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Abstract

Applying the Briot-Bouquet theorem we show that there exists an
unique analytic solution to the equation ("' @, (y)) (=) D, (y) =
0, on (0, a), where ®,(y) := |y|r71y7 0<mpg€eRT,i=01,1<nc¢€
N, a is a small positive real number. The initial conditions to be added
to the equation are y(0) = A # 0, 3’ (0) = 0, for any real number A. We
present a method how the solution can be expanded in a power series for
near zero.

1 Preliminaries
We consider the quasilinear differential equation
Apu+ (—1) lul'fu=0, u=u(x), z€R",

where n > 1, p and ¢ are positive real numbers, 7 = 0,1 and A, denotes the
p—Laplacian (Apu = div(|Vu["! Vu)) If n = 1, then the equation is reduced
to

where for r € {p, q}

_ [ W[ty fory e R\{0}
®r(y) = { 0, for y = 0.

We note that function ®,. is an odd function. For n > 1 we restrict our attention
to radially symmetric solutions. The problem under consideration is reduced to

("1, () + (—1)it" 1 ®,(y) = 0, on (0, a) (1)

*This paper is in final form and no version of it is submitted for publication elsewhere.
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where a > 0. A solution of (1) means a function y € C! (0, a) for which
t"~1®, (y') € C* (0, a) and (1) is satisfied. We shall consider the initial values

(0)=A+0,

for any A € R.

For the existence and uniqueness of radial solutions to (1) we refer to [9]. If
n = 1 and ¢ = 0, then it was showed that the initial value problem (1) — (2)
has a unique solution defined on the whole R (see [3], and [4]), moreover, its
solution can be given in closed form in terms of incomplete gamma functions
[4]. If n = 1, ¢ = 0, Lindqvist gives some properties of the solutions [8]. If n =1
and p = ¢ = 1, then (1) is a linear differential equation, and its solutions are
well-known:
if ¢ = 0, the solution (1) — (2) with A =1 is the cosine function,
if i = 1, the solution (1) — (2) with A =1 is the hyperbolic cosine function,
and both the cosine and hyperbolic cosine functions can be expanded in power
series.

In the linear case, whenn = 2, p = ¢ = 1, ¢ = 0, the solution of (1)—(2) with
A =11is Jy(t), the Bessel function of first kind with zero order, and for n = 3,
p = q = 1,4 = 0 then the solution of (1) — (2) with A = 1 is jo(t) = sint/t,
called the spherical Bessel function of first kind with zero order.

In the cases above, for special values of parameteres n, p, ¢, i, we know the
solution in the form of power series.

The type of singularities of (1) — (2) was classified in [1] in the case when
i =0, and p = ¢q. If n = 1, then a solution of (1) is not singular.

Our purpose is to show the existence of the solution of problem (1) — (2) in
power series form near the origin. We intend to examine the local existence of
an analytic solution to problem (1) — (2) and we give a constructive procedure
for calculating solution y in power series near zero. Moreover we present some
numerical experiments.

2 Existence of an unique solution

We will consider a system of certain differential equations, namely, the special
Briot-Bouquet differential equations. For this type of differential equations we
refer to the book of E. Hille [6] and E. L. Ince [7].

Theorem 1 (Briot-Bouquet Theorem) Let us assume that for the system of
equations

6% = u1(&, 21(8), 22(£)), } (3)

ftz—? = u2(§; Zl(&)a 22(6)),

where functions uy and ug are holomorphic functions of &, z1(€), and z2(§) near
the origin, moreover u1(0,0,0) = u2(0,0,0) = 0, then a holomorphic solution
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of (3) satisfying the initial conditions z1(0) = 0, 22(0) = 0 exists if none of the
eigenvalues of the matriz

Bul Bul
921100,000 972 1(0,0,0)
Ous Ousz

P l0,00 210,00
1S a positive integer.

For a proof of Theorem 1 we refer to [2].

The differential equation (1) has singularity around ¢ = 0 for the case n > 1.

Theorem 1 ensures the existence of formal solutions z; = apé® and zo =

k=0
00

br&® for system (3), and also the convergence of formal solutions.
k=0
We apply the method Parades and Uchiyama [10].

Theorem 2 For any p € (0, +00), ¢ € (0, +00), @« = 0,1, n € N the
initial value problem (1) y(0) = A, y'(0) = 0 has an unique analytic solution
of the form y(t) = Q (tlH/p) in (0, a) for small real value of a, where Q is a
holomorphic solution to

Q// _ (*1)i+1 t—prl @q(Q) - Lt*(lJrl/P)Q’
p (L+1/p)"" QP pa

near zero satisfying Q(0) = A, Q'(0) = 27 @1/, [(=1)"F1®y(A)/n] .

Proof. We shall now present a formulation of (1) as a system of Briot-Bouquet
type differential equations (3). Let us take solution of (1) in the form

y(t) =Q (), t € (0,a),

where function @ € C?(0,a) and « is a positive constant. Substituting y(t) =
Q (t*) into (1) we get that Q) satisfies

i+1
(-1) " 4= (a=1)(p+1) (Q) n—1 +p(a—1)

" ta — t—oz /
QU = (o4 pa N
and introducing variable £ by £ = t* we have
i+1
" (-1 — =D (p41) P4(Q) n—l+4+pla—-1) _, .,
= «@ - . 4
Q) = e o P SO
Here, we introduce function @ as follows
Q&) =0 + &+ 2(8), (5)
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where z € C?%(0,a), 2(0) = 0, 2/(0) = 0. Therefore @ has to fulfill the properties

Q(0) =70, Q'(0) = 71, Q'(§) =1 +2'(£), Q"(§) = 2" (£). From initial condition
y(0) = A we have that
Y = A.

