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THE MAXIMUM NUMBER OF 2 × 2 ODD SUBMATRICES IN
(0,1)-MATRICES∗

MICHAEL MARKS†, RICK NORWOOD† , AND GEORGE POOLE†‡

Abstract. Let A be an m×n, (0, 1)-matrix. A submatrix of A is odd if the sum of its entries is
an odd integer and even otherwise. The maximum number of 2×2 odd submatrices in a (0, 1)-matrix
is related to the existence of Hadamard matrices and bounds on Turán numbers. Pinelis [On the
minimal number of even submatrices of 0-1 matrices, Designs, Codes and Cryptography, 9:85–93,
1994] exhibits an asymptotic formula for the minimum possible number of p × q even submatrices
of an m × n (0, 1)-matrix. Assuming the Hadamard conjecture, specific techniques are provided on
how to assign the 0’s and 1’s, in order to yield the maximum number of 2 × 2 odd submatrices in
an m × n (0, 1)-matrix. Moreover, formulas are determined that yield the exact maximum counts
with one exception, in which case upper and lower bounds are given. These results extend and refine
those of Pinelis.
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1. Introduction. Definition 1.1. A (0, 1)-matrix is odd if the sum of its
entries is an odd integer. Otherwise, a (0, 1)-matrix is even.

Unless otherwise noted, all matrices in this paper are (0, 1)-matrices. The matrix
B below is odd while the matrix C is even:

B =




0 0 0 0
0 1 0 1
0 0 1 1
0 0 1 0


 , C =




0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0


 .

Modifying Pinelis’ notation slightly [5], we will use the following notation through-
out this paper.

Definition 1.2. For an m× n (0, 1)-matrix A, e(A; p, q) denotes the number
of even p× q submatrices. E(m, n; p, q) denotes the minimum of e(A; p, q) taken
over all m × n (0, 1)-matrices A. Similarly, g(A; p, q) denotes the number of p × q
odd submatrices of A while G(m, n; p, q) denotes the maximum of g(A; p, q) taken
over all m× n (0, 1)-matrices A.

In this paper, we consider 2×2 submatrices. The number N of 2×2 submatrices
of an m× n (0, 1)-matrix A is given by

N =
(
m

2

)(
n

2

)
=
mn(m− 1)(n− 1)

4
.
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Thus G(m, n; 2, 2) = N −E(m, n; 2, 2). In this paper, rather than determine
E(m, n; 2, 2), we determine G(m, n; 2, 2) directly as a function of m and n.

Let G = G(n, n; 2, 2). Assume that an 4k×4k Hadamard matrix exists and that
n > 2. Column A gives Pinelis’ bounds on G [5], column B gives the corresponding
results in this paper. If m �= n we give exact values for G(m, n; 2, 2).

n A B

4k G ≤ 32k4 − 8k3 G = 32k4 − 8k3

4k + 1 G ≤ 32k4 + 24k3 + 4k2 32k4 + 24k3 + 6k − 2 ≤ G ≤
32k4 + 24k3 + 4k2

4k − 1 G ≤ 32k4 − 40k3 + 16k2 − 2k G = 32k4 − 40k3 + 16k2 − 2k
4k − 2 G ≤ 32k4 − 72k3 + 60k2 − 22k + 3 G = 32k4 − 72k3 + 56k2 − 16k + 1

The quantities E(m, n; 2, 2) and G(m, n; 2, 2) are closely associated with
two well-known problems, the problem of finding Turán numbers and the problem of
constructing Hadamard matrices.

Definition 1.3. The Turán number T (n, l, k) is the smallest possible number
of k-subsets of an n-set such that every l-subset contains one of the chosen k-sets [1].

It is known [1] that

T (2n, 5, 4) ≤ 2
(
n

4

)
+ E(n, n; 2, 2) = 2

(
n

4

)
+N −G(n, n; 2, 2).

