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Abstract. The following Fisher–KPP type equation

ut = Kuxx − Buq + Aup, (x, t) ∈ R × (0, ∞),

with p > q > 0 and A, B, K positive coefficients, is considered. For both p > q > 1 and
p > 1, q = 1, we construct stationary solutions, establish their behavior as |x| → ∞ and
prove that they are separatrices between solutions decreasing to zero in infinite time
and solutions presenting blow-up in finite time. We also establish decay rates for the
solutions that decay to zero as t → ∞.
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1 Introduction

The aim of this paper is to bring into light some qualitative properties related to the dynamics
of solutions to the following generalized Fisher–KPP model:

ut = Kuxx − Buq + Aup, (1.1)

posed for (x, t) ∈ R × (0, ∞), in the generic range of exponents p > q > 0, p > 1 and with
A, B, K positive coefficients. The main feature of Eq. (1.1) is the competition between three
terms having different effects for large times: a source term with exponent p > 1 which,
when alone, usually leads to finite time blow-up (see for example [25] for a thorough study
of this phenomenon), an absorption term with exponent q > 0 which, when alone, implies a
dissipation, that is, a loss of the L1 norm (leading also to a finite time extinction if q < 1), and
a diffusion term which is conservative with respect to the L1 norm. Thus, the balance between
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reaction and absorption will determine the main features related to the large time behavior of
the solutions. In order to simplify the model, we can perform the following scaling

x = ax, t = bt, u = cu, (1.2)

with coefficients

c =
(

B
A

)1/(p−q)

, a =

(
Kc1−p

A

)1/2

, b =
c1−p

A
, (1.3)

in order to obtain that, in the new variables (x, t), the rescaled function u is a solution to

ut = (u)xx − uq + up. (1.4)

We shall thus work, without any loss of generality, with Eq. (1.4), and for simplicity we drop
from the notation the overlines, that is, we relabel the solution and the variables in Eq. (1.4) as
(u, x, t). Eq. (1.4) is a very well-established model when the reaction and absorption exponents
satisfy the opposite order, that is, 0 < p < q, stemming from the seminal works by Fisher [10]
and Kolmogorov, Petrovsky and Piscounoff [21], dealing with the specific case p = 1 and q = 2
as a model in mathematical biology. Nowadays, the Fisher–KPP equation with 0 < p < q is
rather well understood, new applications have been proposed and, from the mathematical
point of view, it has been noticed that the dynamics of the solutions is well represented by
solutions in form of traveling waves with a speed c > 0, that is

u(x, t) = f (x − ct), c > 0, (1.5)

where f (·) is the profile of the wave, see for example [1, 7, 9, 14, 22, 26] and references therein.
In particular, a very famous result (see for example the classical papers [1, 27] for a deduction
of c∗ in different cases) is the existence of a critical speed c∗ > 0 such that traveling waves
only exist if the speed is c ≥ c∗ and do not exist when c < c∗.

The opposite case of ordering between the reaction and absorption exponents, that is,
p > q > 0, has been also proposed, more recently, in a number of models arising in applied
sciences. As a general model, Eq. (1.4) appears in growth and diffusion models as established,
for example, in the book [3]. More specific applications in the mathematical modeling of tumor
growth have been proposed by authors such as Marusic and Bajzer and their collaborators,
see for example [2, 23, 24] and references therein, and a similar simplified model in [31].

Despite these applications, we discovered that there are still some gaps in the mathemat-
ical study of Eq. (1.4). As it is already well-established, in the more “standard” Fisher–KPP
equation, that is, with exponents ordered as q > p, traveling waves, although they are still
not stable in the L∞ norm, are asymptotically stable with respect to suitable norms involving
exponential weights, as shown for example in [28,30]. In stark contrast to the Fisher–KPP case,
in our case it appears that traveling waves (and other explicit or semi-explicit solutions, as we
shall see in the present work) are unstable with respect to the dynamics of general solutions
to Eq. (1.4); that is, even if an initial condition u0 ∈ C(R) is sufficiently close (with respect
to the L∞ norm) to one of several explicit solutions, it will evolve either by growing up (and
then blowing up in finite time) or by decaying as t → ∞. We mention here [25, Chapter 17]
where solutions to Eq. (1.4) with q = 1 are studied and the short note [18] devoted to the
range p > 1 > q > 0 and m > 1, where the transition from finite time extinction to blow-up
is established. The existence of a separatrix in the form of a stationary solution has been
thoroughly investigated for the supercritical semilinear heat equation in [4,15,16,32] (see also
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references therein), while some more general equations related to Eq. (1.4), or particular cases
of it, have been considered in [17, 33].

Putting into light this instability of several stationary solutions is actually the core of this
work; indeed, we construct several solutions to Eq. (1.4) (in either explicit or implicit form)
and we then prove that they serve as separatrices for the dynamics of general solutions to
the Cauchy problem associated to Eq. (1.4) with suitable initial conditions. More precisely,
solutions with data lying above the specific solution (even very close to it) blow up in finite time,
while solutions with data lying below the specific solution decay as t → ∞ (and even vanish
in finite time if 0 < q < 1, as shown in [18]) and we give some decay estimates. To fix the
notation, we consider throughout this work the following family of initial conditions:

u(x, 0) = u0(x), x ∈ R, u0 ∈ L∞(R) ∩ C(R), u0 ≥ 0, u0 ̸≡ 0. (1.6)

Since we are dealing with a semilinear problem, solutions will be taken in classical sense.
We say that u is a subsolution (respectively supersolution) to Eq. (1.4) if the sign of equality is
replaced with ≤ (respectively ≥) in Eq. (1.4) and we say that u is a subsolution (respectively
supersolution) to the Cauchy problem (1.4)–(1.6) if u is a subsolution (respectively supersolu-
tion) to Eq. (1.4) and, furthermore, u(x, 0) ≤ u0(x) for any x ∈ R (respectively u(x, 0) ≥ u0(x)
for any x ∈ R).

