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Abstract. In this paper, recent results by Petersen and Ran on the J-spectral factorization
problem to rational matrix functions with constant signature that are not necessarily analytic at
infinity are extended. In particular, a full parametrization of all J̃-spectral factors that have the
same pole pair as a given square J-spectral factor is given. In this case a special realization involving
a quintet of matrices is used.
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1. Introduction. In the present paper, we consider factorizations of the rational
matrix function Φ of the form

Φ(λ) = W1(λ)JW1(−λ)∗ = W (λ)J̃W (−λ)∗,(1.1)

where W1 is a given minimal square factor and W is a nonsquare factor, and

J̃ =
[
J 0
0 J22

]
.(1.2)

Here J satisfies J = J∗ = J−1 and J22 is invertible and Hermitian. In this regard, an
m×p rational matrix function W (λ) is called a minimal J̃-spectral factor of Φ(λ)
if (1.1) is a minimal factorization. Φ may be a regular rational matrix function taking
Hermitian values on the imaginary axis; for such a minimal J̃-spectral factorization
to exist, the number of positive and negative eigenvalues of the matrix Φ(λ) must
be the same (i.e., Φ has constant signature) for all imaginary λ, except for the poles
and zeros of Φ. See [19] for this and other necessary conditions for the existence of
a minimal square J-spectral factorization. For a necessary and sufficient condition
for existence of J-spectral factorization with square factor W which has neither zeros
nor poles in the open right half plane, see [18]. We shall assume throughout that
Φ(α) = J for a given pure imaginary number α.

For a history and relevant literature of the problem of finding symmetric factors of
selfadjoint rational matrix functions see e.g. [9]. In particular, we are interested in the
following two recent contributions. Firstly, in [9] necessary and sufficient conditions
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are given for the existence of a complete set of minimal J-spectral factorizations of a
selfadjoint rational matrix function with constant signature. Also, in [14] the problem
of parameterizing the set of all nonsquare minimal spectral factors of a rational matrix
function taking positive semi-definite values on the imaginary axis is considered.

In the present paper, we discuss the J̃-spectral factorization of a rational matrix
function with constant signature into J̃ - spectral factors where we have J = J∗ = J−1.
Our analysis has a heavy reliance on the discussions in [16] and [14] (see also [15] and
[17]). In particular, it was shown in the main result of [16] that if

Φ(λ) = J + C(λI −A)−1B(1.3)

is a realization of a rational matrix function Φ with constant signature and

W1(λ) = Im + C1(λI −A1)−1B̃1

is a minimal square J-spectral factor W1 of Φ, then any other minimal J̃-spectral
factor with the same pole pair (C1, A1) is given by

W (λ) =
[
Im 0

]
+ C1(λI −A1)−1

[
XC∗

1J + B̃1 X2

]
,(1.4)

where X = X∗ and X2 and J22 = J∗
22 satisfy

XZ∗ + ZX −XC∗
1JC1X = X2J22X

∗
2 ,(1.5)

with Z = A1 − B̃1C1. The converse of this claim was also shown to be true.
In this paper we study J̃-spectral factorization using the concept of realization.

Usually a realization for a rational matrix function W is a representation of the form

W (λ) = D + C(λI −A)−1B,(1.6)

which holds whenever W is analytic and invertible at infinity. However, here we
consider arbitrary regular rational matrix functions which are not necessarily analytic
and invertible at infinity. Of course, the problem in this case could be handled by
considering a change of variable, replacing λ by 1

λ−α , where α ∈ iR is a point where
Φ has neither a pole nor a zero. However, recently alternative realizations were
proposed which allow one to study arbitrary regular rational matrix functions without
constraints on the behaviour at infinity (see [6], [7] and Section 5.2 of [3]). One such
representation of the function W is

W (λ) = D + (α− λ)C(λG −A)−1B,(1.7)

where A and G are n×n matrices with αG−A invertible, B is an n×m matrix and
C is an m× n matrix and finally D is an invertible m×m matrix. (This realization
is valid provided W is analytic at λ = α.)

In this paper we show how this realization can be used to solve the following
problem:
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Find a full parametrization of all J̃-spectral factors that have the same pole pair
as a given square J-spectral factor.

The paper consists of four sections, including the introduction. Section 2 is pre-
liminary in character and describes some key elements of rational matrix functions
with the alternative realization (1.7). In the third section we solve the J-spectral
factorization problem for arbitrary rational matrix functions. Conclusive remarks are
given and ongoing topics of research highlighted in the last section.