The size of G(m, n; 2, 2) is a function of how the 0’s and 1’s in the matrix A
can be positioned so as to balance the number of times a pair of rows of A agree
or match in a column (both 0 or both 1) with the number of times they disagree
or mismatch in a column (one 0 and one 1). The current theory [6] of Hadamard
matrices helps to answer questions about the size of G(m, n; 2, 2). The relationship
between Hadamard matrices and the size of G(m, n; 2, 2) is presented in Section 4.

In Section 2 we present our approach to determining the value of G(m, n; 2, 2).
In Section 3, we review the Hadamard problem and its relationship to G(m, n; 2, 2).
Section 4 contains the formulas for computing G(m, n; 2, 2). In Section 5 we discuss
the asymptotic behavior of G(m, n; 2, 2).

2. The Essence of the Problem. Consider the m×n matrix A containing all
1’s. Each 2× 2 submatrix of this matrix is even. This is an extreme case.

With N denoting the total number of 2× 2 submatrices of A as in the previous
section, we have

0 ≤ G(m, n; 2, 2) ≤ N.

If both m and n are at least two, and either m or n is three or greater, then an
m× n matrix must have at least one even submatrix. To see this, consider two 2× 2
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submatrices that share a column (or a row). If both are odd, then the 2×2 submatrix
consisting of the columns (or rows) not shared is clearly even. Thus G(m, n; 2, 2) =
N only in the case m = n = 2. In that case either one of the following 2× 2 matrices
yields the largest number of 2 × 2 odd submatrices, namely one. That is, for A and
B below, g(A; 2, 2) = g(B; 2, 2) = 1.

A =
(

0 0
0 1

)
, B =

(
1 1
1 0

)

Consider the order 3 matrices given below in which g(A; 2, 2) = 4, e(A; 2, 2) =
5, g(B; 2, 2) = 6, e(B; 2, 2) = 3. It turns out, by equation (2.4) below, that
G(3, 3; 2, 2) = 6.

A =


 1 1 0

0 0 1
1 0 1


 , B =


 0 0 0

0 1 1
0 1 0




Definition 2.1. Let s and t be rows of an m×n matrix A. Then S(s, t) denotes
the number of columns where s and t agree (both zero or both one) and D(s, t) denotes
the number of columns where s and t disagree (one zero and the other one).

Then the number of 2× 2 odd submatrices in rows s and t is given by

S(s, t) ·D(s, t).(2.1)

This quantity is maximized when S(s, t) and D(s, t) can be made the same, or as
nearly the same as possible given that they are integer values. Since S(s, t)+D(s, t) =
n, this means the quantity in (2.1) above is maximum when n is even and each factor
has the value n

2 , or when n is odd and the two factors are
n+1

2 and n−1
2 . In other words,

given an m × n matrix A, if n = 2k the number of odd submatrices is maximized if
the 0’s and 1’s can be assigned so every pair of rows of A agree and disagree in exactly
n
2 positions, while if n = 2k + 1, the best we can hope for is that every pair of rows
of A agree in �n

2 � positions and disagree in �n
2 	 positions, or vice versa. Therefore,

G(m,n; 2, 2) ≤
(
m

2

) ⌊n
2

⌋ ⌈n
2

⌉
(2.2)

with equality if and only if there exists an m× n (0, 1)-matrix in which every pair of
rows s and t maximize S(s, t) ·D(s, t).

Example 2.2. In the matrix C below, the 0’s and 1’s are assigned so as to
yield the maximum number of 2× 2 odd submatrices. Note that each pair, of the six
possible pairs of rows, agree (and disagree) in exactly 2 column positions.

C =




0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0



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Hence, from (2.2), G(4, 4; 2, 2) = 24.
Definition 2.3. Suppose s and t denote two rows of an m×n (0, 1)-matrix. The

pair (s, t) is perfect if |S(s, t) −D(s, t)| = 0 or, equivalently, S(s, t) = D(s, t) = n
2 .