Thus, our main tool in the forthcoming proofs is the comparison principle, which is a well
established property of Eq. (1.4) and even of much more general models of analogous type,
see for example [6, 8].

Another motivation for writing this paper is that, in a forthcoming work, we are able
to map by some transformations a rather general family of a priori more complex partial
differential equations into various cases of Eq. (1.4), and we did not find a proper reference in
literature giving the precise information we need on Eq. (1.4). We thus decided to fill in this
gap, at the same time the current work serving for completing the study of the ranges of q not
considered in the short note [18] devoted to absorption exponents q ∈ (0, 1).

Concerning the organization of the material, the paper is divided into two sections, related
to, by order of appearance, the ranges q = 1 and q ∈ (1, p), followed by a short discussion
at the end. The two main sections are further divided into subsections with the following
scheme: a first subsection establishing some exact solutions (either explicit or implicit), and
then one or two subsections establishing, on the one hand, the decay rate of solutions lying
below the constant solution and, on the other hand, the character of separatrix of the stationary
solution established in the first subsection in any of these cases. The main difficulty stems from
the fact that, for data u0 which are very close to the stationary solution, in any of the cases,
a rather fine construction of subsolutions and supersolutions is required. We are now in a
position to begin our analysis.

2 The exponent q = 1

As indicated in the title, throughout this section, we fix q = 1 in Eq. (1.4), that is,

ut = uxx − u + up. (2.1)

We follow the plan mentioned at the end of the Introduction.
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2.1 Some explicit solutions

We derive below some exact solutions to Eq. (2.1), all of them in explicit form.
• constant solution: it is obvious that u(x, t) = 1 is the unique non-trivial constant solu-

tion.
• solutions depending only on time: we look for solutions in the form u(x, t) = h(t).

With this ansatz, Eq. (2.1) becomes the differential equation

h′(t) = −h(t) + h(t)p, t > 0,

which can be integrated explicitly, leading to the family of explicit solutions

U(x, t; C) = h(t; C) =
[
1 + Ce(p−1)t

]−1/(p−1)
, C ∈ (−1, ∞). (2.2)

Let us notice here that the behavior of U(·, ·; C) as t → ∞ depends on the sign of C. Indeed, it
is obvious that U decreases as t → ∞ if C > 0, while it blows up in finite time if C ∈ (−1, 0),
noticing that we recover the constant solution U ≡ 1 for C = 0.

• stationary solutions: we look for solutions in the form u(x, t) = g(x). With this ansatz,
Eq. (2.1) becomes the differential equation

g′′(x)− g(x) + g(x)p = 0, x ∈ R. (2.3)

By multiplying (2.3) by g′(x) and integrating, we find that

(g′)2(x)− g2(x) +
2

p + 1
gp+1(x) = K, K ∈ R. (2.4)

Since we consider solutions such that g ∈ L∞(R) and g(x) → 0 as x → ±∞, we also infer
from (2.3) that g′′ ∈ L∞(R) and an application of Barbalat’s Lemma [29] readily leads to K = 0
in (2.4). After some easy manipulations and an implicit integration, we obtain

C ± x = − 2
p − 1

arctanh

√
1 − 2g(x)p−1

p + 1
,

which can be written in an explicit form as follows:

g(x; C) =
{

p + 1
2

[
1 − tanh2

(
C +

p − 1
2

x
)]}1/(p−1)

, C ∈ R, (2.5)

an expression similar to the ones identified at the end of [18, Section 2]. Recalling the identity

1 − tanh2 θ =
4

2 + e2θ + e−2θ
, θ ∈ R,

we deduce from (2.5) that the stationary solutions g(·; C) have an exponential decay as |x| →
∞, more precisely

g(x; C) ∼ K(C, p)e−|x|, K(C, p) :=
(

p + 1
2

)1/(p−1)

e2C/(p−1), C ∈ R.

In particular, the stationary solution belongs to L1(R). In the forthcoming analysis, we will
let for simplicity C = 0 and we will work with the even stationary solution g(·; 0), but, apart
from longer and more tedious calculations, the separatrix property of every stationary solution
g(·; C) will follow in a completely analogous way.
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2.2 Decay rate and large time behavior below the constant solution

The aim of this section is to show that solutions starting from data which are smaller than one
decay as t → ∞ and stabilize towards a profile linked with the heat equation.

Theorem 2.1. Let u0 ∈ C(R) ∩ L∞(R) be such that 0 < ∥u0∥∞ < 1. Then there exists C > 0 such
that the solution u to the Cauchy problem (2.1)–(1.6) satisfies

∥u(t)∥∞ ≤ Ce−t, (x, t) ∈ R × (0, ∞). (2.6)

If furthermore u0 ∈ L1(R), we have the following large time behavior for the solution u to the Cauchy
problem (2.1)–(1.6)

lim
t→∞

t1/2∥etu(t)− G(t)∥∞ = 0, (2.7)

where G(t) is the heat kernel

G(x, t) =
M√
4πt

e−|x|2/4t, M = ∥u0∥1.

