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Abstract. In this paper, we consider the equation for a class of nonlinear operators con-
taining p(·)-Laplacian and mean curvature operator with mixed boundary conditions
in a bounded domain Ω of RN , under the hypothesis p(x) > 1 in Ω. More precisely, we
are concerned with the problem under the Dirichlet condition on a part of the bound-
ary and the Steklov boundary condition on an another part of the boundary. We show
the existence of one, two and infinitely many nontrivial weak solutions of the equation
according to the conditions on given functions.
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1 Introduction

In this paper, we consider the following equation
−div [a(x,∇u(x))] = f (x, u(x)) in Ω,

u(x) = 0 on Γ1,

n(x) · a(x,∇u(x)) = g(x, u(x)) on Γ2.

(1.1)

Here Ω is a bounded domain of RN (N ≥ 2) with a Lipschitz-continuous (C0,1 for short)
boundary ∂Ω = Γ satisfying that

Γ1 and Γ2 are disjoint open subsets of Γ such that Γ1 ∪ Γ2 = Γ and Γ1 ̸= ∅, (1.2)
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and the vector field n denotes the unit, outer, normal vector to Γ. The function a(x, ξ) =

∇ξ A(x, ξ) is a Carathéodory function on Ω × RN satisfying some structure conditions asso-
ciated with an anisotropic exponent function p ∈ C(Ω) with 1 < p(x) for x ∈ Ω. Then the
operator div [a(x,∇u(x))] is more general than the p(·)-Laplacian

∆p(x)u(x) = div [|∇u(x)|p(x)−2∇u(x)]

and the mean curvature operator

div [(1 + |∇u(x)|2)(p(x)−2)/2∇u(x)].

These generalities bring about difficulties and requires some conditions.
We impose the mixed boundary conditions, that is, the Dirichlet condition on Γ1 and the

Steklov condition on Γ2. The given data f : Ω ×R → R and g : Γ2 ×R → R are Carathéodory
functions satisfying some conditions.

The study of differential equations with p(·)-growth conditions is a very interesting topic
recently. Studying such problem stimulated its application in mathematical physics, in partic-
ular, in elastic mechanics (Zhikov [31]), in electrorheological fluids (Diening [10], Halsey [19],
Mihăilescu and Rădulescu [22], Růžička [24]).

Since we can only find a few of papers associate with the problem with the mixed bound-
ary condition in variable exponent Sobolev space as in (1.1). See Aramaki [2, 5]. We are
convinced of the reason for existence of this paper.

Fan [13] considered the problem (1.1) when A(x, ξ) = 1
p(x) |ξ|

p(x) and Γ2 = ∅, and derived
the existence of a nontrivial weak solution to (1.1). Yücedağ [29] and Mashiyev et al. [21]
and many authors extended the result to the case where A(x, ξ) satisfies the p(·)-uniform
convexity. In Aramaki [3] and Dai and Hao [8], the authors treated the Kirchhoff-type operator
in the case where A(x, ξ) satisfies the p(·)-uniform convexity. Here the p(·)-uniform convexity
of A(x, ξ) means that

A
(

x,
ξ + η

2

)
+ c|ξ − η|p(x) ≤ 1

2
A(x, ξ) +

1
2

A(x, η) (1.3)

for a.e. x ∈ Ω and all ξ, η ∈ RN with some constant c > 0. However, even in the case
where A(x, ξ) = 1

p(x) |ξ|
p(x), in general, if 1 < p(x) < 2 in a non-empty subset of Ω, then this

p(·)-uniform convexity does not hold. Of course, if p(x) ≥ 2 in Ω, then (1.3) holds.
In this paper, we give up this condition, but we assume that a(x, ξ) is uniformly monotone

(see (A.2) below in Section 3), because we think that this hypothesis is more natural for the
p(·)-Laplacian and the mean curvature operator, and allow not only the case 2 ≤ p(x) in
Ω, but also the case 1 < p(x) in Ω. To overcome this, if we apply a version of the idea
of Glowinski and A. Marroco [18] who treated the case p(x) = p = const., then we get
Proposition 3.7 below. So our results are new, because the results contain the case 1 < p(x) in
Ω.

We derive that there exist one, two and infinitely many nontrivial weak solutions. We
use the standard Mountain-Pass Theorem, Ekeland variational principle and the Symmetric
Mountain-Pass Theorem, respectively (cf. Aramaki [4, 6], [21]).

This paper is also an extension of the articles [13] to the case of mixed boundary value
problem and of a class of operators containing the p(·)-Laplacian and the mean curvature
operator with the case where p(x) > 1 in Ω.
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The paper is organized as follows. In Section 2, we recall some well-known results on
variable exponent Lebesgue-Sobolev spaces. In Section 3, we give the assumptions to the
main theorems. In Section 4, we state the main theorems (Theorem 4.3, 4.5 and 4.6) on the
existence of at least one, two and infinitely many nontrivial weak solutions according to the
hypotheses on given functions f and g. The proofs of these main theorems are given in
Section 5.

2 Preliminaries

Throughout this paper, let Ω be a bounded domain in RN (N ≥ 2) with a C0,1-boundary Γ
and Ω is locally on the same side of Γ. Moreover, we assume that Γ satisfies (1.2).

In the present paper, we only consider vector spaces of real valued functions over R. For
any space B, we denote BN by the boldface character B. Hereafter, we use this character
to denote vectors and vector-valued functions, and we denote the standard inner product of
vectors a = (a1, . . . , aN) and b = (b1, . . . , bN) in RN by a · b = ∑N

i=1 aibi and |a| = (a · a)1/2.
Furthermore, we denote the dual space of B by B∗ and the duality bracket by ⟨·, ·⟩B∗,B.

We recall some well-known results on variable exponent Lebesgue and Sobolev spaces.
See Fan and Zhang [15], Kovác̆ik and Rácosník [20] and references therein for more detail.
Furthermore, we consider some new properties on variable exponent Lebesgue space. Define
C(Ω) = {p; p is a continuous function on Ω}, and for any p ∈ C(Ω), put

p+ = p+(Ω) = sup
x∈Ω

p(x) and p− = p−(Ω) = inf
x∈Ω

p(x).

For any p ∈ C(Ω) with p− ≥ 1 and for any measurable function u on Ω, a modular ρp(·) =

ρp(·),Ω is defined by

ρp(·)(u) =
∫

Ω
|u(x)|p(x)dx.

The variable exponent Lebesgue space is defined by

Lp(·)(Ω) = {u; u : Ω → R is a measurable function satisfying ρp(·)(u) < ∞}

equipped with the (Luxemburg) norm

∥u∥Lp(·)(Ω) = inf
{

λ > 0; ρp(·)

(u
λ

)
≤ 1

}
.

Then Lp(·)(Ω) is a Banach space. We also define

W1,p(·)(Ω) = {u ∈ Lp(·)(Ω); |∇u| ∈ Lp(·)(Ω)},

where ∇u is the gradient of u, that is, ∇u = (∂1u, . . . , ∂Nu), ∂i = ∂/∂xi, endowed with the
norm

∥u∥W1,p(·)(Ω) = ∥u∥Lp(·)(Ω) + ∥|∇u|∥Lp(·)(Ω).

The following three propositions are well known (see Fan et al. [16], Fan and Zhao [17],
Zhao et al. [30]).

Proposition 2.1. Let p ∈ C(Ω) with p− ≥ 1, and let u, un ∈ Lp(·)(Ω) (n = 1, 2, . . .). Then we have
the following properties.
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(i) ∥u∥Lp(·)(Ω) < 1(= 1,> 1) ⇐⇒ ρp(·)(u) < 1(= 1,> 1).

(ii) ∥u∥Lp(·)(Ω) > 1 =⇒ ∥u∥p−

Lp(·)(Ω)
≤ ρp(·)(u) ≤ ∥u∥p+

Lp(·)(Ω)
.

(iii) ∥u∥Lp(·)(Ω) < 1 =⇒ ∥u∥p+

Lp(·)(Ω)
≤ ρp(·)(u) ≤ ∥u∥p−

Lp(·)(Ω)
.

(iv) limn→∞ ∥un − u∥Lp(·)(Ω) = 0 ⇐⇒ limn→∞ ρp(·)(un − u) = 0.

(v) ∥un∥Lp(·)(Ω) → ∞ as n → ∞ ⇐⇒ ρp(·)(un) → ∞ as n → ∞.

The following proposition is a generalized Hölder inequality.

Proposition 2.2. Let p ∈ C+(Ω), where

C+(Ω) := {p ∈ C(Ω); p− > 1}.

For any u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω), we have∫
Ω
|u(x)v(x)|dx ≤

(
1

p−
+

1
(p′)−

)
∥u∥Lp(·)(Ω)∥v∥Lp′(·)(Ω) ≤ 2∥u∥Lp(·)(Ω)∥v∥Lp′(·)(Ω).

Here and from now on, for any p ∈ C+(Ω), p′(·) denote the conjugate exponent of p(·), that is,
p′(x) = p(x)/(p(x)− 1).

For p ∈ C+(Ω), define for x ∈ Ω,

p∗(x) =

{ Np(x)
N−p(x) if p(x) < N,

∞ if p(x) ≥ N.

Proposition 2.3. Let Ω be a bounded domain of RN with C0,1-boundary and let p ∈ C+(Ω). Then
we have the following properties.

(i) The spaces Lp(·)(Ω) and W1,p(·)(Ω) are separable, reflexive and uniformly convex Banach spaces.

(ii) If q(x) ∈ C(Ω) with q− ≥ 1 satisfies that q(x) ≤ p∗(x) for all x ∈ Ω, then the embedding
W1,p(·)(Ω) ↪→ Lq(·)(Ω), where ↪→ means that the embedding is continuous.

(iii) If q(x) ∈ C(Ω) with q− ≥ 1 satisfies that q(x) < p∗(x) for all x ∈ Ω, then the embedding
W1,p(·)(Ω) ↪→ Lq(·)(Ω) is compact.