The pair (s, t) is near-perfect if |S(s, t) −D(s, t)| = 1. A (0,1)-matrix is perfect
if each pair of its rows is perfect. A (0,1)-matrix is near-perfect if each pair of its
rows is near-perfect.

Note, an m × n (0, 1)-matrix for which n is odd cannot be perfect. If n is even,
the matrix may or not be perfect, but it certainly cannot be near-perfect. Clearly if
a (0, 1)-matrix of order m× n is perfect, then we have equality in (2.2).

When can the 0’s and 1’s of a (0, 1)-matrix be assigned so that it is perfect? Or,
if the 0’s and 1’s cannot be assigned so that it is perfect, how close to perfect can
we get? This will lead us to the subject of Hadamard matrices. However, first we
will consider some basic facts about (0, 1)-matrices and the count of their 2× 2 odd
submatrices.

Theorem 2.4. Suppose A is a (0, 1)-matrix and B is a matrix obtained from A
by any one, or any combination of the following operations:
a) Exchange any pair of rows or any pair of columns.
b) In any row or column, replace the 0’s by 1’s and the 1’s by 0’s.
c) Take the transpose.
Then g(A; 2, 2) = g(B; 2, 2).

Proof. The indicated operations do not change the parity of any 2 × 2 (0, 1)-
submatrix.

Definition 2.5. A (0, 1)-matrix A is normalized if its first row and first column
contain only zeroes.

Theorem 2.6. If A is any m × n (0, 1)-matrix, then there exists a normalized
m× n (0, 1)-matrix B, such that g(A; 2, 2) = g(B; 2, 2).

Proof. Apply Theorem 2.4.
Theorem 2.7. Suppose A is an m × n (0, 1)-matrix. If A is perfect or near-

perfect, then g(A; 2, 2) is maximum.
Proof. IfA is perfect or near-perfect, then equality holds in (2.2) and g(A; 2, 2) =

G(m, n; 2, 2). If n = 2t, then

G(m, 2t; 2, 2) =
m(m− 1)

8
· n2 =

m(m− 1)
2

· t2.(2.3)

On the other hand, if n = 2t+ 1, then

G(m, 2t+ 1; 2, 2) =
(
m

2

)
· n

2 − 1
4

=
m(m− 1)

2
· t(t+ 1).(2.4)

Theorem 2.8. Suppose A is an m×n (0, 1)-matrix. If A contains three or more
rows which are pairwise perfect, then n is divisible by 4.

Proof. (We adapt the standard argument for showing that the order of any
Hadamard matrix of order greater than 2 is a multiple of 4.)

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 10, pp. 223-231, September 2003

http://math.technion.ac.il/iic/ela



ELA

Two by Two Odd Submatrices 227

By Theorem 2.6, we may assume A is normalized. Because two rows of A are
pairwise perfect, n is even, say n = 2t. Moreover, we may assume the first three rows
are pairwise perfect. Since the first row is all zeroes, rows two and three must be half
zeroes and half ones. Since we can rearrange columns, we may as well assume that
the second row has zeroes in the first half and ones in the second half. Since the third
row has an equal number of zeroes and ones, the number of zeroes in its first half must
equal the number of ones in its second half. Call this number w. There are therefore
2w positions where rows two and three agree, and so necessarily 2w positions where
they disagree. Therefore n = 4w.

In summary, the question of determining G(m, n; 2, 2) becomes one of assessing
how 0’s and 1’s may be assigned in a matrix of order m × n in such a way so as to
simultaneously maximize the number S(s, t) · D(s, t) for all pairs of rows. We now
turn to Hadamard matrices to find an answer to that question in the case n = 4w.