Proof. Assume first that u0 ∈ L∞(R) ∩ C(R) and ∥u0∥∞ ∈ (0, 1). Pick C0 > 0 such that

∥u0∥∞ < (1 + C0)
−1/(p−1).

Recalling the solution u(·, ·; C0) defined in (2.2), the comparison principle then entails that

u(x, t) ≤ U(x, t; C0) =
[
1 + C0e(p−1)t

]−1/(p−1)
≤ C−1/(p−1)

0 e−t, (2.8)

for any (x, t) ∈ R × (0, ∞), and thus we have proved the estimate (2.6).
Set next

w(x, t) := etu(x, t), (x, t) ∈ R × (0, ∞).

Notice that w(x, 0) = u(x, 0) = u0(x), for any x ∈ R, and a straightforward calculation shows
that w is a solution to the following equation

wt = wxx + e−(p−1)twp, (x, t) ∈ R × (0, ∞). (2.9)

Assume now that, moreover, u0 ∈ L1(R). The equation (2.9) strongly suggests that an asymp-
totic simplification to the heat equation as t → ∞ is expected to take place. In order to prove
it in a rigorous way, the simplest path is to apply the stability theorem by Galaktionov and
Vázquez [12, 13]. Indeed, if we let v to be the solution to the standard heat equation vt = vxx

with the same initial condition v(x, 0) = u0(x), x ∈ R, we easily observe that w is a superso-
lution to this problem, so that the comparison principle applied to the heat equation, together
with (2.8), ensure that

v(x, t) ≤ w(x, t) ≤ C−1/(p−1)
0 , (x, t) ∈ R × (0, ∞). (2.10)

The estimates (2.10), together with well known properties of the heat equation, readily imply
that the hypothesis required for the application of the above mentioned stability theorem are
in force. The stability theorem thus gives that the ω-limit set of the orbits w(·; t) as t → ∞ are
contained in the solutions to the standard heat equation. However, since the initial condition
is u0, the uniqueness of the solution to the Cauchy problem for the heat equation implies that
w(t) approaches v(t) as t → ∞. Since u0 ∈ L1(R), the well known asymptotic behavior as
t → ∞ for the integrable solutions to the heat equation leads to the convergence (2.7).

Remark. We can observe by comparison with a suitable Gaussian function, which is a subso-
lution to (2.9), that, even if u0 ∈ L∞(R) but u0 ̸∈ L1(R), we have

Ct−1/2e−t ≤ ∥u(t)∥∞, t > 0.
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2.3 The stationary solution as a separatrix

As commented in Section 2.1, we fix for simplicity C = 0 and denote by g0(x) = g(x; 0), x ∈ R,
the stationary solution defined in (2.5) with C = 0. In this section, we prove that this solution
(and, analogously or by a simple translation, any other stationary solution g(·; C)) plays the
role of a separatrix for the large time behavior of the solutions to the Cauchy problem (2.1)–
(1.6): that is, an initial condition strictly above it produces a solution whose L∞ norm increases
with time (and in the end blows up in finite time), while an initial condition strictly below it
produces a solution decaying in time, for which the outcome of Theorem 2.1 applies. This is
made precise in the next statement.

Theorem 2.2.

(a) Let u0 ∈ L∞(R) ∩ C(R) such that

inf
x∈R

u0(x)
g0(x)

= κ0 > 1. (2.11)

Then the solution u to the Cauchy problem (2.1)–(1.6) with initial condition u0 blows up in finite
time.

(b) Let u0 ∈ L∞(R) ∩ C(R) such that

sup
x∈R

u0(x)
g0(x)

= κ0 < 1. (2.12)

Then the solution u to the Cauchy problem (2.1)–(1.6) with initial condition u0 decays to zero as
t → ∞ and behaves as in Theorem 2.1.

Remark. Before going to the proof, let us observe that conditions (2.11) and (2.12) are in fact
related to a separation of the tails as |x| → ∞. Indeed, due to the strong maximum principle,
another solution cannot touch from above or from below the stationary solution g0 at a time
t > 0, and for a fixed compact subset K ⊂ R one could really find κ0(K), respectively κ0(K)
(depending in this case on the compact K) so that the previous conditions hold true in K. It is
thus as |x| → ∞ where a separation has to be required, as it does not follow from a maximum
principle, and this is the sense of the two conditions (2.11) and (2.12).

Proof of Theorem 2.2. (a) Let us consider the function

G(x, t) = (t + T)δg0((t + T)γx),

where T > 1, δ > 0 and γ > 0 are parameters to be determined later, in order for G to be a
subsolution to the Cauchy problem (2.1)–(1.6). A direct calculations gives

Gt(x, t) = δ(t + T)δ−1g0(ζ) + γ(t + T)δ−1ζg′0(ζ), ζ := (t + T)γx.

Since g0 is an even function with a decreasing profile with respect to x > 0, we deduce that

Gt(x, t) ≤ δ(t + T)δ−1g0(ζ). (2.13)

Moreover, employing the equation (2.3) satisfied by g0, we find that

Gxx(x, t) = (t + T)δ+2γg′′0 (ζ) = (t + T)δ+2γ(g0(ζ)− gp
0 (ζ)). (2.14)
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Gathering the outcome of (2.13) and (2.14), we obtain

Gt(x, t)− Gxx(x, t) + G(x, t)− Gp(x, t) ≤ (t + T)δ−1
[
δ + T + t − (t + T)2γ+1

]
g0(ζ)

+ (t + T)δ+2γ
[
1 − (t + T)δ(p−1)−2γ

]
gp

0 (ζ).