2. Preliminaries. Firstly, we give terminology and notation. By a Cauchy
contour γ we mean the positively oriented boundary of a bounded Cauchy domain
in C. Such a contour consists of a finite number of non-intersecting closed rectifiable
Jordan curves. The set of points inside γ is called the inner domain of γ and will
be denoted by ∆+. The outer domain of γ is the set ∆− = C∞ \∆+. By convention
0 ∈ ∆+ and by definition ∞ ∈ ∆−.

Next, we consider operator pencils. Let X be a complex Banach space and let G
and A be bounded linear operators on X . For λ ∈ C the expression λG−A is called
a (linear) operator pencil on X . Given a non-empty subset ∆ of the Riemann
sphere C∞, we say that λG − A is ∆-regular if λG − A (or just G if λ = ∞) is
invertible for each λ ∈ ∆. The spectrum of λG−A denoted by σ(G,A) is the subset
of C∞ determined by the following properties:

1. ∞ ∈ σ(G,A) if and only if G is not invertible and
2. σ(G,A)∩C consists of all those λ ∈ C for which λG−A is not invertible. Its

complement (in C∞) is the resolvent set of λG −A, denoted by ρ(G,A).
Next, we recall a spectral decomposition theorem which summarizes in a way

suitable for our purposes the extension (see, for instance, [5], [6] and [20]) to operator
pencils of the classical Riesz theory about separation of spectra.

Theorem 2.1. Let γ be a Cauchy contour with ∆+ and ∆− as inner and outer
domains, respectively. Furthermore, suppose that λG − A is a γ-regular pencil of
operators on the Banach space X . Then there exists a projection P and an invertible
operator E, both acting on X , such that relative to the decomposition

X = kerP ⊕ imP(2.1)

the following partitioning holds

(λG −A)E =
[
λΩ1 − I1 0
0 λI2 −Ω2

]
: kerP ⊕ imP → kerP ⊕ imP,(2.2)

where I1 (respectively, I2) denotes the identity operator on kerP (respectively, imP ),
the pencil λΩ1−I1 is (∆+∪γ)-regular and λI2−Ω2 is (∆−∪γ)-regular. Furthermore,
P and E (and hence also the operators Ω1 and Ω2) are uniquely determined. In fact,
we have that

P =
1
2πi

∫
γ

G(λG −A)−1dλ;(2.3)
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E =
1
2πi

∫
γ

(1− λ−1)(λG −A)−1dλ;(2.4)

Ω =
[

Ω1 0
0 Ω2

]
=

1
2πi

∫
γ

(λ− λ−1)G(λG −A)−1dλ;(2.5)

We call the 2 × 2 operator matrix in (2.2) the γ-spectral decomposition of
the pencil λG− A and the operator Ω in (2.5) will be referred to as the associated
operator corresponding to λG−A and γ. For the projection P and the operator E,
we shall use the terms separating projection and right equivalence operator,
respectively, in Theorem 2.1.

For the proof of Theorem 2.1 we refer to [6] (also, Chapter 4 of [5]). Here we
mention a few crucial steps in the proof, which we shall also use later. For

Q =
1
2πi

∫
γ

(λG−A)−1Gdλ(2.6)

it can be shown that

PG = GQ, PA = AQ,(2.7)

and hence the pencil λG−A admits the following partitioning

λG−A =
[
λG1 −A1 0
0 λG2 −A2

]
: kerQ⊕ imQ → kerP ⊕ imP.(2.8)

The next step is to show that the pencil λΩ1−I1 is (∆+∪γ)-regular and λI2−Ω2 is
(∆−∪γ)-regular. Since 0 ∈ ∆+ and ∞ ∈ ∆− it follows that A1 and G2 are invertible.
Thus we may set

E =
[
A−1

1 0
0 G−1

2

]
: kerP ⊕ imP → kerQ⊕ imQ(2.9)

and Ω1 = G1A
−1
1 and Ω2 = A2G

−1
2 . Then (2.2) holds and it follows that the pencil

λΩ1 − I1 is (∆+ ∪ γ)-regular and λI2 − Ω2 is (∆− ∪ γ)-regular. Next, we can prove
that E is also given by (2.4) and Ω by (2.5).