We restate (4) as a system of equations:

z1(§) = 2(€) - 21(0)=0
2(€) = 2/(€) } with 0 }

according to (4) we get that

ey EDT e @ (o + mé + 2(6))
SO = e I+ (€)™
PO e gy 4 ().

We generate the system of equations

uy (€, 21(8), 22(8))
uz (&, 21(€), 22(€))

£
3

PO~ =~
TN TN
mIn
— —
—

z
z

as follows

ur(§21(6), 2(0)) =€ 22 -
uz(§,21(6), 22(6)) = Sr e "o Paletnata )

- %ﬁfbl) (71 + 22(§))

In order to satisfy conditions u;(0,0,0) = 0 and u2(0,0,0) = 0 we must get zero
for the power of ¢ in the right-hand side of the second equation:

1—pla—1)

=0,

ie., a= % + 1. To ensure u3(0,0,0) = 0 we have the connection

w ) + (525 ) 10 =0,
"= (—1)”11%@1/1, ((—1)i+1LqT(L%)) . (6)

Therefore, taking into consideration that ®, is an even function for any r €
{p, q}, we obtain

Lo Ad/P(—1)H L i A >0,
” :{ ey )

LA (-1 i A<

nl/p
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From initial conditions y(0) = A # 0, ¥/(0) = 0, and (5) it follows that
Y = A.
For u; and us we find that

ou| _ ou|

9z (0,0,0) , 0zy (0,0,0) ’

duy ~pPq |yl Duy __np
021 (0,0,0) a (p+ 1)p+1 |71|p71, 9z (0,0,0) - op+l

Therefore the eigenvalues of matrix

6u1/6z1 6u1/622
6u2/6z1 6u2/622

at (0,0,0) are 0 and —np/(p + 1). Since both eigenvalues are non-positive, ap-

plying Theorem 1 we get the existence of unique analytic solutions z; and z5 at

zero. Thus we get the analytic solution Q(§) = vo + 1€ + 2(&) satisfying (4)

with Q(0) = 70, Q'(0) = 1, where 79 = A and 7, is determined in (7). m

Corollary 3 From Theorem 2 it follows that solution y(t) for (1) has an ex-

pansion near zero of the form y(t) = Zaktk(%ﬂ) satisfying y(0) = A and
k=0

y'(0) =0.

3 Determination of local solution

We give a method for the determination of power series solution of (1) — (2).
For simplicity, we take A = 1. Thus initial conditions

y(0) =1,
y'(0)=0

are considered. We seek a solution of the form

y(t) = ap + a1 £t 4 ay 2(+1) +..., t>0, (8)
with coefficients a, € R, k=0, 1,... . From Section 2 we get that ag =v9 =1
and a1 = 71 = Fy(-1)"*! —i~. Near zero y(t) > 0 and y/(t) < 0 for i = 0,

y'(t) > 0 for ¢ = 1. Therefore
1 1 q
Dq(y(t) = yi(t) = (ao +ar tv +ap £G4 ) .

After differentiating (8), we get

1 1 1 1 1 1
y'(t) = tv [al <]; n 1) + 2as (1—) n 1> 5T 4 3a, <]§ n 1) £2G+) 4 ] :
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and hence

@,y (1) = (1) (v (1)
= (—1)"*¢ [al (% + 1) + 24y (% + 1) 5! 4 3ag (% + 1) £2G+) 4 .]p.
For y4(t) and (y'(t))"

yq(f) = AO + A1 t%Jrl + A2 f2(%+1) + ... (9)
W0)P = t [Bo + B trT 4B, 2(5+1) o } , (10)

where coefficients Ay, and By, can be expressed in terms of a;, (k =0,1,...).
Using (10) we obtain

. /
(tn_lq)p (yl))/ = ((_1)“_175” [BO + B tr + By tQ(%Jrl) +.. D
; 1 1 1 1
= (—1)"tnt [Bon +Bi(n+ -+ )tvt 4+ Bay(n + 2 (; + 1)) 2+ 4 ] :
p
and substituing it to the equation (1) with (9) we get
i+1m—1 1 141 1 2(1+1)
(=)'t Bon+Bi|n+=4+1)tr"™ +By(n+2 ]§+1 t\» + ...
p
+(=1)f et {AO + A 5 4 A, 226G 4 } —0.

Comparing the coefficients of the proper power of ¢ we find

BoanO = 0,
1
Bl(n—i—]—j—l—l)—Al = 0,
1
1
Bi(n+k (5 + 1>) —A, = 0, (11)

Applying the J. C. P. Miller formula (see [5]) for the determination of Aj and
By (k=0,1,...) we have.

k—1

Ay = %Z[(k*j)Q*ﬂA;‘ak—j, (12)
§=0
k—1
p . . . 1
B, = m; [(k—J)p—j]l Bjar—j11 [(k? —-Jj+1) (]_9 + 1)] (13)
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for any k > 0.
From initial condition y(0) = 1 we get ag = 1, Ag = 1, and therefore

By = —.
n

From (11) for i = 1 we get By(n+ % +1)— A; =0, and evaluating A; from (12)

and B; from (13) we find
1 p
m= o ()]
p

p (_1)1'-1-1#

al:erl ni/p’

Similarly, we determine coefficients ay, for all £k = 0,1,... from (11), (12) and
(13).

thus

Example 4 Solve (1) — (2) for n=2; i=0; p=0.5; q=1.

The solution of the differential equation (t®q5 (y'))’ 4 t®1(y) = 0 with con-
ditions y(0) = 0, ¥’(0) = 1 near zero we evaluate by MAPLE from (11), (12)
and (13). We obtain

y(t) = 1 —0.2222222222¢* 4 0.0370370370¢°
—0.0047031158t° + 0.0005443421¢2 + ... .
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