Next we consider the trace (cf. Fan [14]). Let Ω be a bounded domain of RN with a C0,1-
boundary Γ and p ∈ C(Ω) with p− ≥ 1. Since W1,p(·)(Ω) ⊂ W1,1(Ω), the trace γ(u) = u

∣∣
Γ to

Γ of any function u in W1,p(·)(Ω) is well defined as a function in L1(Γ). We define

(Tr W1,p(·))(Γ) = { f ; f is the trace to Γ of a function F ∈ W1,p(·)(Ω)}

equipped with the norm

∥ f ∥(Tr W1,p(·))(Γ) = inf{∥F∥W1,p(·)(Ω); F ∈ W1,p(·)(Ω) satisfying F
∣∣
Γ= f }

for f ∈ (Tr W1,p(·))(Γ), where the infimum can be achieved. Then we can see that (Tr W1,p(·))(Γ)
is a Banach space. In the later we also write F

∣∣
Γ= g by F = g on Γ. Moreover, for i = 1, 2, we

denote
(Tr W1,p(·))(Γi) = { f

∣∣
Γi

; f ∈ (Tr W1,p(·))(Γ)}
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equipped with the norm

∥g∥(Tr W1,p(·))(Γi)
= inf{∥ f ∥(Tr W1,p(·))(Γ); f ∈ (Tr W1,p(·))(Γ) satisfying f

∣∣
Γi
= g},

where the infimum can also be achieved, so for any g ∈ (Tr W1,p(·))(Γi), there exists F ∈
W1,p(·)(Ω) such that F

∣∣
Γi
= g and ∥F∥W1,p(·)(Ω) = ∥g∥(Tr W1,p(·))(Γi)

.
Let q ∈ C+(Γ) := {q ∈ C(Γ); q− > 1} and denote the surface measure on Γ induced from

the Lebesgue measure dx on Ω by dσx. We define

Lq(·)(Γ) =
{

u; u : Γ → R is a measurable function with respect to dσx

satisfying
∫

Γ
|u(x)|q(x)dσx < ∞

}
and the norm is defined by

∥u∥Lq(·)(Γ) = inf

{
λ > 0;

∫
Γ

∣∣∣∣u(x)
λ

∣∣∣∣q(x)

dσx ≤ 1

}
,

and we also define a modular on Lq(·)(Γ) by

ρq(·),Γ(u) =
∫

Γ
|u(x)|q(x)dσx.

Similarly as Proposition 2.1, we have the following proposition.

Proposition 2.4. Let q ∈ C(Γ) with q− ≥ 1, and let u, un ∈ Lq(·)(Γ). Then we have the following
properties.

(i) ∥u∥Lq(·)(Γ) < 1(= 1,> 1) ⇐⇒ ρq(·),Γ(u) < 1(= 1,> 1).

(ii) ∥u∥Lq(·)(Γ) > 1 =⇒ ∥u∥q−

Lq(·)(Γ)
≤ ρq(·),Γ(u) ≤ ∥u∥q+

Lq(·)(Γ)
.

(iii) ∥u∥Lq(·)(Γ) < 1 =⇒ ∥u∥q+

Lq(·)(Γ)
≤ ρq(·),Γ(u) ≤ ∥u∥q−

Lq(·)(Γ)
.

(iv) ∥un∥Lq(·)(Γ) → 0 ⇐⇒ ρq(·),Γ(un) → 0.

(v) ∥un∥Lq(·)(Γ) → ∞ ⇐⇒ ρq(·),Γ(un) → ∞.

The Hölder inequality also holds for functions on Γ.

Proposition 2.5. Let q ∈ C(Γ) with q− > 1. Then the following inequality holds.∫
Γ
| f (x)g(x)|dσx ≤ 2∥ f ∥Lq(·)(Γ)∥g∥Lq′(·)(Γ) for all f ∈ Lq(·)(Γ), g ∈ Lq′(·)(Γ).

Proposition 2.6. Let Ω be a bounded domain of RN with a C0,1-boundary Γ and let p ∈ C+(Ω). If
f ∈ (Tr W1,p(·))(Γ), then f ∈ Lp(·)(Γ) and there exists a constant C > 0 such that

∥ f ∥Lp(·)(Γ) ≤ C∥ f ∥(Tr W1,p(·))(Γ).

In particular, If f ∈ (Tr W1,p(·))(Γ), then f ∈ Lp(·)(Γi) and ∥ f ∥Lp(·)(Γi)
≤ C∥ f ∥(Tr W1,p(·))(Γ) for

i = 1, 2.
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For p ∈ C+(Ω), define for x ∈ Ω,

p∂(x) =

{
(N−1)p(x)

N−p(x) if p(x) < N,

∞ if p(x) ≥ N.

The following proposition follows from Yao [28, Proposition 2.6].

Proposition 2.7. Let p ∈ C+(Ω). Then if q ∈ C+(Γ) satisfies q(x) ≤ p∂(x) for all x ∈ Γ, then the
trace mapping W1,p(·)(Ω) → Lq(·)(Γ) is well-defined, continuous and

∥u∥Lq(·)(Γ) ≤ C∥u∥W1,p(·)(Ω) for u ∈ W1,p(·)(Ω)

for some constant C > 0.
In particular, if q(x) < p∂(x) for all x ∈ Γ2, then the trace mapping W1,p(·)(Ω) → Lq(·)(Γ) is

compact.

Now we consider the weighted variable exponent Lebesgue space. Let p ∈ C(Ω) with
p− ≥ 1 and let a(x) be a measurable function on Ω with a(x) > 0 a.e. x ∈ Ω. We define a
modular

ρ(p(·),a(·))(u) =
∫

Ω
a(x)|u(x)|p(x)dx for any measurable function u in Ω.

Then the weighted Lebesgue space is defined by

Lp(·)
a(·) (Ω) =

{
u; u is a measurable function on Ω satisfying ρ(p(·),a(·))(u) < ∞

}
equipped with the norm

∥u∥
Lp(·)

a(·) (Ω)
= inf

{
λ > 0;

∫
Ω

a(x)
∣∣∣∣u(x)

λ

∣∣∣∣p(x)

dx ≤ 1

}
.

Then Lp(·)
a(·) (Ω) is a Banach space.

We have the following proposition (cf. [13, Proposition 2.5]).

Proposition 2.8. Let p ∈ C(Ω) with p− ≥ 1. For u, un ∈ Lp(·)
a(·) (Ω), we have the following.

(i) For u ̸= 0, ∥u∥
Lp(·)

a(·) (Ω)
= λ ⇐⇒ ρ(p(·),a(·))

( u
λ

)
= 1.

(ii) ∥u∥
Lp(·)

a(·) (Ω)
< 1 (= 1,> 1) ⇐⇒ ρ(p(·),a(·))(u) < 1 (= 1,> 1).

(iii) ∥u∥
Lp(·)

a(·) (Ω)
> 1 =⇒ ∥u∥p−

Lp(·)
a(·) (Ω)

≤ ρ(p(·),a(·))(u) ≤ ∥u∥p+

Lp(·)
a(·) (Ω)

.

(iv) ∥u∥
Lp(·)

a(·) (Ω)
< 1 =⇒ ∥u∥p+

Lp(·)
a(·) (Ω)

≤ ρ(p(·),a(·))(u) ≤ ∥u∥p−

Lp(·)
a(·) (Ω)

.

(v) limn→∞ ∥un − u∥
Lp(·)

a(·) (Ω)
= 0 ⇐⇒ limn→∞ ρ(p(·),a(·))(un − u) = 0.

(vi) ∥un∥Lp(·)
a(·) (Ω)

→ ∞ as n → ∞ ⇐⇒ ρ(p(·),a(·))(un) → ∞ as n → ∞.

The author of [13] also derived the following proposition (cf. [13, Theorem 2.1]).
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Proposition 2.9. Let Ω be a bounded domain of RN with a C0,1-boundary and p ∈ C+(Ω). Moreover,
let a ∈ Lα(·)(Ω) satisfy a(x) > 0 a.e. x ∈ Ω and α ∈ C+(Ω). If q ∈ C(Ω) satisfies

1 ≤ q(x) <
α(x)− 1

α(x)
p∗(x) for all x ∈ Ω,

then the embedding W1,p(·)(Ω) ↪→ Lq(·)
a(·)(Ω) is compact.

Similarly, let q ∈ C(Γ) with q− ≥ 1 and let b(x) be a measurable function with respect to σ

on Γ with b(x) > 0 σ-a.e. x ∈ Γ. We define a modular

ρ(q(·),b(·)),Γ(u) =
∫

Γ
b(x)|u(x)|q(x)dσx.

Then the weighted Lebesgue space on Γ is defined by

Lq(·)
b(·)(Γ) = {u; u is a σ-measurable function on Γ satisfying ρ(q(·),b(·)),Γ(u) < ∞}

equipped with the norm

∥u∥
Lq(·)

b(·)(Γ)
= inf

{
λ > 0;

∫
Γ

b(x)
∣∣∣∣u(x)

λ

∣∣∣∣q(x)

dσx ≤ 1

}
.

Then Lq(·)
b(·)(Γ) is a Banach space.

Then we have the following proposition.

Proposition 2.10. Let q ∈ C(Γ) with q− ≥ 1. For u, un ∈ Lq(·)
b(·)(Γ), we have the following.

(i) ∥u∥
Lq(·)

b(·)(Γ)
< 1 (= 1,> 1) ⇐⇒ ρ(q(·),b(·)),Γ(u) < 1 (= 1,> 1).

(ii) ∥u∥
Lq(·)

b(·)(Γ)
> 1 =⇒ ∥u∥q−

Lq(·)
b(·)(Γ)

≤ ρ(q(·),b(·)),Γ(u) ≤ ∥u∥q+

Lq(·)
b(·)(Ω)

.

(iii) ∥u∥
Lq(·)

b(·)(Γ)
< 1 =⇒ ∥u∥q+

Lq(·)
b(·)(Γ)

≤ ρ(q(·),b(·)),Γ(u) ≤ ∥u∥q−

Lq(·)
b(·)(Γ)

.