We next choose the (up to now) free parameters as follows: fix first

0 < δ < κ
(p−1)/2
0 − 1, γ =

δ(p − 1)
4

. (2.15)

With the previous choices, we are in a position to also choose

T := κ1/δ
0 > 1.

Let us first observe that the terms in brackets in the previous calculation are negative with
these choices, for any t ≥ 0. On the one hand, since δ(p − 1)− 2γ > 0, we immediately get
that

1 − (t + T)δ(p−1)−2γ ≤ 1 − Tδ(p−1)−2γ < 0, t ≥ 0.

On the other hand, since γ > 0, we have

(T + t)2γ+1 − (t + T) = (t + T)((T + t)2γ − 1) ≥ T(T2γ − 1) > κ
(p−1)/2
0 − 1 > δ,

whence
δ + T + t − (t + T)2γ+1 < 0, t ≥ 0.

We have thus proved that G(·, t) is a subsolution to Eq. (2.1) for any t ≥ 0. Moreover, taking
into account that g0 is decreasing with respect to |x| and that T > 1, γ > 0, we have

G(x, 0) = Tδg0(Tγx) = κ0g0(Tγx) ≤ κ0g0(x) ≤ u0(x), x ∈ R,

hence G is a subsolution to the Cauchy problem (2.1)–(1.6) with initial condition u0(x). The
comparison principle then gives

u(x, t) ≥ (t + T)δg0((t + T)γx), (x, t) ∈ R × (0, ∞).

Defining then the following energy

E(u(t)) =
1
2

∫
R
(|ux|2(x, t) + u2(x, t)) dx − 1

p + 1

∫
R

up+1(x, t) dx,

we observe that

E(G(t)) =
1
2

∫
R

[
(T + t)2(δ+γ)|g′0(x(T + t)γ)|2 dx + (T + t)2δg0(x(T + t)γ)2

]
dx

− (T + t)δ(p+1)

p + 1

∫
R

gp+1
0 (x(T + t)γ) dx

=
1
2
(T + t)2δ+γ

∫
R
|g′0(y)|2 dy +

1
2
(T + t)2δ−γ

∫
R

g2
0(y) dy

− 1
p + 1

(T + t)(p+1)δ−γ
∫

R
gp+1

0 dy < 0,
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provided t > 0 is taken sufficiently large, since the choice of δ and γ in (2.15) implies

(p + 1)δ − γ > 2δ + γ > 2δ − γ.

We then infer from [25, Theorem 17.6] that the solution to Eq. (2.1) with initial condition
G(t0) for t0 sufficiently large such that E(G(t0)) < 0 blows up in finite time. It follows by
comparison that also u blows up in finite time, as claimed.

(b) Working “in the mirror” with respect to part (a), let us consider the function

H(x, t) = (t + T)−δg0((t + T)−γx),

where T > 1, δ > 0 and γ > 0 are parameters to be determined later, in order for H to be a
supersolution to the Cauchy problem (2.1)–(1.6). A direct calculations gives

Ht(x, t) = −δ(t + T)−δ−1g0(ζ)− γ(t + T)−δ−1ζg′0(ζ), ζ := (t + T)−γx.

Since g0 is an even function with a decreasing profile with respect to x > 0, we deduce that

Ht(x, t) ≥ −δ(t + T)−δ−1g0(ζ). (2.16)

Moreover, employing the equation (2.3) satisfied by g0, we find that

Hxx(x, t) = (t + T)−δ−2γg′′0 (ζ) = (t + T)−δ−2γ(g0(ζ)− gp
0 (ζ)). (2.17)

Gathering the outcome of (2.16) and (2.17), we obtain

Ht(x, t)− Hxx(x, t) + H(x, t)− Hp(x, t) ≥ (t + T)−δ−1
[
−δ + T + t − (t + T)1−2γ

]
g0(ζ)

+(t + T)−δ−2γ
[
1 − (t + T)−δ(p−1)+2γ

]
gp

0 (ζ).

Proceeding as in part (a), we next choose the parameters as follows: fix first

0 < δ < 1 − (κ0)p−1, γ =
δ(p − 1)

2
. (2.18)

With the previous choices, we are in a position to also choose

T := (κ0)−1/δ > 1.

Notice that T−δ = κ0, whence

H(x, 0) = T−δg0(ζ) = κ0g0(T−γx) ≥ κ0g0(x) ≥ u0(x), x ∈ R,

where we have employed once more the fact that g0 is decreasing with respect to |x|. Moreover,
since 2γ = δ(p − 1) by (2.18), we have

1 − (t + T)−δ(p−1)+2γ = 0,

for any t ≥ 0, while the first term in brackets is also non-negative, since

T + t − (T + t)1−2γ − δ = (T + t)
[
1 − (T + t)−2γ

]
− δ ≥ 1 − T−2γ − δ = 1 − (κ0)(p−1) − δ > 0,

according to (2.18). We infer that H is a supersolution to the Cauchy problem (2.1)–(1.6) and
thus, by comparison,

u(x, t) ≤ (t + T)−δg0((t + T)−γx), (x, t) ∈ R × (0, ∞). (2.19)

We then find from (2.19) that there is t0 > 0 sufficiently large such that

∥u(t0)∥∞ ≤ (t0 + T)−δ∥g0∥∞ < 1,

and an application of Theorem 2.1 starting with t = t0 as initial time completes the proof.
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3 The range 1 < q < p

Throughout this section, we work with absorption exponents q ∈ (1, p). This choice does
no longer allow for explicit integrations of the differential equations giving rise to solutions
depending only on time or on the space variable, in contrast to the calculations in Section 2.1.
Because of this technical problem, the forthcoming analysis is more involved than the previous
one. We follow the same program as in Section 2.

