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Abstract. Given λ and µ, it is shown that, unless one of the relations (λ − µ)2 = 4µ, λ − µ =

−2, (λ − µ)2 + 2(λ − µ) = 4µ is satisfied, there are only finitely many parameter sets (v, k, λ, µ) for
which a strongly regular graph with these parameters could exist. This result is used to prove as
special cases a number of results which have appeared in previous literature.
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1. Properties of Strongly Regular Graphs. In this section we present some
well known results needed in Section 2. The results can be found in [11, ch.21] or [8,
ch.10]. A strongly regular graph with parameters (v, k, λ, µ), denoted SRG(v, k, λ, µ),
is a k-regular graph on v vertices such that for every pair of adjacent vertices there
are λ vertices adjacent to both, and for every pair of non-adjacent vertices there are
µ vertices adjacent to both. We assume throughout that a strongly regular graph G
is connected and that G is not a complete graph. Consequently, k is an eigenvalue of
the adjacency matrix of G with multiplicity 1 and

v − 1 > k ≥ µ > 0 and k − 1 > λ ≥ 0.(1.1)

Counting the number of edges in G connecting the vertices adjacent to a vertex
x and the vertices not adjacent to x in two ways we obtain

k(k − λ − 1) = (v − k − 1)µ.(1.2)

Thus if we are given three of the parameters v, k, λ, µ, the fourth is uniquely deter-
mined. If A is the adjacency matrix of an SRG(v, k, λ, µ), we have the equation

A2 = kI + λA + µ(J − A − I).(1.3)

Since eigenvectors with eigenvalue θ �= k are orthogonal to the all-ones vector, then
by (1.3) the remaining eigenvalues must satisfy the equation

θ2 − (λ − µ)θ − (k − µ) = 0.(1.4)

Thus the eigenvalues of G are

k, and θ1, θ2 =
(λ − µ)±√

∆
2

,(1.5)
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where

∆ = (λ − µ)2 + 4(k − µ) > 0.(1.6)

Because the sum of the eigenvalues equals trace(A) = 0 it follows easily (see equations
(2.4) and (2.5)) that the corresponding multiplicities are

1, and m1, m2 =
1
2

(
v − 1± (v − 1)(µ − λ)− 2k√

∆

)
.(1.7)

Since the values m1 and m2 are multiplicities of eigenvalues, they must be integers.
The complement of an SRG(v, k, λ, µ) is an SRG(v, k, λ, µ), where

k = v − k − 1, λ = v − 2k + µ − 2, and µ = v − 2k + λ.

From these parameters we see that λ = v − 2k + µ − 2 ≥ 0 is a necessary condition
for an SRG(v, k, λ, µ) to exist.

Definition 1.1. Parameter sets of nonnegative integers (v, k, λ, µ) where (1.1)
and (1.2) hold, m1 and m2 are positive integers, and λ ≥ 0, are called feasible param-
eter sets.

The term feasible is used here only to mean that certain preliminary requirements
are met; a feasible parameter set need not be the parameter set of an srg. There are
other conditions that the parameters of an srg must satisfy (e.g. the Krein Conditions
[11, p.237]). However, it turns out to be more convenient to work with the restricted
list of conditions in the definition and apply additional conditions to our results in
Table 2.1 for specific cases.

Given λ and µ, we show in Section 2 that, unless λ and µ satisfy one of three
relations, there are only finitely many feasible parameter sets (v, k, λ, µ). We give
formulas for the parameters, eigenvalues, and eigenvalue multiplicities for each of
the three cases for which there may be infinitely many feasible parameter sets. In
Section 3 we present some consequences of the results in Section 2, some of which
have appeared in the literature.

Strongly regular graphs with m1 = m2 are called conference graphs. We have the
following two well-known results on conference graphs [11, p.235].

Lemma 1.2. Let G be a strongly regular graph. Then G is a conference graph if
and only if G is an SRG(v, 1

2 (v − 1), 1
4 (v − 5), 1

4 (v − 1)).
Lemma 1.3. Let G be a strongly regular graph with parameters (v, k, λ, µ) and

eigenvalues k, θ1 and θ2. If G is not a conference graph, then θ1 and θ2 are integers
and ∆ is a perfect square.