(iv) limn→∞ ∥un − u∥
Lq(·)

b(·)(Γ)
= 0 ⇐⇒ limn→∞ ρ(q(·),b(·)),Γ(un − u) = 0.

(v) ∥un∥Lq(·)
b(·)(Γ)

→ ∞ as n → ∞ ⇐⇒ ρ(q(·),b(·)),Γ(un) → ∞ as n → ∞.

The following proposition plays an important role in the present paper.

Proposition 2.11. Let Ω be a bounded domain of RN with a C0,1-boundary Γ and let p ∈ C+(Ω).
Assume that 0 < b ∈ Lβ(·)(Γ), β ∈ C+(Γ). If r ∈ C(Γ) satisfies

1 ≤ r(x) <
β(x)− 1

β(x)
p∂(x) for all x ∈ Γ,

then the embedding W1,p(·)(Ω) ↪→ Lr(·)
b(·)(Γ) is compact.

The following proposition is due to Edmunds and Rákosník [11, Lemma 2.1].
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Proposition 2.12. Let q ∈ L∞(Ω) and p be a measurable function on Ω such that 1 ≤ p(x) ≤ ∞
and 1 ≤ q(x)p(x) ≤ ∞. Assume that f ∈ Lp(·)(Ω) with f ̸= 0. Then we have the following.

∥ f ∥Lq(·)p(·)(Ω) ≤ 1 =⇒ ∥ f ∥q+

Lq(·)p(·)(Ω)
≤ ∥| f |q(·)∥Lp(·)(Ω) ≤ ∥ f ∥q−

Lq(·)p(·)(Ω)
.

∥ f ∥Lq(·)p(·)(Ω) ≥ 1 =⇒ ∥ f ∥q−

Lq(·)p(·)(Ω)
≤ ∥| f |q(·)∥Lp(·)(Ω) ≤ ∥ f ∥q+

Lq(·)p(·)(Ω)
.

In particular, if q(x) = q = const., then ∥| f |q∥Lp(·)(Ω) = ∥ f ∥q
Lqp(·)(Ω)

.

Define a space by
X = {v ∈ W1,p(·)(Ω); v = 0 on Γ1}. (2.1)

Then it is clear to see that X is a closed subspace of W1,p(·)(Ω), so X is a reflexive and separable
Banach space. We get the following Poincaré-type inequality (cf. Ciarlet and Dinca [7]).

Proposition 2.13. Let Ω be a bounded domain of RN with a C0,1-boundary and let p ∈ C+(Ω). Then
there exists a constant C = C(Ω, N, p) > 0 such that

∥u∥Lp(·)(Ω) ≤ C∥∇u∥Lp(·)(Ω) for all u ∈ X.

In particular, ∥∇u∥Lp(·)(Ω) is equivalent to ∥u∥W1,p(·)(Ω) for u ∈ X.

For the direct proof, see Aramaki [1, Lemma 2.5].
Thus we can define the norm on X so that

∥v∥X = ∥∇v∥Lp(·)(Ω) for v ∈ X, (2.2)

which is equivalent to ∥v∥W1,p(·)(Ω) from Proposition 2.13.

3 Assumptions to the main theorems

In this section, we state the assumptions to the main theorems. Let p ∈ C+(Ω) be fixed.
Throughout this paper, we assume the following.

(A.0) Let A : Ω × RN → [0, ∞) be a function satisfying that for a.e. x ∈ Ω the function
A(x, ·) : RN ∋ ξ 7→ A(x, ξ) is of C1-class, and for all ξ ∈ RN the function A(·, ξ) :
Ω ∋ x 7→ A(x, ξ) is measurable. Moreover, suppose that A(x, 0) = 0 and put a(x, ξ) =

∇ξ A(x, ξ). Then a(x, ξ) is a Carathéodory function on Ω × RN .

Moreover, we assume the following structure conditions. There exist constants C0, k0 > 0,
nonnegative functions h0 ∈ Lp′(·)(Ω) and h1 ∈ L1(Ω) with h1(x) ≥ 1 for a.e. x ∈ Ω such that
the following conditions hold.

(A.1) |a(x, ξ)| ≤ C0(h0(x) + h1(x)|ξ|p(x)−1) for all ξ ∈ RN and a.e. x ∈ Ω.

(A.2) a(x, 0) = 0 for a.e. x ∈ Ω and

(a(x, ξ)− a(x, η)) · (ξ − η) ≥
{

k0h1(x)|ξ − η|p(x) if p(x) ≥ 2,
k0h1(x)(1 + |ξ|+ |η|)p(x)−2|ξ − η|2 if p(x) < 2

for a.e. x ∈ Ω and all ξ, η ∈ RN .
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(A.3) A is p(·)-subhomogeneous in the sense of

a(x, ξ) · ξ ≤ p(x)A(x, ξ) + h1(x) for all ξ ∈ RN and a.e. x ∈ Ω.

Lemma 3.1. Under (A.0) and (A.2), there exists a constant c > 0 such that

1
2

A(x, ξ) +
1
2

A(x, η)− A
(

x,
ξ + η

2

)
≥

{
c h1(x)|ξ − η|p(x) if p(x) ≥ 2,

c h1(x)(1 + |ξ|+ |η|)p(x)−2|ξ − η|2 if p(x) < 2

for a.e. x ∈ Ω and all ξ, η ∈ RN .
In particular, A(x, ξ) is convex with respect to ξ.

Proof. Since

A(x, η)− A
(

x,
ξ + η

2

)
=

∫ 1

0
a
(

x,
ξ + η

2
+ s

(
η− ξ

2

))
· η− ξ

2
ds,

and

A
(

x,
ξ + η

2

)
− A(x, ξ) =

∫ 1

0
a
(

x, ξ + s
(

η− ξ

2

))
· η− ξ

2
ds,

it follows from (A.0) and (A.2) that

1
2

A(x, ξ) +
1
2

A(x, η)− A
(

x,
ξ + η

2

)
=

1
2

∫ 1

0

(
a
(

x,
ξ + η

2
+ s

η− ξ

2

)
− a

(
x, ξ + s

η− ξ

2

))
· η− ξ

2
ds

≥


1
2 k0h1(x)

∣∣∣ η−ξ
2

∣∣∣p(x)
if p(x) ≥ 2,

1
2 k0h1(x)

∫ 1
0

(
1 +

∣∣∣ ξ+η
2 + s η−ξ

2

∣∣∣+ ∣∣∣ξ + s η−ξ
2

∣∣∣)p(x)−2 ∣∣∣ η−ξ
2

∣∣∣2 ds if p(x) < 2

≥
{( 1

2

)p++1 k0h1(x)|ξ − η|p(x) if p(x) ≥ 2,
1
4 k0h1(x)(1 + |ξ|+ |η|)p(x)−2|ξ − η|2 if p(x) < 2.

In particular, since A
(
x, ξ+η

2

)
≤ 1

2 A(x, ξ) + 1
2 A(x, η) and A(x, ξ) is continuous with respect to

ξ, it is well known that A(x, ξ) is convex.

Example 3.2.

(i) A(x, ξ) = h(x)
p(x) |ξ|

p(x) with h ∈ L1(Ω) satisfying h(x) ≥ 1 for a.e. x ∈ Ω.

(ii) A(x, ξ) = h(x)
p(x) ((1 + |ξ|2)p(x)/2 − 1) with h ∈ Lp′(·)(Ω) satisfying h(x) ≥ 1 for a.e. x ∈ Ω.

Then A(x, ξ) and a(x, ξ) = ∇ξ A(x, ξ) satisfy the above assumptions (A.0)–(A.3).

Proof. In the case (i), A(x, ξ) is clearly differentiable with respect to ξ for ξ ̸= 0 and a(x, ξ) =

h(x)|ξ|p(x)−2ξ for ξ ̸= 0. Since p(x) > 1, if we define a(x, 0) = 0, then we see that A(x, ξ)

is of C1-class with respect to ξ, so (A.0) holds. (A.1) easily holds. If we use the well-known
inequality (cf. Thelin [25]): there exists a constant k0 > 0 such that

(|ξ|p(x)−2ξ − |η|p(x)−2η) · (ξ − η) ≥
{

k0|ξ − η|p(x) if p(x) ≥ 2,

k0(1 + |ξ|+ |η|)p(x)−2|ξ − η|2 if p(x) < 2,
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for all ξ, η ∈ RN , then we see that (A.2) holds. We can easily see that (A.3) holds.
In the case (ii), clearly A(x, ξ) is of C1-class with respect to ξ and a(x, ξ) = h(x)(1 +

|ξ|2)(p(x)−2)/2ξ.
If p(x) ≥ 2, since |ξ| ≤ 1 + |ξ|p(x)−1, we have

|a(x, ξ)| ≤ h(x)2(p+−2)/2(1 + |ξ|p(x)−2)|ξ| ≤ 2p+/2(h(x) + h(x)|ξ|p(x)−1).

If p(x) < 2,
|a(x, ξ)| ≤ h(x)|ξ|p(x)−2|ξ| = h(x)|ξ|p(x)−1.

Thus (A.1) with h0 = h1 = h holds. We show that (A.2) holds. We have

(a(x, ξ)− a(x, η)) · (ξ − η)

= h(x)
∫ 1

0

d
ds

[
(1 + |sξ + (1 − s)η|2)(p(x)−2)/2(sξ + (1 − s)η)

]
ds · (ξ − η)

= h(x)
∫ 1

0
(1 + |sξ + (1 − s)η|2)(p(x)−2)/2ds|ξ − η|2

+ h(x)(p(x)− 2)
∫ 1

0
(1 + |sξ + (1 − s)η|2)(p(x)−4)/2|(sξ + (1 − s)η) · (ξ − η)|2ds.