3.1 Some special solutions in implicit form

We examine below the properties of solutions either depending only on time or only on space,
to Eq. (1.4). We have:

• constant solution: once more, u(x, t) ≡ 1 is a constant solution to Eq. (1.4).
• solutions depending only on time: we look for solutions of the form u(x, t) = h(t),

t > 0. With this ansatz, Eq. (1.4) becomes

h′(t) = hp(t)− hq(t). (3.1)

It is easy to observe that h(0) > 1 implies h′(t) > 0 for any t > 0, while 0 < h(0) < 1 implies
h′(t) < 0 for any t > 0. We next give a more precise description of the properties of solutions
to (3.1). Assume first that h(0) > 1, hence h(t) > h(0) for any t > 0 and thus

hp(t) > h′(t) = hp(t)(1 − hq−p(t)) > hp(t)(1 − h(0)q−p).

The second inequality already implies finite time blow-up of h, and let us denote by T ∈ (0, ∞)

its blow-up time. We have
1 − h(0)q−p < h−p(t)h′(t) < 1

and a straightforward argument of integration on (t, T) leads to the blow-up rate

(p − 1)−1/(p−1)(T − t)−1/(p−1) < h(t) < [(p − 1)(1 − h(0)q−p)]−1/(p−1)(T − t)−1/(p−1). (3.2)

Assume now that h(0) < 1. Then we get from (3.1) that

−hq(t) < h′(t) < (h(0)p−q − 1)hq(t) < 0,

or equivalently
(1 − q)(h(0)p−q − 1) < (h1−q)′(t) < −(1 − q)

and by integration on (0, t) and straightforward manipulations, we deduce the decay rate of
the solution h as t → ∞ as follows:

[(q − 1)t + h(0)1−q]−1/(q−1) < h(t) < [(q − 1)(1 − h(0)p−q)t + h(0)1−q]−1/(q−1), (3.3)

which means in particular that h(t) decays like t−1/(q−1) as t → ∞.
• stationary solutions: we look for solutions of the form u(x, t) = ψ(x), x ∈ R. With this

ansatz, Eq. (1.4) becomes
ψ′′(x)− ψq(x) + ψp(x) = 0,

which, after a multiplication by ψ′(x) and an obvious integration term by term (setting the
integration constant to zero), reads

(ψ′)2(x) =
2

q + 1
ψq+1(x)− 2

p + 1
ψp+1(x). (3.4)
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Notice first that, at a maximum point (which we assume to be at x = 0, as we want an even
solution for simplicity), we obtain from (3.4)

ψ(0) = ∥ψ∥∞ =

(
p + 1
q + 1

)1/(p−q)

> 1. (3.5)

The standard existence and uniqueness theorem applied to the Cauchy problem (3.4) (taking
the square root with a minus sign in front) with initial condition (3.5) gives the existence of
a stationary solution for x > 0, which can be then extended by symmetry to x < 0, having
its maximum at x = 0 and a decreasing profile, as desired. From now on, we denote this
stationary solution by ψ0. Its asymptotic properties are stated in the following result.

Proposition 3.1. The following behavior of ψ0 as |x| → ∞ holds true:

lim
|x|→∞

|x|2/(q−1)ψ0(x) =

[
2

q − 1

√
q + 1

2

]2/(q−1)

, lim
|x|→∞

|x|ψ′
0(x)

ψ0(x)
= − 2

q − 1
. (3.6)

Proof. Taking into account the radial symmetry, we can work on the half-plane x > 0. We
deduce on the one hand that

ψ′
0(x) = −

√
2

q + 1
ψ

q+1
0 (x)− 2

p + 1
ψ

p+1
0 (x) > −

√
2

q + 1
ψ
(q+1)/2
0 (x), (3.7)

and on the other hand, for x > 1,

ψ′
0(x) = −

√
2

q + 1
ψ

q+1
0 (x)

[
1 − q + 1

p + 1
ψ

p−q
0 (x)

]

< −

√
2

q + 1

[
1 − q + 1

p + 1
ψ0(1)p−q

]
ψ
(q+1)/2
0 (x).

(3.8)

Gathering the estimates (3.7) and (3.8), we deduce that there exist C1 > C2 > 0 such that

−C1ψ
(q+1)/2
0 (x) < ψ′

0(x) < −C2ψ
(q+1)/2
0 (x), x ∈ (1, ∞).