2. Main Result. The proof technique used here is a natural extension of that
used by Hoffman and Singleton [9] in their well-known result on diameter two Moore
graphs (discussed in Section 3), and later by Biggs [2, p.102] in his result on strongly
regular graphs with no triangles (Lemma 3.2) and by Berlekamp, van Lint, and Seidel
[1, sec.2] in their result on strongly regular graphs with λ − µ = −1 (Lemma 3.5).
Suppose that λ and µ are given. We wish to determine the parameters v and k
such that the parameter set (v, k, λ, µ) is feasible. By Lemma 1.2 there is at most
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one feasible parameter set with m1 = m2, so we assume throughout that m1 �= m2.
Then, by Lemma 1.3, ∆ is a perfect square. Thus there is a positive integer s such
that

∆ = (λ − µ)2 + 4(k − µ) = s2(2.1)

and so

k = µ − (λ − µ)2 + s2

4
.(2.2)

Also, from identity (1.2),

v − 1 = k +
k(k − 1− λ)

µ
.(2.3)

Also

m1 + m2 = v − 1,(2.4)
θ1m1 + θ2m2 = −k.(2.5)

Substituting the values for θ1 and θ2 from (1.5) into equation (2.5) we get

2k + (λ − µ)(m1 + m2) + s(m1 − m2) = 0.

Substituting into this equation for v − 1 = m1 + m2 as given in (2.3), then for k
as given in (2.2), and finally multiplying through by 16 we get

(
8µ + (λ − µ)(4µ − (λ − µ)2 − 4− 4λ + 4µ + s2)

)
(
4µ − (λ − µ)2 + s2

)
= 16sµ(m2 − m1).(2.6)

Finally, taking both sides of (2.6) modulo s we get
(
4µ − (λ − µ)2

) (
8µ + (λ − µ)(8µ − 4λ − 4− (λ − µ)2 )

) ≡ 0 (mod s).

Factoring this we get

c(λ, µ) =
(
4µ − (λ − µ)2

)
(λ − µ + 2)

(
(λ − µ)2 + 2λ − 6µ

) ≡ 0 (mod s).(2.7)

Thus, given λ, µ, if c(λ, µ) is nonzero, then there are only finitely many possi-
bilities for s and consequently only finitely many possibilities for v, k. However, if
c(λ, µ) = 0, then the congruence (2.7) provides no restrictions on s. We now have the
following theorem.

Theorem 2.1. Let λ and µ be fixed. Then there are only finitely many feasible
parameters sets (v, k, λ, µ), unless λ and µ satisfy one of the following three relations:

(a) (λ − µ)2 = 4µ; (b) λ − µ = −2; (c) (λ − µ)2 + 2(λ − µ) = 4µ.(2.8)

Consequently, unless λ and µ satisfy one of (2.8) there are only finitely many graphs
with parameters v, k, λ, and µ. For λ and µ fixed, each divisor of c(λ, µ) realizes a
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possible value of s and thus a possible value of k using (2.1). The parameter v is then
determined by (2.3). The multiplicities m1 and m2 are given by (1.7).

If one of the relations in (2.8) holds then there may be infinitely many v and k
such that (v, k, λ, µ) is feasible. We shall see examples of such parameter sets in the
next section. The parameter sets (v, k, λ, µ) for which λ and µ satisfy one of the three
equations in (2.8) are summarized in the following table.

Case v k λ µ m1

(a) (r2+r−t)(r2−r−t)
t2 r2 t2 + 2t t2 r(r2+r−t)(r−t−1)

2t2

(b) (r2+µ)2−r2

µ r2 + µ − 1 µ − 2 µ (r2+r+µ)(r2+µ−1)
2µ

(c) r2(r2−1)
t(t+1) r2 + t t2 + 3t t2 + t (r2+t)(r−t−1)(r+1)

2t(t+1)

Table 1
In each of the three cases, λ − µ is even, so we may take λ − µ = 2t (in case (b),

t=−1). Consequently s must be even, so we make the substitution s = 2r, r > 0. The
eigenvalues are θ1, θ2 = t ± r. Each choice of r, t in cases (a),(c) or of r, µ in case (b)
with λ ≥ 0, µ > 0 such that k > λ+1 will yield a feasible parameter set if λ ≥ 0 and
m1, m2 = v − 1 − m1 are positive integers. Note that t may be negative. Equation
(1.2) was used in deriving the parameters, and so will be satisfied. The inequalities
v − 1 > k ≥ µ will then hold as well.

From the formulas for the parameters in each of these cases, it is evident that it
is not enough for s to be a divisor of c(λ, µ) for the parameter set to be feasible. In
general for each of these three cases there is not much that can be said about finding
feasible parameter sets without specifying a value for t in cases (a), (c) or a value for
µ in case (b). However, if there is one value of r for a given t or µ that gives a feasible
parameter set, then any positive integer greater than r and equivalent to r modulo
the denominators of v, m1 and m2 will also yield positive integer values for each of
these parameters. Furthermore λ ≥ 0 for all r greater than some constant, since the
coefficient of r4, the term of highest degree in λ, is positive in each case. Thus, if
there is one value for r that gives a feasible parameter set, then there are infinitely
many values of r for a given t or µ.

