. Interestingly, our results are applicable to linear, sublinear, and super-
linear equations. Some illustrative examples are given to show the applicability of our results.
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