Multiplying the previous inequalities by ψ
−(q+1)/2
0 (x) and integrating on (1, x) leads to the

bounds

[C1(x − 1) + ψ0(1)(1−q)/2]−2/(q−1) < ψ0(x) < [C2(x − 1) + ψ0(1)(1−q)/2]−2/(q−1), x > 1,

with Ci = (q − 1)Ci/2, i = 1, 2, which in particular give that

0 < C−2/(q−1)
1 < lim inf

x→∞
x2/(q−1)ψ0(x) ≤ lim sup

x→∞
x2/(q−1)ψ0(x) < C−2/(q−1)

2 . (3.9)

Set now ϕ0(x) := x2/(q−1)ψ0(x). Straightforward calculations lead to the differential equation
solved by ϕ0, that is,

xϕ′
0(x)− 2

q − 1
ϕ0(x) = −ϕ

(q+1)/2
0 (x)

√
2

q + 1
− 2

p + 1
x−2(p−q)/(q−1)ϕ

p−q
0 (x). (3.10)

We next have two possibilities:
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• either there exists lim
x→∞

ϕ0(x) = L ∈ (0, ∞), and in this case, an application of a standard
calculus fact (see [20, Lemma 2.9] for a precise statement and proof) gives that there is a
sequence (xj)j≥1 such that xj → ∞ and xjϕ

′
0(xj) → 0 as j → ∞. Since ϕ0(xj) → L as j → ∞,

we obtain by evaluating (3.10) at x = xj and letting j → ∞ that

− 2
q − 1

L = −L(q+1)/2

√
2

q + 1
, that is, L =

[
2

q − 1

√
q + 1

2

]2/(q−1)

,

as claimed.
• or the limit of ϕ0(x) as x → ∞ does not exist. Since ϕ0 is bounded according to (3.9), it

follows that it oscillates infinitely many times between two extremal values and thus there are
sequences (xm

j )j≥1 and (xM
j )j≥1 of local minima, respectively local maxima for ϕ0, such that

xm
j → ∞, xM

j → ∞ as j → ∞ and that

lim
j→∞

ϕ0(xm
j ) = lim inf

x→∞
ϕ0(x), lim

j→∞
ϕ0(xM

j ) = lim sup
x→∞

ϕ0(x).

By evaluating (3.10) at x = xm
j , respectively x = xM

j , and letting j → ∞, we readily obtain that

lim inf
x→∞

ϕ0(x) = lim sup
x→∞

ϕ0(x) =

[
2

q − 1

√
q + 1

2

]2/(q−1)

,

which is a contradiction with the non-existence of the limit, showing that this case is not
possible. Thus, the proof of the first limit in (3.6) is complete. For the second limit in (3.6),
it is enough to replace ψ′

0(x) by the right hand side in (3.7), obtaining thus an expression
depending only on ψ0(x), and then employ the first limit in (3.6) to get the result. We leave
the easy details to the reader.

3.2 The stationary solution as a separatrix

Similarly as we did in Section 2.3, but technically more involved as we work with non-explicit
solutions, we show next that the stationary solution constructed in the previous section plays
the role of a separatrix for the qualitative properties of solutions to the Cauchy problem (1.4)–
(1.6). This is made precise in the following statement.

Theorem 3.2.

(a) Let u0 ∈ L∞(R) ∩ C(R) be an initial condition such that ∥u0∥∞ < 1. Then the solution u to
the Cauchy problem (1.4)–(1.6) decays as t → ∞ and, more precisely, there exists C > 0 such
that

∥u(t)∥∞ ≤ Ct−1/(q−1), t > 0. (3.11)

(b) Let u0 ∈ L∞(R) ∩ C(R) such that

inf
x∈R

u0(x)
ψ0(x)

= κ0 > 1. (3.12)

Then the solution u to the Cauchy problem (1.4)–(1.6) with initial condition u0 blows up in finite
time.
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(c) Let u0 ∈ L∞(R) ∩ C(R) such that

sup
x∈R

u0(x)
ψ0(x)

= κ0 < 1. (3.13)

Then the solution u to the Cauchy problem (1.4)–(1.6) with initial condition u0 decays to zero as
t → ∞ as in (3.11).

Proof. (a) This follows directly by comparison with a solution h(t) to (3.1) with ∥u0∥∞ <

h(0) < 1. The comparison principle and the estimate (3.3) lead to the conclusion.

(b) Following similar ideas as in the proof of Theorem 2.2, we construct a subsolution to
the Cauchy problem (1.4)–(1.6) in the form

Ψ(x, t) = (T + t)δψ0((T + t)γx), (x, t) ∈ [0, ∞)× [0, ∞),

with T > 1, δ > 0 and γ > 0 to be determined. Setting ζ = (T + t)γx, we obtain by direct
calculations

Ψt(x, t)− Ψxx(x, t) + Ψq(x, t)− Ψp(x, t) = δ(T + t)δ−1ψ0(ζ)

+ γ(T + t)δ−1ζψ′
0(ζ)− (t + T)δ+2γψ

q
0(ζ) + (t + T)δ+2γψ

p
0 (ζ)

+ (t + T)qδΨq
0(ζ)− (T + t)pδψ

p
0 (ζ)

= (T + t)δ−1
[

δ − γζ
ψ′

0(ζ)

ψ0(ζ)

]
ψ0(ζ)

+ (T + t)δ+2γ
[
1 − (t + T)δ(p−1)−2γ

]
ψ

p
0 (ζ)

+ (T + t)qδ
[
1 − (t + T)2γ−δ(q−1)

]
ψ

q
0(ζ) = T1 + T2 + T3,

(3.14)

where in the formula for the term T1 we have employed the equation (3.4) satisfied by ψ′
0(ζ)

for ζ ∈ (0, ∞). Since we want that our function Ψ remains a subsolution for any t > 0, the
expressions of the terms T2 and T3 in (3.14) imply that a necessary condition is to fix

δ(q − 1)
2

< γ <
δ(p − 1)

2
. (3.15)