3. Hadamard Matrices. The history and research about Hadamard matrices
is rich (see [3], [4], [6], [7]). Here we present only the basic information on Hadamard
matrices needed in order to determine G(m, n; 2, 2). While Hadamard was not
the first person to consider such matrices, the use of his name to describe them is
universal. In 1893, Hadamard [3] shows that if A = (aij) is a square matrix of order
n that satisfies |aij | ≤ 1 for all i and j, then |det(A)| ≤ n n

2 . Furthermore, Hadamard
shows that equality is achieved only when A is a special type of matrix now known
as a Hadamard matrix.

Definition 3.1. A square (1,−1)-matrix of order n is called a Hadamard
matrix if the rows (hence, columns) are pairwise orthogonal.

Definition 3.2. Suppose A is a square (0, 1)-matrix and B is a square (1,−1)-
matrix. Let J(B) denote the (0, 1)-matrix obtained from B by replacing the 1’s by 0’s
and -1’s by 1’s. Let K(A) be the (1,−1)-matrix obtained from A by replacing the 0’s
by 1’s and the 1’s by -1’s.

Theorem 3.3. Suppose H is a (1,−1)-matrix of order n. The following are
equivalent:
a) H is a Hadamard matrix.
b) HHT = nIn.
c) J(H) is perfect.

Proof. The proof is straightforward.
Corollary 3.4. J(B) is perfect if and only if B is Hadamard. K(A) is

Hadamard if and only if A is perfect.
Definition 3.5. We call a (1,−1)-matrix H perfect if J(H) is perfect and

normalized if J(H) is normalized. Thus a Hadamard matrix is normalized if and
only if its first row and column contain only 1’s.

By Corollary 3.4, the existence of perfect (0, 1)-matrices is equivalent to the ex-
istence of Hadamard matrices.

The Hadamard Conjecture: [3] If n = 1, 2 or if n = 4k, then a Hadamard
matrix of order n exists. The converse is known to be true [4] and also follows easily
from Theorems 2.8 and 3.3.

There are only five values of 4k < 1000 for which Hadamard matrices are not
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known [4], and as k grows larger the number of distinct Hadamard matrices of order
4k seems to increase rapidly. In this paper, we use the assumption that Hadamard
matrices of order 4k exist to determine the values of G(m, n; 2, 2) for all possible
m,n, except when m = n = 4k + 1. In this last case we obtain upper and lower
bounds.

4. Formulas for G(m, n; 2, 2). Our results in this section depend on
the Hadamard conjecture.

Since G(m, n; 2, 2) = G(n, m; 2, 2), we may assume that in all of the matrices
considered in this section the number of rows is less than or equal to the number of
columns. As we have already observed, G(2, n; 2, 2) =

⌊
n
2

⌋ ⌈
n
2

⌉
. To establish formulas

for all m,n > 2, we consider the four cases n = 4k, 4k − 1, 4k − 2, and 4k + 1.
In each proof given below, we assume A = J(H4k) is a perfect normalized square
(0, 1)-matrix of order 4k.

Theorem 4.1. If a Hadamard matrix of order 4k exists, then for any m ≤ 4k,

G(m, 4k; 2, 2) = 2m(m− 1)k2.(4.1)

Proof. Suppose A is a perfect normalized (0, 1)-matrix of order 4k. Delet-
ing all but m rows of A yields a perfect m × n matrix. Therefore, from (2.3),
G(m, 4k; 2, 2) = 2m(m− 1)k2.

Theorem 4.2. If a Hadamard matrix of order 4k exists, then for any m ≤ 4k−1,

G(m, 4k − 1; 2, 2) = m(m− 1)k(2k − 1).(4.2)

Proof. Suppose A is a perfect normalized (0, 1)-matrix of order 4k. Delete the first
row and first column ofA to obtain the square matrixW of order 4k−1. The matrixW
is near-perfect. If we delete any number of rows from W we get another near-perfect
matrix. Therefore, from (2.4), for any m ≤ 4k − 1, G(m, 4k − 1; 2, 2) = m(m−
1)k(2k − 1).

