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Abstract. The minimum rank of a directed graph Γ is defined to be the smallest possible rank

over all real matrices whose ijth entry is nonzero whenever (i, j) is an arc in Γ and is zero otherwise.

The symmetric minimum rank of a simple graph G is defined to be the smallest possible rank over

all symmetric real matrices whose ijth entry (for i �= j) is nonzero whenever {i, j} is an edge in G

and is zero otherwise. Maximum nullity is equal to the difference between the order of the graph

and minimum rank in either case. Definitions of various graph parameters used to bound symmetric

maximum nullity, including path cover number and zero forcing number, are extended to digraphs,

and additional parameters related to minimum rank are introduced. It is shown that for directed

trees, maximum nullity, path cover number, and zero forcing number are equal, providing a method

to compute minimum rank for directed trees. It is shown that the minimum rank problem for any

given digraph or zero-nonzero pattern may be converted into a symmetric minimum rank problem.
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