Strongly regular graphs with λ− µ = −2 correspond to symmetric 2-(v, k + 1, µ)
designs with µ ≥ 2 that have a polarity with all points absolute (see [7, pp.13, 42-
43] for definitions). There are infinitely many symmetric 2-(v, k + 1, 1) designs (the
projective planes), but only finitely many symmetric 2-(v, k+1, µ) designs are known
for each µ ≥ 2. Thus it is currently unknown whether there are infinitely many
SRG(v, k, µ − 2, µ) for a given µ ≥ 2.

For each of the relations in (2.8) there are a number of graphs known with λ
and µ satisfying that relation. For example, the triangular graph T (n) is the graph
whose vertices are the 2-subsets of an n-set where two vertices are adjacent if they
intersect. The graph T (n) is an SRG(

(
n
2

)
, 2(n − 2), n − 2, 4). The graph T (10) is an

SRG(45, 16, 8, 4), satisfying the first relation. The complement of the graph T (6) is
an SRG(15, 6, 1, 3), satisfying the second relation. Finally, the Higman-Sims graph
[11, p.327] is an SRG(100, 22, 0, 6) satisfying the third relation. There are, however,
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no pairs λ and µ known for which there are infinitely many strongly regular graphs
with parameters (v, k, λ, µ). In fact, we shall see in the next section that there are
pairs λ and µ for which there are infinitely many feasible parameter sets but for which
there are no constructions known.

3. Applications. In this section we present some consequences of the results of
the previous section that have appeared in previous literature. The first application
is the one that motivated the result in Theorem 2.1.

Example 3.1. If n is the number of vertices of a k-regular graph of diameter 2,
then

n ≤ 1 + k + k(k − 1) = k2 + 1.

Graphs in which equality holds are called Moore graphs of diameter 2, and are easily
seen to be strongly regular with parameters

(k2 + 1, k, 0, 1).

Here c(λ, µ) = −15, so s ∈ {1, 3, 5, 15}, by (2.7). Also s2 = ∆ = 4k− 3 and we obtain
the well-known constraint that k = s2+3

4 ∈ {1, 3, 7, 57}, unless m1 = m2. If m1 = m2,
then k2 + 1 = 2k + 1, so k = 2.

It is easy to see that a Moore graph with k = 1 cannot exist. Unique graphs are
known for k ∈ {2, 3, 7}. The five cycle C5 is an SRG(5, 2, 0, 1). The Petersen graph
is the complement of T (5) and is an SRG(10, 3, 0, 1). The Hoffman-Singleton graph
[8, sec.5.9] is an SRG(50, 7, 0, 1). The case k = 57 is undecided.

In Example 3.1, we saw that the Moore graphs of diameter 2 are the strongly
regular graphs with λ = 0 and µ = 1. Two natural classes of strongly regular graphs
have been suggested as generalizations of Moore graphs: those with λ = 0 (Cameron
and van Lint [7, ch.8]), and those with µ = 1 (Bose and Dowling [3]).

In [2, p.102] N. Biggs proves the following result on strongly regular graphs with
λ = 0.

Lemma 3.2.

1. If µ �∈ {2, 4, 6} then the parameter set (v, k, 0, µ) is feasible if and only if k is one
of a finite list of values for each given µ.

2. The parameter set (v, k, 0, 2) is feasible if and only if k = r2 + 1 where r �≡
0 (mod 4), r ≥ 2.

3. The parameter set (v, k, 0, 4) is feasible if and only if k = r2 where r is any positive
integer.

4. The parameter set (v, k, 0, 6) is feasible if and only if k = r2 − 3 where r �≡
0 (mod 4), r ≥ 3.

Proof. Substituting λ = 0 into equation (2.7), we get

c(0, µ) = µ2(µ − 2)(µ − 4)(µ − 6).

If µ �∈ {2, 4, 6}, then c(0, µ) �= 0, so the number of possible values of s =
√
∆, a divisor

of c(0, µ), is finite.
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If µ ∈ {2, 4, 6}, then, by inspection from Table 2.1 we have parameter sets with
λ = 0 when λ = µ − 2 (µ = 2), (λ − µ)2 = 4µ (µ = 4, t = −2), and (λ − µ)2 +
2(λ − µ) = 4µ (µ = 6, t = −3). The values of k follow from the formulas for the
parameters. The conditions on r follow from the eigenvalue multiplicity formulas.
For example, when µ = 6, then t = −3 and the formulas for parameter sets with
(λ−µ)2+2(λ−µ) = 4µ give k = r2−2 and m1 = (r2−3)(r+2)(r+1) ≡ 0 (mod 12).
Substituting r = 0, 1, 2, . . . , 11 in the last condition yields the equivalent condition
r �≡ 0 (mod 4). The condition r ≥ 3 ensures that m1, m2 > 0.