If p(x) ≥ 2, it follows from DiBenedetto [9, p. 14] that

(a(x, ξ)− a(x, η)) · (ξ − η) ≥ h(x)
∫ 1

0
|sξ + (1 − s)η|p(x)−2ds|ξ − η|2 ≥ k0h(x)|ξ − η|p(x).

If p(x) < 2, we have

(a(x, ξ)− a(x, η)) · (ξ − η)

≥ h(x)
∫ 1

0
(1 + |sξ + (1 − s)η|2)(p(x)−2)/2ds|ξ − η|2

+ h(x)(p(x)− 2)
∫ 1

0
(1 + |sξ + (1 − s)η|2)(p(x)−4)/2|sξ + (1 − s)η|2|ξ − η|2ds

≥ h(x)(p(x)− 1)
∫ 1

0
(1 + |sξ + (1 − s)η|2)(p(x)−2)/2ds|ξ − η|2

≥ (p− − 1)h(x)(1 + |ξ|+ |η|)p(x)−2|ξ − η|2.

Thus (A.2) holds. We show that (A.3) holds.

a(x, ξ) · ξ = h(x)(1 + |ξ|2)(p(x)−2)/2|ξ|2

= h(x)(1 + |ξ|2)(p(x)−2)/2(1 + |ξ|2 − 1)

= h(x)(1 + |ξ|2)p(x)/2 − h(x)(1 + |ξ|2)(p(x)−2)/2

= p(x)A(x, ξ) + h(x)(1 − (1 + |ξ|2)(p(x)−2)/2)

≤ p(x)A(x, ξ) + h(x).

If p(x) ≥ 2, then we can delete the last term h(x), however if p(x) < 2, then we can not delete
the last term h(x) since {(1 + |ξ|2)(p(x)−2)/2; ξ ∈ RN} = [0, 1].

Remark 3.3.

(i) When h(x) ≡ 1, (i) corresponds to the p(·)-Laplacian and (ii) corresponds to the pre-
scribed mean curvature operator for nonparametric surface.
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(ii) In many papers (for example, [29], [21], [6], [4]), the authors assume that a(x, ξ) · ξ ≤
p(x)A(x, ξ) instead of (A.3). However, in the above Example 3.2 we saw that if the
example (ii) satisfies 1 < p(x) < 2 in a subset of Ω with positive measure, then we have
to assume (A.3).

Lemma 3.4. Under (A.0)–(A.2), we have the following.

(i) |A(x, ξ)| ≤ C0(h0(x)|ξ|+ h1(x)|ξ|p(x)) for a.e. x ∈ Ω and all ξ ∈ RN .

(ii) There exist constants c > 0 and C ≥ 0 such that

a(x, ξ) · ξ ≥ ch1(x)|ξ|p(x) − Ch1(x) for a.e. x ∈ Ω and all ξ ∈ RN .

In particular, if p− ≥ 2, then we can take C = 0.

Proof. (i) From (A.0) and (A.1), we have

|A(x, ξ)| = |A(x, ξ)− A(x, 0)| =
∣∣∣∣∫ 1

0

d
dt

A(x, tξ)dt
∣∣∣∣ = ∣∣∣∣∫ 1

0
a(x, tξ) · ξdt

∣∣∣∣
≤ C0(h0(x)|ξ|+ h1(x)|ξ|p(x)).

(ii) Since it follows from (A.2) with η = 0 that

a(x, ξ) · ξ ≥
{

k0h1(x)|ξ|p(x) if p(x) ≥ 2,

k0h1(x)(1 + |ξ|)p(x)−2)|ξ|2 if p(x) < 2,

it suffices to show that when p(x) < 2, we have (1 + |ξ|)p(x)−2|ξ|2 ≥ c′|ξ|p(x) − C′ for some
constant c′, C′ > 0. Using an elementary inequality (a + b)q ≤ 2q(aq + bq) for real numbers
a, b ≥ 0 and q > 0, we have

(1 + |ξ|)2−p(x) ≤ 22−p(x)(|ξ|2−p(x) + 1) ≤ 22−p− |ξ|2−p(x) + 22−p− .

Thereby, |ξ|2−p(x) ≥ 2p−−2(1 + |ξ|)2−p(x) − 1. When |ξ| ≤ 1, since p(x)− 1 > 0, we have

(1 + |ξ|)p(x)−2|ξ|2 = (1 + |ξ|)p(x)−2|ξ|2−p(x)|ξ|p(x)

≥ (1 + |ξ|)p(x)−2(2p−−2(1 + |ξ|)2−p(x) − 1)|ξ|p(x)

= 2p−−2|ξ|p(x) − (1 + |ξ|)p(x)−2|ξ|p(x)

≥ 2p−−2|ξ|p(x) − (2|ξ|)p(x)−2|ξ|p(x)

≥ 2p−−2|ξ|p(x) − 2p+−2|ξ|2(p(x)−1)

≥ 2p−−2|ξ|p(x) − 2p+−2.

When |ξ| ≥ 1, we have (1 + |ξ|)p(x)−2|ξ|2 ≥ (2|ξ|)p(x)−2|ξ|2 ≥ 2p−−2|ξ|p(x). Therefore, we have
(1 + |ξ|)p(x)−2|ξ|2 ≥ 2p−−2|ξ|p(x) − 2p+−2 for all ξ ∈ RN .

For the function h1 ∈ L1(Ω) with h1(x) ≥ 1 for a.e. x ∈ Ω, we define a modular

ρp(·),h1(·)(v) = ρp(·),h1(·),Ω(v) =
∫

Ω
h1(x)|∇v(x)|p(x)dx for v ∈ Y,
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where Y is our basic space defined by

Y = Y(Ω) = {v ∈ X; ρp(·),h1(·)(v) < ∞}, (3.1)

the space X is defined by (2.1), equipped with the norm

∥v∥Y = inf
{

λ > 0; ρp(·),h1(·)

( v
λ

)
≤ 1

}
.

Then Y is a Banach space (see Proposition 3.5 below). We note that C∞
0 (Ω) ⊂ Y. Since

ρp(·),h1(·)(v) = ρp(·)(h
1/p(·)
1 ∇v),

we have
∥v∥Y = ∥h1/p(·)

1 ∇v∥Lp(·)(Ω). (3.2)

We have the following propositions.

Proposition 3.5. The space (Y, ∥ · ∥Y) is a separable and reflexive Banach space.

For the proof, see [4, Lemma 2.12].

Proposition 3.6. Let Y be the above Banach space defined by (3.1) and X be the space defined by (2.1).
Then we have the following properties.

(i) Y ↪→ X and ∥v∥X ≤ ∥v∥Y for all v ∈ Y.

(ii) Let v ∈ Y. Then ∥v∥Y > 1(= 1,< 1) ⇐⇒ ρp(·),h1(·)(v) > 1(= 1,< 1).

(iii) Let v ∈ Y. Then ∥v∥Y > 1 =⇒ ∥v∥p−

Y ≤ ρp(·),h1(·)(v) ≤ ∥v∥p+

Y .

(iv) Let v ∈ Y. Then ∥v∥Y < 1 =⇒ ∥v∥p+

Y ≤ ρp(·),h1(·)(v) ≤ ∥v∥p−

Y .

(v) Let un, u ∈ Y. Then limn→∞ ∥un − u∥Y = 0 ⇐⇒ limn→∞ ρp(·),h1(·)(un − u) = 0.

(vi) Let un ∈ Y. Then ∥un∥Y → ∞ as n → ∞ ⇐⇒ ρp(·),h1(·)(un) → ∞ as n → ∞.

The following proposition fulfills an important role in this paper. In the following, we
denote positive constants by c, c′, C, C′ which may vary from line to line, and put Ω1 = {x ∈
Ω; p(x) ≥ 2}, Ω2 = {x ∈ Ω; p(x) < 2}.

Proposition 3.7. Under (A.0)–(A.2), there exist positive constants c and C such that∫
Ω
(a(x,∇u(x))− a(x,∇v(x))) · (∇u(x)−∇v(x))dx ≥ cρh1(·),p(·),Ω1

(u − v)

+
{

c(C + ∥u∥Y + ∥v∥Y)
(p−(Ω2)−2)p−(Ω2)/2ρh1(·),p(·),Ω2

(u − v)
}2/p+(Ω2)

∧
{

c(C + ∥u∥Y + ∥v∥Y)
(p−(Ω2)−2)p−(Ω2)/2ρh1(·),p(·),Ω2

(u − v)
}2/p−(Ω2)

for u, v ∈ Y. Here and from now on, we denote a ∨ b = max{a, b} and a ∧ b = min{a, b} for real
numbers a and b.

In particular, if v = 0 and ∥u∥Y < 1, then we have∫
Ω

a(x,∇u(x)) ·∇u(x)dx ≥ c1(ρh1(·),p(·),Ω1
(u) + ρh1(·),p(·),Ω2

(u)2/p−)

for some constant c1 > 0. We also get the following estimate.∫
Ω

a(x,∇u(x)) ·∇u(x)dx ≥ c∥u∥p+

Y ∧ ∥u∥p−

Y − C∥h1∥L1(Ω) for all u ∈ Y. (3.3)



Existence of weak solutions for a class of nonlinear equation 13

Proof. For brevity of notation, for u, v ∈ Y, we put

J(u(x); v(x)) = (a(x,∇u(x))− a(x,∇v(x))) · (∇u(x)−∇v(x)).

We decompose the integral of J(u(x); v(x)) over Ω as follows.∫
Ω

J(u(x); v(x))dx =
∫

Ω1

J(u(x); v(x))dx +
∫

Ω2

J(u(x); v(x))dx.

We can easily see that when |Ω1| > 0, it follows from (A.2) that∫
Ω1

J(u(x); v(x))dx ≥ k0

∫
Ω1

h1(x)|∇u(x)−∇v(x)|p(x)dx.

When |Ω2| > 0, it follows from (A.2) that

(h1(x)1/p(x) + h1(x)1/p(x)|∇u(x)|+ h1(x)1/p(x)|∇v(x)|)2−p(x) J(u(x); v(x))

≥ k0|h1(x)1/p(x)∇u(x)− h1(x)1/p(x)∇v(x)|2.