(The case where m = n = 4k − 1 is covered in [1].)
Theorem 4.3. If a Hadamard matrix of order 4k exists, then for any m such

that 2 < m ≤ 4k − 2,

G(m, 4k − 2; 2, 2) =
(
m2

4

)
(2k − 1)2 + 2

(m
2

2

)
(2k)(2k − 2), (m even)(4.3)

G(m, 4k − 2; 2, 2) = (m2 − 1
4

)(2k − 1)2 +
(m− 1)2

2
(k)(2k − 2). (m odd)(4.4)

Proof. Let C be a (0, 1)-matrix of dimension m × (4k − 2), with m > 2. By
Theorem 2.8, the graph whose vertices are the rows of C, and whose edges join pairs of
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perfect rows, is a triangle-free graph onm vertices. Hence, by Turán’s Theorem [2] , C
has at most

⌊
m
2

⌋ ⌈
m
2

⌉
pairs of perfect rows. Thus the number of 2×2 odd submatrices

of C is at most
(

m2

4

)
(2k − 1)2 + 2

(
m/2

2

)
(2k)(2k − 2) if m is even, and at most(

m2−1
4

)
(2k − 1)2 + (m−1)2

2 (k)(2k − 2) if m is odd. This gives upper bounds on
G(m, 4k − 2; 2, 2).

We now construct matrices which achieve these upper bounds.
Let A be a perfect normalized (0, 1)-matrix of order 4k. Separate the rows of A

into two sets, T and B, according to whether their second entry is a zero or a one.
Rearrange the rows of A so that the rows in T are on the top and the rows in B are
on the bottom. The two sets T and B are equal in size because the transpose of a
perfect square matrix is a perfect matrix, so the second column of A has an equal
number of 0’s and 1’s.

Now, form a new square matrix W , of order 4k − 2, by deleting the first two
columns of A, and then deleting the top row of T (a zero row) and the top row of
B. Let T ′ be the set consisting of the top 2k − 1 rows of W , and let B′ be the set
consisting of the bottom 2k − 1 rows of W . Compare a row in T ′ with a row in B′.
When we created W , we deleted columns 1 and 2 of A. In column 1 of A a row
in the top half and a row in the bottom half agreed, in column 2 they disagreed.
Therefore any row from T ′ and any row from B′ form a perfect pair. By our graph
theory observation above, this is the maximum possible number of perfect pairs in
any square matrix of order 4k − 2.

Now consider two rows from the same set, that is either two rows of T ′ or two
rows of B′. These rows were formed by deleting two matching pairs of entries in the
corresponding rows of A. So they will have 2k− 2 matches and 2k mismatches. Thus
any pair of rows of W that do not form a perfect pair are as close to being perfect as
possible without actually being perfect.

Delete all but m rows from W , alternately deleting a row from T ′ and then a
row from B′. The resulting matrix has the maximum possible number of 2 × 2 odd
submatrices for an m× (4k − 2) matrix.

The given formulas reveal the correct counts. We will explain the count for m
even and leave the count for m odd to the reader.

Let m be even. Let T ′′ and B′′ be the sets formed above by deleting all but
m/2 rows from each of T ′ and B′. Each of the (m

2 )
2 choices of one row from T ′′ and

one row from B′′ gives a perfect pair of rows which contains (2k − 1)2 2 × 2 odd
submatrices. Each of the 2

(
m/2

2

)
choices of a pair of rows either both from T ′′ or

both from B′′ gives a pair with 2k − 2 matches and 2k mismatches which contains
2k(2k − 2) 2 × 2 odd submatrices.