We next fix T as follows:
T = κ1/δ

0 > 1, (3.16)

remaining thus to choose δ as the only (still) free parameter. We infer from (3.15) and (3.16)
that, on the one hand,

(t + T)2γ−δ(q−1) ≥ T2γ−δ(q−1) > 1, t ≥ 0

and, on the other hand,

(t + T)δ(p−1)−2γ ≥ Tδ(p−1)−2γ > 1, t ≥ 0,

whence T2 < 0 and T3 < 0 in (3.14), for any t ≥ 0. We are left with estimating the term T1 in
(3.14). We derive from (3.6) that

ζ

√
2

q + 1
ψ

q−1
0 (ζ)− 2

p + 1
ψ

p−1
0 (ζ) = − ζψ′

0(ζ)

ψ0(ζ)
→ 2

q − 1
,
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as ζ → ∞. Since δ/γ < 2/(q − 1) by (3.15), we deduce that there exists R0 > 0 such that

δ

γ
< ζ

√
2

q + 1
ψ

q−1
0 (ζ)− 2

p + 1
ψ

p−1
0 (ζ), |ζ| > R0, (3.17)

which in particular implies that T1 < 0 if |ζ| > R0. Set next

L0 := inf
ζ∈[−R0,R0]

ψ0(ζ) > 0, (3.18)

and notice that R0 and L0 depend only on p and q, if we fix, for example,

δ

γ
=

1
p − 1

+
1

q − 1
, (3.19)

a choice that satisfies (3.15). We are left with estimating T1 in (3.14) in the closed interval
[−R0, R0], and to this end we change a bit the strategy: instead of estimating T1 alone, we
recall that ζψ′

0(ζ) ≤ 0 for any ζ ∈ R and we compensate T1 with the negativity of T2 in this
interval. More precisely, discarding the already negative contribution of γ(T + t)δ−1ζψ′

0(ζ),
we want to choose δ > 0 such that, for any ζ ∈ [−R0, R0] and t ≥ 0, we have

δ(T + t)δ−1 − (T + t)δ+2γ
[
(T + t)δ(p−1)−2γ − 1

]
ψ

p−1
0 (ζ) < 0,

for which a sufficient condition is to pick δ such that

0 < δ <
(

κ
p−1−2γ/δ
0 − 1

)
Lp−1

0 =
(

κ
(p−1)(p−q)/(p+q−2)
0 − 1

)
Lp−1

0 , (3.20)

taking into account (3.19) and that T > 1 and κ0 > 1. It thus follows that Ψ is a subsolution to
Eq. (1.4) and also satisfies (taking into account that ψ0 has a decreasing profile with respect to
|x| and that T > 1, γ > 0)

Ψ(x, 0) = κ0ψ0(Tγx) ≤ κ0ψ0(x) ≤ u0(x), x ∈ R,

hence the comparison principle entails that

Ψ(x, t) = (T + t)δψ0(ζ) ≤ u(x, t), (x, t) ∈ R × (0, ∞).

In order to prove the finite time blow-up, we adapt the argument at the end of the proof
of Theorem 2.2 with a slightly changed energy functional in order to cope with the term uq

instead of u, that is,

E(u(t)) =
1
2

∫
R
|ux|2(x, t) dx +

1
q + 1

∫
R

uq+1(x, t) dx − 1
p + 1

∫
R

up+1(x, t) dx.

The proof of [25, Theorem 17.6, (ii)] straightforwardly adapts to this energy to show that, if
for a general solution u to Eq. (1.4) in R × (0, ∞) we have E(u(t)) < 0 for some t ≥ 0, then
the solution u blows up in finite time. In our case, similarly as at the end of the proof of
Theorem 2.2, we compute

E(Ψ(t)) =
1
2
(T + t)2δ+γ

∫
R
|ψ′

0(y)|2 dy +
1

q + 1
(T + t)δ(q+1)−γ

∫
R

ψ
q+1
0 (y) dy

− 1
p + 1

(T + t)δ(p+1)−γ
∫

R
ψ

p+1
0 (y) dy < 0,
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provided t > t0 > 0 is sufficiently large, since the fact that p > q and (3.15) ensure that

(p + 1)δ − γ > (q + 1)δ − γ, (p + 1)δ − γ > 2δ + γ.

Thus, the solution to Eq. (1.4) with initial condition Ψ(t0) such that E(Ψ(t0)) < 0 blows up
in finite time. We conclude then from the comparison principle that u also blows up in finite
time.

(c) We want to construct a supersolution to the Cauchy problem (1.4)–(1.6) decaying in
time, and we work again “in the mirror” with respect to the construction performed in part
(b), so that we will only give a sketch of it below. We consider

Φ(x, t) = (T + t)−δψ0(x(T + t)−γ), ζ = (T + t)−γx,

and we want to choose the parameters and exponents T, δ, γ such that Φ is a supersolution.
Direct calculations similar to the ones performed in part (b) lead to the following expression

Φt(x, t)− Φxx(x, t) + Φq(x, t)− Φp(x, t)

= − γ(T + t)−δ−1
[

δ

γ
+

ζψ′
0(ζ)

ψ0(ζ)

]
ψ0(ζ)

+ (T + t)−δ−2γ
[
1 − (t + T)−δ(p−1)+2γ

]
ψ

p
0 (ζ)

+ (T + t)−qδ
[
1 − (t + T)−2γ+δ(q−1)

]
ψ

q
0(ζ)

= T1 + T2 + T3.