By integrating p(x)/2-powers of the above inequality over Ω2, we have∫
Ω2

kp(x)/2
0 |h1(x)1/p(x)∇u(x)− h1(x)1/p(x)∇v(x)|p(x)dx

≤
∫

Ω2

(h1(x)1/p(x) + h1(x)1/p(x)|∇u(x)|+ h1(x)1/p(x)|∇v(x)|)(2−p(x))p(x)/2

× J(u(x); v(x))p(x)/2dx.

We note that

(h1(·)1/p(·) + h1(·)1/p(·)|∇u(·)|+ h1(·)1/p(·)|∇v(·)|)(2−p(·))p(·)/2 ∈ L2/(2−p(·))(Ω2),

and (J(u(·); v(·))p(·)/2 ∈ L2/p(·)(Ω2), and (2− p(x))/2+ p(x)/2 = 1. By the Hölder inequality
(Proposition 2.2), we have

k1

∫
Ω2

h1(x)1/p(x)|∇u(x)− h1(x)1/p(x)∇v(x)|p(x)dx

≤ 2∥(h1(·)1/p(·) + h1(·)1/p(·)|∇u(·)|+ h1(·)1/p(·)|∇v(·)|)(2−p(·))p(·)/2∥L2/(2−p(·))(Ω2)

× ∥J(u(·); v(·))p(·)/2∥L2/p(·)(Ω2)
,

where k1 = kp+(Ω2)/2
0 ∧ kp−(Ω2)/2

0 . We choose C > 1 so that C∥h1(·)1/p(·)∥Lp(·)(Ω2)
≥ 1. Then

∥Ch1(·)1/p(·) + h1(·)1/p(·)|∇u(·)| + h1(·)1/p(·)|∇v(·)|∥Lp(·)(Ω2)
≥ 1 by the definition of Lp(·)-

norm. By Proposition 2.12,

∥(Ch1(·)1/p(·) + h1(·)1/p(·)|∇u(·)|+ h1(·)1/p(·)|∇v(·)|)(2−p(·))p(·)/2∥L2/(2−p(·))(Ω2)

≤ ∥Ch1(·)1/p(·) + h1(·)1/p(·)|∇u(·)|+ h1(·)1/p(·)|∇v(·)|∥((2−p(·))p(·)/2)+(Ω2)

Lp(·)(Ω2)
.

Here since (2 − p(x))p(x)/2 = − 1
2 (p(x) − 1)2 + 1

2 , we see that (2 − p(x))p(x)/2)+(Ω2) =

(2 − p−(Ω2))p−(Ω2)/2. Since it follows from Proposition 2.12 that

∥Ch1(·)1/p(·)∥Lp(·)(Ω2)
≤ C∥h1∥

1/p+(Ω2)

L1(Ω)
∨ ∥h1∥

1/p−(Ω2)

L1(Ω)
=: C1,
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and ∥h1(·)1/p(·)|∇u(·)|∥Lp(·)(Ω2)
≤ ∥u∥Y and ∥h1(·)1/p(·)|∇v(·)|∥Lp(·)(Ω2)

≤ ∥v∥Y, we have

∥(Ch1(·)1/p(·) + h1(·)1/p(·)|∇u(·)|+ h1(·)1/p(·)|∇v(·)|)(2−p(·))p(·)/2∥L2/(2−p(·))(Ω2)

≤ (C1 + ∥u∥Y + ∥v∥Y)
(2−p−(Ω2))p−(Ω2)/2.

Using Proposition 2.12,

∥J(u(·); v(·))p(·)/2∥L2/p(·)(Ω2)
≤ ∥J(u(·); v(·))∥p+(Ω2)/2

L1(Ω2)
∨ ∥J(u(·); v(·))∥p−(Ω2)/2

L1(Ω2)
.

Hence we have∫
Ω2

J(u(x); v(x))dx = ∥J(u(·); v(·))∥L1(Ω2)

≥
{
(C1 + ∥u∥Y + ∥v∥Y)

(p−(Ω2)−2)p−(Ω2)/2k1

∫
Ω2

h1(x)|∇u(x)−∇v(x)|p(x)dx
}2/p+(Ω2)

∧
{
(C1 + ∥u∥Y + ∥v∥Y)

(p−(Ω2)−2)p−(Ω2)/2k1

∫
Ω2

h1(x)|∇u(x)−∇v(x)|p(x)dx
}2/p−(Ω2)

.

In particular case where v = 0 and ∥u∥Y < 1,

∫
Ω

a(x,∇u(x)) ·∇u(x)dx ≥ k0

∫
Ω1

h1(x)|∇u(x)|p(x)dx

+ (C1 + 1)p−(Ω2)−2k2/p+(Ω2)
1 ∧ k2/p−(Ω2)

1

{∫
Ω2

h1(x)|∇u(x)|p(x)dx
}2/p−(Ω2)

.

For the estimate (3.3), it suffices to use Lemma 3.4 (ii). This completes the proof.

Here we state the assumptions on functions f and g in (1.1).

(f.1) f = f (x, t) is a real Carathéodory function on Ω × R and there exist 1 ≤ a ∈ Lα(·)(Ω)

with α ∈ C+(Ω), and q ∈ C+(Ω) with

q(x) <
α(x)− 1

α(x)
p∗(x) for all x ∈ Ω

such that

| f (x, t)| ≤ C1(1 + a(x)|t|q(x)−1) for all t ∈ R and a.e. x ∈ Ω,

where C1 is a positive constant and p+ < q−.

(f.2) There exist θ > p+ and t0 > 0 such that

0 < θF(x, t) ≤ f (x, t)t for all t ∈ R \ (−t0, t0) and a.e. x ∈ Ω,

where

F(x, t) =
∫ t

0
f (x, s)ds. (3.4)

(f.3) f (x, t) = o(|t|p+−1) uniformly as t → 0.
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(g.1) g = g(x, t) is a real Carathéodory function on Γ2 × R and there exist 1 ≤ b ∈ Lβ·)(Γ2)

with β ∈ C+(Γ2), and r ∈ C+(Γ2) with

r(x) <
β(x)− 1

β(x)
p∂(x) for all x ∈ Γ2

such that

|g(x, t)| ≤ C2(1 + b(x)|t|r(x)−1) for all t ∈ R and σ-a.e. x ∈ Γ2,

where C2 is a positive constant and p+ < r−.

(g.2) Let θ and t0 be as in (f.2). That is, there exist θ > p+(Ω1) ∨ 2p+(Ω2)/p−(Ω2) and t0 > 0
such that

0 < θG(x, t) ≤ g(x, t)t for all t ∈ R \ (−t0, t0) and a.e. x ∈ Γ2,

where

G(x, t) =
∫ t

0
g(x, s)ds. (3.5)

(g.3) g(x, t) = o(|t|p+−1) uniformly as t → 0.

Lemma 3.8. Under (f.1)–(f.3) and (g.1)–(g.3), we have the following.

(i) For any λ > 0, there exists a constant C′
1 > 0 such that

|F(x, t)| ≤ λ

p+
|t|p+ + C′

1a(x)|t|q(x) − 1
|Ω| ∥h1/p∥L1(Ω) for a.e. x ∈ Ω, t ∈ R.

(ii) For any λ > 0, there exists a constant C′
2 > 0 such that

|G(x, t)| ≤ λ

p+
|t|p+ + C′

2b(x)|t|r(x) for σ-a.e. x ∈ Γ2, t ∈ R.

Proof. From (f.3), for any λ > 0, there exists δ ∈ (0, 1) such that

| f (x, t)| ≤ λ|t|p+−1 for a.e. x ∈ Ω, t ∈ (−δ, δ).

Hence we have
|F(x, t)| ≤ λ

p+
|t|p+ for a.e. x ∈ Ω, t ∈ (−δ, δ).

On the other hand, from (f.1), we have

|F(x, t)| ≤ C1(|t|+
a(x)
q(x)

|t|q(x)) ≤ C′
2a(x)|t|q(x) for a.e. x ∈ Ω, |t| ≥ δ.

If we choose C′′
2 > 0 so that C′′

2 δq+ ≥ 1
|Ω|∥h1/p∥L1(Ω), then

C′′
2 a(x)|t|q(x) − 1

|Ω| ∥h1/p∥L1(Ω) ≥ C′′
2 δq+ − 1

|Ω| ∥h1/p∥L1(Ω) ≥ 0

for a.e. x ∈ Ω and |t| ≥ δ. Hence |F(x, t)| ≤ (C′
2 + C′′

2 )a(x)|t|q(x) − 1
|Ω|∥h1/p∥L1(Ω) for a.e.

x ∈ Ω and |t| ≥ δ. It suffices to put C′
1 = C′

2 + C′′
2 .

Similarly (ii) holds.
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Define a functional on Y by

I(u) = Φ(u)− J(u)− K(u) for u ∈ Y, (3.6)

where

Φ(u) =
∫

Ω
A(x,∇u(x))dx, (3.7)

J(u) =
∫

Ω
F(x, u(x))dx, F(x, t) is defined by (3.4), (3.8)

K(u) =
∫

Γ2

G(x, u(x))dσx, G(x, t) is defined by (3.5). (3.9)

Proposition 3.9. Assume that (A.0)–(A.3), (f.1)–(f.3) and (g.1)–(g.3) hold. Then the functionals
Φ, J, K ∈ C1(Y, R) and the Fréchet derivatives Φ′, J′ and K′ satisfy the following equalities.

⟨Φ′(u), v⟩ =
∫

Ω
a(x,∇u(x)) ·∇v(x)dx, (3.10)

⟨J′(u), v⟩ =
∫

Ω
f (x, u(x))v(x)dx, (3.11)

⟨K′(u), v⟩ =
∫

Γ2

g(x, u(x))v(x)dσx (3.12)

for all u, v ∈ Y. Here and hereafter, we write the duality ⟨·, ·⟩Y∗,Y by simply ⟨·, ·⟩.