This completes the count of the 2 × 2 odd submatrices for m even.
The case where n = 4k + 1 is divided into two parts, first where m < n and

then where m = n.
Theorem 4.4. If a Hadamard matrix of order 4k exists, then for any m ≤ 4k,

G(m, 4k + 1; 2, 2) = m(m− 1)k(2k + 1).(4.5)
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Proof. Suppose A is a perfect normalized (0, 1)-matrix of order 4k. No pair of
rows in a matrix with an odd number of columns can be perfect, so we can find
G(m, 4k + 1; 2, 2) using a matrix which is near-perfect. Such a matrix is easily
obtained by augmenting A with any column of 0’s and 1’s, creating a near-perfect
4k × (4k + 1) matrix W . As before, we may delete any number of rows from W to
get another near-perfect matrix. Hence from (2.4), for any m ≤ 4k, G(m, 4k +
1; 2, 2) = m(m− 1)k(2k + 1).

Theorem 4.5. If a Hadamard matrix of order 4k exists, then

G(4k + 1, 4k + 1; 2, 2) ≥ 32k4 + 24k3 + 6k − 2.(4.6)

Proof. We begin by constructing a square matrixW of order 4k+1 as follows: Let
w denote the last row of A. Define the row vector a of length 4k by setting a(1) = 1
and a(i) = w(i) for 2 ≤ i ≤ 4k. Now define a column vector c of length 4k all of
whose entries are ones except the last entry, which is zero. Consider the augmented
matrix below

W =
(
A c
a 1

)
.

What properties does W have? First, all pairs of rows from the top 4k rows are
near-perfect, because A is perfect (the number of matches for any pair being either
2k or 2k + 1). Second, the last row, (a 1) is near-perfect when paired with any row
except the next to last row, (w 0). In this last case, (a 1) matches (w 0) in every
position, except the first and the last. Hence, there are just two mismatches while
there are 4k − 1 matches. Therefore the number of 2 × 2 odd submatrices in W is
given by

g(W ; 2, 2) =
((

4k + 1
2

)
− 1

)
(2k)(2k + 1) + 2(4k − 1)

= 32k4 + 24k3 + 6k − 2.(4.7)

Clearly this is a lower bound on G(4k + 1, 4k + 1; 2, 2).
The possibility remains that there may exist square matrices of order n = 4k+1

with a larger number of 2 × 2 odd submatrices. There may even be a near-perfect
square matrix of this order, whereas in the matrix constructed in the proof of Theorem
4.5 one pair of rows fails to be near-perfect. If we could find a near-perfect matrix of
order n = 4k+1, then G(4k+1, 4k+1; 2, 2) would be equal to 32k4+24k3+4k2.
This is, in any case, an upper bound on G(4k + 1, 4k + 1; 2, 2). The difference
between the bounds is 4k2 − 6k+ 2, which is insignificant as a fraction of G for large
n. To summarize,

32k4 + 24k3 + 6k − 2 ≤ G(4k + 1, 4k + 1; 2, 2) ≤ 32k4 + 24k3 + 4k2.
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5. Asymptotic Behavior. Equations (4.1) through (4.7) imply that for any
given pair of integers m and n with m,n ≥ 2, when we consider the ratio of the
maximum count of 2 × 2 odd submatrices to the count of all 2 × 2 submatrices,
the limit approaches 1

2 from above as either n or m go to infinity. That is,

lim
m→∞

G(m,n; 2, 2)(
m
2

)(
n
2

) = lim
n→∞

G(m,n; 2, 2)(
m
2

)(
n
2

) =
1
2

and G(m, n; 2, 2) > E(m, n; 2, 2) for all m,n ≥ 2. This agrees with Pinelis’
results in [5]. Though for any m and n there exist (0, 1)-matrices with all 2 × 2
submatrices even, and though every m × n (0, 1)-matrix with m,n > 2 has some
2 × 2 submatrices even, still we can always find an m × n (0, 1)-matrix with more
2 × 2 odd submatrices than even, as the examples in Section 4 show. Furthermore, as
either m or n go to infinity, for m × n matrices, the ratio of the maximum number of
2 × 2 odd submarines to the minimum number of even 2 × 2 submatrix approaches
one.
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