We can construct a 2-design, possibly with repeated blocks, from a strongly regu-
lar graph G with λ = 0. The points of the design are the vertices adjacent to a given
vertex, and the blocks are the vertices not adjacent to that vertex. A point is incident
to a block if the corresponding vertices are adjacent in G. The resulting design is a
2-(k, µ, µ − 1) design. This observation leads to further constraints on the feasible
parameters with λ = 0 [7, ch.8]. The trivial examples of strongly regular graphs with
λ = 0 are the complete bipartite graphs Km,m, m ≥ 2 with parameters (2m, m, 0, m).
Other than the known constructions of diameter 2 Moore graphs, there are only four
known nontrivial examples of strongly regular graphs with λ = 0 [7, ch.8]. Each of
these strongly regular graphs is determined uniquely by its parameters. One exam-
ple is the Higman-Sims graph mentioned in Section 2. The other examples are the
Clebsch graph, the Gewirtz graph and the second subconstituent of the Higman-Sims
graph which have parameters (16, 5, 0, 2), (56, 10, 0, 2), and (77, 16, 0, 4) respectively
[11, ch.21].

We can also prove the following result about strongly regular graphs with µ = 1
suggested by Bose and Dowling as a generalization of Moore graphs. Strongly regular
graphs with µ = 1 are also discussed by Kantor [10].

Lemma 3.3.

1. If λ �= 3 then the parameter set (v, k, λ, 1) is feasible if and only if k is one of a
finite list of values for each given λ.

2. The parameter set (v, k, 3, 1) is feasible if and only if k = r2 where r is even, r ≥ 4.
Proof. Substituting µ = 1 into equation (2.7) we get

c(λ, 1) = (λ − 3)(λ + 1)2(λ2 − 5).

If λ �= 3 then c(λ, 1) �= 0 so the number of possible divisors of s =
√
∆ is finite. By

inspection from Table 2.1, if λ = 3 then we have case (a) with t = 1 since µ = 1. The
value of k follows from the formulas for the parameters. The conditions on r follow
from the eigenvalue multiplicity formulas. The remaining feasibility conditions are
then satisfied.

If µ = 1, the induced subgraph on the neighbours of a vertex x must be a disjoint
union of (λ+1)-cliques, so (λ+1)|k, and counting the number of (λ+2)-cliques in G,
we get that (λ+1)(λ+2)|vk [6]. Currently the only known constructions for strongly
regular graphs with parameters (v, k, λ, 1) have λ = 0 (the Moore graphs of diameter
2). Kantor [10] shows that the case (v, k, 1, 1) is impossible. The smallest unsettled
case is (400,21,2,1) [5, sec.1.17].
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By examining each of the relations given in (2.8), we saw in Section 2 that the
difference between λ and µ is always even. It is also non-zero in each of the three
cases. Thus we have the following simple observation.

Lemma 3.4. Let λ and µ be fixed. If λ − µ is zero or odd, then there are only
finitely many feasible parameter sets (v, k, λ, µ).

The following result, due to Berlekamp, van Lint, and Seidel, [1], is a special case
of Lemma 3.4.

Lemma 3.5. For each λ and µ with λ − µ = −1 there are only finitely many
feasible parameter sets (v, k, λ, µ).

Strongly regular graphs with λ − µ = −1 include the conference graphs and the
Moore graphs. They are equivalent to examples of the following generalization of
block designs due to Bridges and Ryser [4]. A binary (v, k, µ)-system on r and s is a
pair X, Y of (0, 1)-matrices of order v satisfying the matrix equation

XY = Y X = (k − µ)I + µJ, k �= µ,

where X and Y have constant row sums r and s respectively. Strongly regular graphs
with λ = µ− 1 and adjacency matrix A, are equivalent to binary (v, k, µ)-systems on
k and k + 1 with X = A and Y = A + I.

The conditions in (2.8) partition the parameter sets considered in Theorem 2.1
into three families. We observed earlier that the case λ − µ = −2 corresponds to
2-(v, k+1, µ) designs having a polarity with all points absolute. There are no pairs λ
and µ with λ− µ = −2 for which infinitely many strongly regular graphs are known.
However, there are infinite classes of graphs with λ − µ = −2 if we allow λ and
µ to vary. For example, the complements of the symplectic graphs [8, p.242] have
parameters (22r − 1, 22r−1 − 2, 22r−2 − 3, 22r−2 − 1). It would be interesting to
know if either of the other two conditions are associated with, or at least contain, an
infinite family of combinatorial structures.
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