For the proof, see [4, Proposition 4.2].

Proposition 3.10. Assume that (A.0)–(A.3), (f.1)–(f.3) and (g.1)–(g.3) hold. Then we have the follow-
ing.

(i) The functionals J and K are weakly continuous in Y, that is, if un → u weakly in Y as n → ∞,
then J(un) → J(u) and K(un) → K(u) as n → ∞.

(ii) The functional Φ is sequentially weakly lower semi-continuous in Y, that is, if un → u weakly
in Y as n → ∞, then Φ(u) ≤ lim infn→∞ Φ(un).

(iii) Φ(u)− Φ(v) ≥ ⟨Φ′(v), u − v⟩ for all u, v ∈ Y.

For the proof, see [4, Proposition 4.4].

Lemma 3.11. Under (f.1)–(f.3) and (g.1)–(g.3), there exist constants c1, c2, C3 and C4 such that for
u ∈ Y with ∥u∥Y < 1, the following inequalities hold.

(i) We have

J(u) ≤ λ

p+
c1∥u∥p+

Y + C3∥u∥q−

Y − ∥h1/p∥L1(Ω).

(ii) We have

K(u) ≤ λ

p+
c2∥u∥p+

Y + C4∥u∥r−
Y .
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Proof. From Lemma 3.8,

J(u) ≤ λ

p+

∫
Ω
|u(x)|p+dx + C3

∫
Ω

a(x)|u(x)|q(x)dx − ∥h1/p∥L1(Ω).

Here it suffices to note that ∫
Ω
|u(x)|p+dx ≤ C∥u∥p+

Y

with some constant C > 0, and ∫
Ω

a(x)|u(x)|q(x)dx ≤ C′∥u∥q−

Y .

(ii) follows from the similar arguments as (i).

Proposition 3.12. Assume that (A.0)–(A.3), (f.1)–(f.3) and (g.1)–(g.3) hold. Then there exist constants
c, c1, c2 > 0 and C′

1, C′
2 > 0 such that for u ∈ Y with ∥u∥Y < 1,

I(u) ≥ (c − λc1 − λc2) ∥u∥p+

Y − C′
1∥u∥q−

Y − C′
2∥u∥r−

Y .

In particular, there exists ρ ∈ (0, 1) such that

inf
∥u∥Y=ρ

I(u) > 0. (3.13)

Proof. Let ∥u∥Y < 1. It follows from (A.3) and Proposition 3.7 that

Φ(u) =
∫

Ω
A(x,∇u(x))dx ≥

∫
Ω

1
p(x)

a(x,∇u(x)) ·∇u(x)dx − ∥h1/p∥L1(Ω)

≥ c∥u∥p+

Y − ∥h1/p∥L1(Ω).

From Lemma 3.11,

I(u) = Φ(u)− J(u)− K(u) ≥ (c − λc1 − λc2)∥u∥p+

Y − C′
1∥u∥q−

Y − C′
2∥u∥r−

Y .

If we choose λ > 0 small enough so that c′′ := c − λc1 − λc2 > 0, then we have

I(u) ≥ ∥u∥p+

Y (c′′ − C′
1∥u∥q−−p+

Y − C′
2∥u∥r−−p+

Y ).

Since q− > p+ and r− > p+, if ∥u∥Y = ρ > 0 is small, then we have inf∥u∥Y=ρ I(u) > 0.

Proposition 3.13. Assume that (A.0)–(A.3), (f.1)–(f.3) and (g.1)–(g.3) hold. Then there exists a con-
stant C4 > 0 such that

I(u) ≥
(

1
p+

− 1
θ

)
c∥u∥p+

Y ∧ ∥u∥p−

Y +
1
θ
⟨I′(u), u⟩ − C4 for all u ∈ Y.

Proof. From (A.3) and Lemma 3.4 (ii), for u ∈ Y, we have

Φ(u)− 1
θ
⟨Φ′(u), u⟩ =

∫
Ω

A(x,∇u(x))dx − 1
θ

∫
Ω

a(x,∇u(x)) ·∇u(x)dx

≥
∫

Ω

(
1

p(x)
− 1

θ

)
a(x,∇u(x)) ·∇u(x)dx − ∥h1/p∥L1(Ω)

≥
(

1
p+

− 1
θ

)(
c
∫

Ω
h1(x)|∇u(x)|p(x)dx − C

∫
Ω

h1(x)dx
)
− ∥h1/p∥L1(Ω)

≥
(

1
p+

− 1
θ

)
c∥u∥p+

Y ∧ ∥u∥p−

Y − C1∥h1∥L1(Ω)
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for some constant C1 > 0.
On the other hand, it follows from (f.2) that

0 < θF(x, t) ≤ f (x, t)t for a.e. x ∈ Ω, t ∈ R \ (−t0, t0).

Put Ωu = {x ∈ Ω; |u(x)| > t0}. Then 1
θ f (x, u(x))u(x)− F(x, u(x)) ≥ 0 for a.e. x ∈ Ωu. For

x ∈ Ω \ Ωu, we have∣∣∣∣1
θ

f (x, u(x))u(x)− F(x, u(x))
∣∣∣∣ ≤ C2(t0 + a(x)tq+

0 ∨ tq−
0 ).

Hence we have

1
θ
⟨J′(u), u⟩ − J(u) =

∫
Ωu

(
1
θ

f (x, u(x))u(x)− F(x, u(x))
)

dx

+
∫

Ω\Ωu

(
1
θ

f (x, u(x))u(x)− F(x, u(x))
)

dx

≥ −C2

∫
Ω\Ωu

(t0 + a(x)tq+
0 ∨ tq−

0 )dx

≥ −C2t0|Ω| − C2tq+
0 ∨ tq−

0 ∥a∥L1(Ω).

Similarly we have

1
θ
⟨K′(u), u⟩ − K(u) ≥ −C3t0|Γ2| − C3tr+

0 ∨ tr−
0 ∥b∥L1(Γ2).

Thus we have

I(u)− 1
θ
⟨I′(u), u⟩ = Φ(u)− 1

θ
⟨Φ′(u), u⟩ −

(
J(u)− 1

θ
⟨J′(u), u⟩

)
−

(
K(u)− 1

θ
⟨K′(u), u⟩

)
≥

(
1

p+
− 1

θ

)
c∥u∥p+

Y ∧ ∥u∥p−

Y − C4

for some constant C4.

Proposition 3.14. Assume that (A.0)–(A.3), (f.1)–(f.3) and (g.1)–(g.3) hold. Then the functional I
satisfies the Palais–Smale condition, that is, if a sequence {un} ⊂ Y satisfies that limn→∞ I(un) =

γ ∈ R exists and limn→∞ ∥I′(un)∥Y∗ = 0, then {un} has a convergent subsequence.

Proof. Let {un} ⊂ Y satisfy that limn→∞ I(un) = γ ∈ R exists and limn→∞ ∥I′(un)∥Y∗ = 0.

Step 1. {un} is bounded in Y. Indeed, if it is false, then passing to a subsequence, we can
assume that limn→∞ ∥un∥Y = ∞. By proposition 3.13, we have

I(un) ≥
(

1
p+

− 1
θ

)
k0∥un∥p−

Y − 1
θ
∥I′(un)∥Y∗∥un∥Y − C4

for large n. Since 1
p+ − 1

θ > 0 and p− > 1 and limn→∞ ∥I′(un)∥Y∗ = 0, we have I(un) → ∞ as
n → ∞. This is a contradiction.

Step 2. Since Y is a reflexive Banach space from Proposition 3.5, there exist a subsequence
{un′} of {un} and u ∈ Y such that un′ → u weakly in Y as n′ → ∞. Since {un′ − u} is bounded
in Y and limn′→∞ ∥I′(un′)∥Y∗ = 0, we see that

⟨I′(un′), un′ − u⟩ → 0 as n′ → ∞.
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By Proposition 2.9, un′ → u strongly in Lq(·)
a(·)(Ω) and Lr(·)

b(·)(Γ2) as n′ → ∞. From (f.1), using the
Hölder inequality,∣∣∣∣∫Ω

f (x, un′(x))(un′(x)− u(x))dx
∣∣∣∣

≤
∫

Ω
C1(1 + a(x)|un′(x)|q(x)−1)|un′(x)− u(x)|dx

≤ C1

∫
Ω
(a(x)1/q(x)|un′(x)− u(x)|+ a(x)1/q′(x)|un′(x)|q(x)−1a(x)1/q(x)|un′(x)− u(x)|)dx

≤ 2C1∥1∥Lq′(·)(Ω)∥a1/q(·)|un′ − u|∥Lq(·)(Ω)

+ 2C1∥a1/q′(·)|un′(·)|q(·)−1∥Lq′(·)(Ω)∥a1/q(·)|un′ − u|∥Lq(·)(Ω).

Since
ρq′(·)(a1/q′(·)|un′ |q(·)−1) =

∫
Ω

a(x)|un′(x)|q(x)dx

is bounded, we see that ∥a1/q′(·)|un′ |q(·)−1∥Lq′(·)(Ω) is bounded. Since ∥un′ − u∥
Lq(·)

a(·)(Ω)
→ 0 as

n′ → ∞, we see that

lim
n′→∞

⟨J′(un′), un′ − u⟩ = lim
n′→∞

∫
Ω

f (x, un′(x))(un′(x)− u(x))dx = 0.

Similarly, we have

lim
n′→∞

⟨K′(un′), un′ − u⟩ = lim
n′→∞

∫
Γ2

g(x, un′(x))(un′(x)− u(x))dσx = 0.

Thus we have

lim
n′→∞

⟨Φ′(un′), un′ − u⟩ = lim
n′→∞

(⟨J′(un′), un′ − u⟩+ ⟨K′(un′), un′ − u⟩+ ⟨I′(un′), un′ − u⟩) = 0.

Since un′ → u weakly in Y, we have limn′→∞⟨Φ′(u), un′ − u⟩ = 0, so

lim
n′→∞

⟨Φ′(un′)− Φ′(u), un′ − u⟩ = 0.