(3.21)

Since we want a supersolution for any t ≥ 0, we are forced to choose δ, γ such that the
powers of T + t in the second and third line of (3.21) are negative, thus (3.19) remains in force.
Moreover, with the experience gained in part (b), we fix

T = (κ0)−1/δ > 1. (3.22)

With the choices in (3.19) and (3.22), we observe that, on the one hand,

(t + T)−δ(p−1)+2γ ≤ T−δ(p−1)+2γ < 1, t ≥ 0,

and on the other hand

(t + T)−2γ+δ(q−1) ≤ T−2γ+δ(q−1) < 1, t ≥ 0.

This ensures that T2 > 0 and T3 > 0 for any t ≥ 0. Moreover, since ψ0 has a decreasing
profile with respect to |x| and T > 1, γ > 0, at t = 0 we have the comparison between initial
conditions:

Φ(x, 0) = T−δψ0(T−γx) = κ0ψ0(T−γx) ≥ κ0ψ0(x) ≥ u0(x), x ∈ R. (3.23)

It only remains to choose δ > 0 such that T1 > 0 too. Noticing that (3.19) and (3.6) imply

δ

γ
<

2
q − 1

= − lim
ζ→∞

ζψ′
0(ζ)

ψ0(ζ)
,

we infer that there is R0 > 0 such that T1 > 0 for ζ ∈ R such that |ζ| > R0. For the compact
interval [−R0, R0], the proof follows by compensating T1 by T2 in order to choose δ, following
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exactly the same lines as in the final part of the proof of part (b), this compensation, together
with the choices in (3.19) and (3.22) leading to the condition

δ < min
{

1
2

(
1

p − 1
+

1
q − 1

)
,
[
1 − (κ0)(p−1)(p−q)/(p+q−2)

]
Lp−1

0

}
,

with L0 defined as in (3.18), noticing that the previous election also entails that γ ∈ (0, 1/2).
The comparison principle and (3.23) then entail that

Φ(x, t) = (T + t)−δψ0(x(T + t)−γ) ≥ u(x, t), (x, t) ∈ R × (0, ∞),

and in particular
∥u(t)∥∞ ≤ (T + t)−δ∥ψ0∥∞ < 1,

provided t ≥ t0 sufficiently large. This fact together with part (a) lead to the conclusion.

Discussion and extensions

The previous analysis raises a few questions related to a finer description of the dynamics of
solutions to Eq. (1.4), that we comment in the next lines.

• Blow-up rates and patterns. Due to the fact that, for large values of u (close to a blow-
up point), uq is negligible compared to up, it is strongly expected that the blow-up behavior
of solutions to Eq. (1.4) presenting finite time blow-up is totally similar to the one of the
usual reaction-diffusion equation ut = uxx + up. In fact, if T ∈ (0, ∞) is the blow-up time
of the solution to the Cauchy problem (1.4)–(1.6) with an initial condition u0 satisfying either
Theorem 2.2(a) or Theorem 3.2(b), then it cannot lie completely below the solution given by
either (2.2) (if q = 1) or to (3.1) (if q ∈ (1, p)) having the same blow-up time T. We then deduce
the lower blow-up rate from (3.2), that is,

∥u(t)∥∞ ≥ C(T − t)−1/(p−1), t ∈ (0, T),

for some C > 0. As for the upper rate and other fine properties of blow-up, the theory in [25]
should apply without many changes. In particular, for q = 1 the previous rate follows as a
particular case of the results in the recent paper [33].

• Large time behavior for solutions with decay as t → ∞. As we have seen, for q = 1
we have obtained the large time behavior by an asymptotic simplification. The same must
hold true for q ∈ (1, p) since for u very small, the reaction up is negligible with respect to the
absorption uq, so that the asymptotic simplification is practically obvious at a formal level.
We do not enter this discussion in detail, since the large time behavior of solutions to the
pure absorption-diffusion equation (neglecting up) is not straightforward, but given by either
a Gaussian, as a further asymptotic simplification, if q > 3, or some very singular solutions
constructed in [5] if 1 < q < 3.

• Extinction behavior for q ∈ (0, 1). As established in [18], for q ∈ (0, 1), initial conditions
u0 lying below the stationary solution lead to finite time extinction, that is, there exists Te ∈
(0, ∞) such that u(t) ̸≡ 0 for t ∈ (0, Te), but u(Te) ≡ 0. Establishing the extinction rate
(that is not studied in [18]) follows rather straightforwardly, since one can construct solutions
depending only on time h(t), solving the differential equation

h′(t) = hp(t)− hq(t), h(0) < 1,
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and, by estimates in the same style as the ones leading to (3.2), find that

[(1 − q)(1 − h(0)p−q)]1/(1−q)(Te − t)1/(1−q) < h(t) < (1 − q)1/(1−q)(Te − t)1/(1−q).

Moreover, a solution to Eq. (1.4) is a supersolution to the pure absorption-diffusion equation
obtained by neglecting up, and about which it is known that the extinction rate of general
solutions is

∥u(t)∥∞ ∼ C(Te − t)1/(1−q), as t → Te,

so that the same rate will be in force for Eq. (1.4) with p > 1 and q ∈ (0, 1). However, a finer
analysis of the extinction phenomenon is rather complex, as it should be at least similar to (if
not technically more involved than) the one for the absorption-diffusion equation

ut = uxx − uq, 0 < q < 1,

studied in detail in classical but quite complicated works such as [11, 19]. We leave this
discussion here.
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