Since {un′} is bounded in Y, it follows from Proposition 3.7 that∫
Ω

h1(x)|∇un′(x)−∇u(x)|p(x)dx → 0 as n′ → ∞,

so un′ → u strongly in Y.

4 Main theorems

In this section, we state the main theorems (Theorem 4.3, 4.5 and 4.6).

Definition 4.1. We say u ∈ Y is a weak solution of (1.1) if u satisfies that∫
Ω

a(x,∇u(x)) ·∇v(x)dx =
∫

Ω
f (x, u(x))v(x)dx +

∫
Γ2

g(x, u(x))v(x)dσx (4.1)

for all v ∈ Y.
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Remark 4.2. Since C∞
0 (Ω) ⊂ Y, if u ∈ Y satisfies (4.1), then the equation (1.1) holds in the

distribution sense.

Now we obtain the following three theorems.

Theorem 4.3. Let Ω be a bounded domain of RN (N ≥ 2) with a C0,1-boundary Γ satisfying (1.2).
Under the hypotheses (A.0)–(A.3), (f.1)–(f.3) and (g.1)–(g.3), the problem (1.1) has a nontrivial weak
solution.

Remark 4.4. This theorem extends the result of [8] in which the authors considered the case
where A(x, ξ) = 1

p(x) |ξ|
p(x), Γ2 = ∅ and p− ≥ 2. This theorem is new and also an extension to

the case p− > 1.

We impose one more assumption.

(f.4) For any δ′ ∈ (0, 1), the function f (x, t) satisfies the following inequality.

f (x, t) ≥
{

ctm−1 for t ∈ [δ′, 1],

0 for t ∈ [0, ∞) \ [δ′, 1],

where c > 0 and 0 < m < 1.

For example, A function f (x, t) = χδ′(t)|t|m−2t + a(x)|t|q(x)−2t, where χδ′ ∈ C0(R) satisfying
that 0 ≤ χδ′ ≤ 1,

χδ′(t) =

{
0 for |t| ≤ δ′/2

1 for δ′ ≤ |t| ≤ 1

and that a function a is as in (f.1) verifies (f.1)–(f.4).

Theorem 4.5. In addition to the hypotheses of Theorem 4.3, assume that (f.4) also holds. Then the
problem (1.1) has at least two nontrivial weak solutions.

Finally, in addition to the hypotheses of Theorem 4.3, we assume the following hypotheses.

(A.4) A(x, ξ) is even with respect to ξ, that is, A(x,−ξ) = A(x, ξ) for a.e. x ∈ Ω and all
ξ ∈ RN .

(f.5) f (x, t) is odd with respect to t, that is, f (x,−t) = − f (x, t) for a.e. x ∈ Ω and all t ∈ R.

(g.4) g(x, t) is odd with respect to t, that is, g(x,−t) = −g(x, t) for σ-a.e. x ∈ Γ2 and all t ∈ R.

Then we can derive that there exist infinitely many weak solutions of (1.1).

Theorem 4.6. In addition to the hypotheses of Theorem 4.3, assume that (A.4), (f.5) and (g.4) also
hold. Then the problem (1.1) has infinitely many nontrivial weak solutions.

5 Proofs of Theorem 4.3, 4.5 and 4.6

In this section, we give proofs of Theorem 4.3, 4.5 and 4.6. Assume that (A.0)–(A.3), (f.1)–(f.3)
and (g.1)–(g.3) hold.

The proofs of Theorem 4.3, 4.5 and 4.6 consist of some lemma and propositions.
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Lemma 5.1. Under the hypotheses of Theorem 4.3, we have the following.

(i) |F(x, t)| ≤ C′
1(1 + a(x)|t|q(x)) for a.e. x ∈ Ω and all t ∈ R with some constant C′

1 > 0.

(ii) There exists γ ∈ Lα(·)(Ω) such that γ(x) > 0 a.e. x ∈ Ω and F(x, t) ≥ γ(x)tθ for all
t ∈ [t0, ∞) and a.e. x ∈ Ω, where α(·) and t0 are as in (f.1) and (f.2), respectively.

(iii) |G(x, t)| ≤ C′
2(1 + b(x)|t|r(x)) for σ-a.e. x ∈ Γ2 and all t ∈ R with some constant C′

2 > 0.

(iv) There exists δ ∈ Lβ(·)(Γ2) such that δ(x) > 0 σ-a.e. x ∈ Γ2 and G(x, t) ≥ δ(x)tθ for all
t ∈ [t0, ∞) and σ-a.e. x ∈ Γ2, where β(·) and t0 are as in (g.1) and (g.2), respectively.

Proof. (i) easily follows from (f.1).
(ii) From (f.2), for t ≥ t0,

0 < θF(x, t) ≤ f (x, t)t. (5.1)

Put γ(x) = F(x, t0)t−θ
0 . Then γ(x) > 0 for a.e. x ∈ Ω and it follows from (ii) that

γ(x) ≤ C′
1(1 + a(x)tq(x)

0 )t−θ
0 ≤ C′

1(1 + a(x)tq+
0 ∨ tq−

0 )t−θ
0 .

So γ ∈ Lα(·)(Ω). From (5.1),
θ

τ
≤ f (x, τ)

F(x, τ)
=

∂F
∂τ (x, τ)

F(x, τ)
.

Integrating this inequality over (t0, t), we have

θ log
t
t0

≤ log
F(x, t)
F(x, t0)

for all t ≥ t0.

This implies that F(x, t) ≥ γ(x)tθ for all t ≥ t0.
(iii) and (iv) follow from the similar argument as (i) and (ii) using (g.1) and (g.2), respec-

tively.

5.1 Proof of Theorem 4.3

For a proof of Theorem 4.3, we apply the following standard Mountain-Pass Theorem (cf.
Willem [26]).

Proposition 5.2. Let (V, ∥ · ∥V) be a Banach space and I ∈ C1(V, R) be a functional satisfying
the Palais–Smale condition. Assume that I(0) = 0, and there exist ρ > 0 and z0 ∈ V such that
∥z0∥V > ρ, I(z0) ≤ I(0) = 0 and

α := inf{I(u); u ∈ V with ∥u∥V = ρ} > 0.

Let G := {φ ∈ C([0, 1], V); φ(0) = 0, φ(1) = z0} ̸= ∅ and β = inf{max I(φ([0, 1]); φ ∈ G}. Then
β ≥ α and β is a critical value of I.

We apply Proposition 5.2 with (V, ∥ · ∥V) = (Y, ∥ · ∥Y). By Proposition 3.9 and Proposition
3.14, the functional I satisfies that I ∈ C1(Y, R) and the Palais–Smale condition holds. Since
Φ(0) = J(0) = K(0) = 0, we have I(0) = 0. According to (3.13),

α = inf
∥v∥Y=ρ

I(v) > 0. (5.2)
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We show that there exists u0 ∈ Y such that ∥u0∥Y > ρ and I(u0) ≤ 0. Choose v0 ∈ C∞
0 (Ω)

such that v0 ≥ 0 and W = {x ∈ Ω; v0(x) ≥ t0} has a positive measure, where t0 is as in
(f.2). We see that F(x, v0(x)) > 0 for a.e. x ∈ W from (f.2). Let t > 1 and define Wt = {x ∈
Ω; tv0(x) ≥ t0}, then W ⊂ Wt. By Lemma 5.1 (ii), there exists γ ∈ Lα(·)(Ω)(⊂ L1(Ω)) such
that γ(x) > 0 a.e. x ∈ Ω and F(x, t) ≥ γ(x)tθ for t ∈ [t0, ∞). Thereby,∫

Wt

F(x, tv0(x))dx ≥
∫

Wt

γ(x)tθv0(x)θdx ≥ tθ L(v0),

where L(v0) =
∫

W γ(x)v0(x)θdx > 0. For t ∈ [0, t0], it follows from Lemma 5.1 (i) that

|F(x, t)| ≤ C′
1(1 + a(x)tq(x)) ≤ C′

1(1 + a(x)tq+
0 ∨ tq−

0 ).

By (f.2), F(x, st) ≥ F(x, t)sθ for t ∈ R \ (−t0, t0) and s > 1. Indeed, if we define h(s) = F(x, st),
then

h′(s) = f (x, st)t =
1
s

f (x, st)st ≥ θ

s
F(x, st) =

θ

s
h(s).

Thus h′(s)/h(s) ≥ θ/s, so log h(s)/h(1) ≥ θ log s for s > 1. This implies h(s) ≥ h(1)sθ .
(A.3) implies that

A(x, sξ) +
h1(x)
p(x)

≤ sp(x)
(

A(x, ξ) +
h1(x)
p(x)

)
for s > 1.

Indeed, if we define k(s) = A(x, sξ) + h1(x)/p(x), then we see that k′(s) ≤ 1
s p(x)k(s). Hence

we obtain the inequality. Thus we see that, for t > 1, Φ(su) + ∥h1/p∥L1(Ω) ≤ sp(x)(Φ(u) +
∥h1/p∥L1(Ω) for u ∈ Y and s > 1. Thereby we see that, for t > 1,

I(tv0) = Φ(tv0)− J(tv0)

≤ Φ(tv0)−
∫

Wt

F(x, tv0(x))dx −
∫

Ω\Wt

F(x, tv0(x))dx

≤ tp+Φ(v0) + tp+∥h1/p∥L1(Ω) − ∥h1/p∥L1(Ω) − tθ L(v0) + C′
1|Ω|+ tq+

0 ∨ tq−
0 ∥a∥L1(Ω).

Since θ > p+ and L(v0) > 0, we can see that I(tv0) → −∞ as t → ∞. Hence there exists t1 > 1
such that ∥t1v0∥Y > ρ and I(t1v0) ≤ 0. Put u0 = t1v0.

If we define φ(t) = tu0, then φ ∈ G, so G ̸= ∅. Hence all the hypotheses of Proposition
5.2 hold. Therefore, β = inf{max I(φ([0, 1]); φ ∈ G} satisfies that β ≥ α > 0 and β is a critical
value of I, that is, there exists u1 ∈ Y such that I(u1) = β and I′(u1) = 0. Thus u1 is a weak
solution of (1.1). Since I(u1) = β ≥ α > 0 = I(0), u1 is nontrivial weak solution of (1.1). This
completes the proof of Theorem 4.3.

5.2 Proof of Theorem 4.5.

It follows from (f.4) that for 0 ≤ t ≤ 1,

F(x, t) ≥
{∫ t

δ′ f (x, s)ds if t ≥ δ′,

0 if t < δ′
≥

{
c
m (tm − (δ′)m) if t ≥ δ′,

0 if t < δ′.

Fix t1 ∈ (0, 1) small enough and choose δ′ ∈ (0, 1) such that (δ′)m ≤ t1. If (δ′)m ≤ t, then
F(x, t) ≥ c

m (tm − t) since (δ′)m ≥ δ′. Choose φ ∈ C∞
0 (Ω) so that 0 ≤ φ ≤ 1 and φ ̸≡ 0. Put
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Ωδ′ = {x ∈ Ω; (δ′)m ≤ t1φ(x)}. Then we note that |Ω \ Ωδ′ | → 0 as δ′ → 0, where |A| denotes
the measure of a measurable set A. Thus we have

J(t1φ) =
∫

Ω
F(x, t1φ(x))dx

≥
∫

Ωδ′
F(x, t1φ(x))dx

≥ c
m

∫
Ωδ′

((t1φ(x))m − t1φ(x))dx

≥ c
m

tm
1

(∫
Ω

φ(x)mdx −
∫

Ω\Ωδ′
φ(x)mdx

)
− c

m
t1

∫
Ωδ′

φ(x)dx

≥ c
m

tm
1

(∫
Ω

φ(x))mdx − |Ω \ Ωδ′ |
)
− c

m
t1|Ω|.

If we replace δ′ with smaller one, if necessary, we may assume that
∫

Ω φ(x)mdx− |Ω \Ωδ′ | > 0.
On the other hand, since A(x, ξ) is convex with respect to ξ and A(x, 0) = 0, we have

A(x, t1ξ) = A(x, t1ξ + (1 − t1)0) ≤ t1A(x, ξ). Thus

Φ(t1φ) =
∫

Ω
A(x, t1∇φ(x))dx ≤ t1Φ(φ).

Therefore, we have

I(t1 φ) = Φ(t1φ)− J(t1φ) ≤ t1

(
Φ(φ) +

c
m
|Ω|

)
− c

m
tm
1

(∫
Ω

φ(x)mdx − |Ω \ Ωδ′ |
)

.

Since 0 < m < 1, if t1 > 0 is small enough, then we see that I(t1φ) < 0. By Proposition 3.12, I
is bounded from below on Bρ(0), where Bρ(0) = {v ∈ Y; ∥v∥Y < ρ}, ρ is as in (3.13). Hence

−∞ < c := inf
v∈Bρ(0)

I(v) < 0.

Let 0 < ε < infv∈∂Bρ(0) I(v)− infv∈Bρ(0)
I(v). Here we note that infv∈∂Bρ(0) I(v) > 0. Then there

exists u ∈ Bρ(0) such that

inf
v∈Bρ(0)

I(v) ≤ I(u) ≤ inf
v∈Bρ(0)

I(v) + ε2.

Since infv∈Bρ(0)
I(v) < 0, we can choose u ∈ Bρ(0) so that I(u) < 0. By applying the Ekeland

variational principle (cf. Ekeland [12, Theorem 1.1]) in the complete metric space Bρ(0), there
exists uε ∈ Bρ(0) such that

I(uε) ≤ I(u), (5.3)

I(uε) ≤ I(v) + ε∥v − uε∥Y for all v ∈ Bρ(0), (5.4)

∥u − uε∥Y ≤ ε. (5.5)

Define a functional Î : Bρ(0) → R by Î(v) = I(v) + ε∥v − uε∥Y for v ∈ Bρ(0). Since I(uε) ≤
I(u) < 0 from (5.3) and I(v) > 0 for all v ∈ ∂Bρ(0), we have uε ∈ Bρ(0). Choose ρ′ > 0 small
enough so that uε + w ∈ Bρ(0) for w ∈ Bρ′(0). From (5.4), since Î(uε) ≤ Î(uε + w) for all
w ∈ Bρ′(0), we have

⟨I′(uε), w⟩+ ε∥w∥Y

∥w∥Y

=
⟨I′(uε), tw⟩+ εt∥w∥Y − ( Î(uε + tw)− Î(uε))

t∥w∥Y
+

Î(uε + tw)− Î(uε)

t∥w∥Y
.
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Here we note that from (5.4),

Î(uε + tw)− Î(uε) = I(uε + tw) + ε∥tw∥Y − I(uε) ≥ 0

for t ∈ (0, 1). Hence

⟨I′(uε), w⟩+ ε∥w∥Y

∥w∥Y
≥ ⟨I′(uε), tw⟩ − (I(uε + tw)− I(uε))

t∥w∥Y
→ 0 as t → +0.

So ⟨I′(uε), w⟩+ ε∥w∥Y ≥ 0 for all w ∈ Bρ′(0), so ⟨I′(uε), w⟩ ≥ −ε∥w∥Y. Replacing w with −w,
we have |⟨I′(uε), w⟩| ≤ ε∥w∥Y for all w ∈ Bρ′(0). Thus ∥I′(uε)∥Y∗ ≤ ε. Letting ε → 0, we see
that I(uε) → c and I′(uε) → 0 in Y∗. Since I satisfies the Palais–Smale condition in Y, there
exist a subsequence {un} of {uε} and u2 ∈ Bρ(0) such that un → u2 in Y and I′(u2) = 0.
Therefore, u2 is a weak solution of (1.1). Since I(u2) = c < 0 = I(0), u2 is a nontrivial weak
solution of (1.1). Since I(u2) = c < 0 < I(u1), we have u1 ̸= u2. This completes the proof of
Theorem 4.5.

5.3 Proof of Theorem 4.6

We apply the following Symmetric Mountain-Pass Theorem due to the Rabinowitz [23, Theo-
rem 9.12] (cf. Xie and Xiao [27, Proposition 2.1]).

Proposition 5.3. Let V be an infinite-dimensional real Banach space. A functional I : V → R is of
C1-class and satisfies the Palais–Smale condition. Furthermore, assume that

(I.1) I(0) = 0 and I is an even functional, that is, I(−u) = I(u) for all u ∈ V.

(I.2) There exist positive constants α and ρ such that

inf
u∈∂Bρ(0)

I(u) ≥ α.

(I.3) For each finite-dimensional linear subspace V1 ⊂ V, the set {u ∈ V1; I(u) ≥ 0} is bounded.

Then I has an unbounded sequence of critical values.

We apply Proposition 5.3 with V = Y. Note that the functional I defined by (3.6) is of class
C1 (Proposition 3.9) and satisfies the Palais–Smale condition (Proposition 3.14). From (A.4),
(f.5) and (g.4), (I.1) is trivial. (I.2) follows from (3.13). Thus it suffices to derive (I.3).

Let u ∈ Y with ∥u∥Y > 1. Since Φ(u) ≤ c1∥h0∥Lp′(·)(Ω)∥u∥Y + C1∥u∥p+

Y from Lemma 3.4
and p+ > 1, we have

Φ(u) ≤ C5∥u∥p+

Y for some constant C5 > 0. (5.6)

Since F(x, t) is an even function with respect to t, it follows from Lemma 5.1 (ii) that F(x, t) ≥
γ(x)|t|θ for |t| ≥ t0. Define Ωt0 = {x ∈ Ω; |u(x)| ≥ t0}. Then

J(u) =
∫

Ω
F(x, u(x))dx =

∫
Ωt0

F(x, u(x))dx +
∫

Ω\Ωt0

F(x, u(x))dx.

From (f.1), ∫
Ω\Ωt0

|F(x, u(x))|dx ≤ C′
1|Ω|+ tq+

0 ∨ tq−
0 ∥a∥L1(Ω).
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Hence we have

J(u) ≥
∫

Ωt0

γ(x)|u(x)|θdx − C6

=
∫

Ω
γ(x)|u(x)|θdx −

∫
Ω\Ωt0

γ(x)|u(x)|θdx − C6

≥
∫

Ω
γ(x)|u(x)|θdx − C7, (5.7)

where C7 is a constant. Similarly we have

K(u) ≥
∫

Γ2

δ(x)|u(x)|θdσx − C8, (5.8)

where C8 is a constant.
We note that (∫

Ω
γ(x)|u(x)|θdx +

∫
Γ2

δ(x)|u(x)|θdσ

)1/θ

is a norm in Y.
Let Y1 be any finite-dimensional linear subspace of Y. Since Y1 is of finite-dimensional, the

above norm is equivalent to the norm ∥u∥Y in Y1, so there exists C9 > 0 such that

C9∥u∥θ
Y ≤

∫
Ω

γ(x)|u(x)|θdx +
∫

Γ2

δ(x)|u(x)|θdσx.

Therefore, for u ∈ Y1 with ∥u∥Y > 1, it follows from (5.6), (5.7) and (5.8) that

I(u) ≤ C5∥u∥p+

Y − C9∥u∥θ
Y + C7 + C8.

If u ∈ Y1 with ∥u∥Y > 1 satisfies I(u) ≥ 0, then we have C9∥u∥θ
Y ≤ C5∥u∥p+

Y + C7 + C8.
Since θ > p+, the set {u ∈ Y1; ∥u∥Y > 1, I(u) ≥ 0} is bounded, so {u ∈ Y1; I(u) ≥ 0} is
bounded. Since all the assumptions of Proposition 5.3 hold, I has an unbounded sequence of
critical values, so problem (1.1) has infinitely many weak solutions. This completes the proof
of Theorem 4.6.
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