Similarly, (see Theorem 2.1) the associate pencil λG× −A× may be decomposed
as follows:

(λG× −A×)E×(2.10)

=
[
λΩ×

1 − I×1 0
0 λI×2 −Ω×

2

]
: kerP× ⊕ imP× → kerP× ⊕ imP×,

where I×1 (respectively, I×2 ) denotes the identity operator on kerP× (respectively,
imP×) and Ω×

1 = G×
1 (A

×
1 )

−1 and Ω×
2 = A×

2 (G
×
2 )

−1. Again by Theorem 2.1 the
pencil λΩ×

1 − I×1 is (∆+ ∪γ)-regular and λI×2 −Ω×
2 is (∆− ∪γ)-regular. Furthermore,
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we have that

P× =
1
2πi

∫
γ

G×(λG× −A×)−1dλ;(2.11)

E× =
1
2πi

∫
γ

(1 − λ−1)(λG× −A×)−1dλ;(2.12)

Ω× =
[

Ω×
1 0

0 Ω×
2

]
=

1
2πi

∫
γ

(λ− λ−1)G×(λG× −A×)−1dλ.(2.13)

Indeed, we may put

Q× =
1
2πi

∫
γ

(λG× −A×)−1G×dλ.(2.14)

It can be shown that

P×G× = G×Q×, P×A× = A×Q×,(2.15)

and thus the pencil λG× −A× admits the following partitioning:

λG× −A×(2.16)

=
[
λG×

1 −A×
1 0

0 λG×
2 −A×

2

]
: kerQ× ⊕ imQ× → kerP× ⊕ imP×.

The next step is to show that the pencil λΩ×
1 − I×1 is (∆+ ∪ γ)- regular and

λI×2 −Ω×
2 is (∆− ∪γ)-regular. Since 0 ∈ ∆+ and ∞ ∈ ∆− it follows that A×

1 and G×
2

are invertible. Thus we may set

E× =
[
A×−1

1 0
0 G×−1

2

]
: kerP× ⊕ imP× → kerQ× ⊕ imQ×(2.17)

and Ω×
1 = G×

1 A
×−1
1 and Ω×

2 = A×
2 G

×−1
2 . Then (2.10) holds and it follows that the

pencil λΩ×
1 − I×1 is (∆+ ∪γ)-regular and λI×2 −Ω×

2 is (∆− ∪γ)-regular. Next, we can
prove that E× is also given by (2.12) and Ω× by (2.13).

Let W be a regular m×m rational matrix function which has an invertible value
at the point α ∈ C. Then W admits a realization of the form (1.7) (see [6]) given by

W (λ) = D + (α− λ)C(λG −A)−1B,

where we assume αG − A is invertible. The realization (1.7) of W (λ) is said to
be minimal if the size of the matrices G and A is as small as possible among all
realizations of W . In this case, if G and A are n × n, say, then the number n is
called the McMillan degree of W , with this number being denoted by δ(W ). The
realization is minimal if and only if it is controllable and observable, more precisely,
if and only if the maps C(λG−A)−1 : C

n → R(σ) and B∗(λG∗−A∗)−1 : C
n → R(σ)

are one-to-one. Here R(σ) denotes the set of n × 1 rational vector functions with
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poles off σ, where σ is the set of zeros of det(λG−A) including infinity. This is easily
seen by using an appropriate Möbius transformation. Indeed, in this case, put

φ(λ) =
αλ+ 1

λ
,

and define

V (λ) = W (φ(λ)).

One checks that

V (λ) = D − C(αG −A)−1(λI +G(αG−A)−1)−1B.

This realization for V is minimal if and only if the realization (1.7) is minimal. But
for this standard type of realization it is well-known that minimality is equivalent to
observability and controllability. A straightforward computation for this particular
realization for V shows that the standard definition of observability and controllability
are equivalent to

C(αG −A)−1(λI +G(αG− A)−1)−1 : C
n → R(σ̂)

being one-to-one as well as

B∗(λI + (αG∗ −A∗)−1G∗)−1 : C
n → R(σ̂)

being one-to-one. Here σ̂ = φ−1(σ). Next, we observe that

C(αG −A)−1(λI +G(αG −A)−1)−1 =
1
λ
C(φ(λ)G −A)−1.

If we set ν = φ(λ), then
1
λ
= ν − α. So

(ν − α)C(νG −A)−1 : C
n → R(σ)

is one-to-one. Likewise, we have

B∗(λI + (αG∗ −A∗)−1G∗)−1 : C
n → R(σ̂)

is one-to-one if and only if

B∗(αG∗ −A∗)−1(λI +G∗(αG∗ −A∗)−1)−1 : C
n → R(σ)

is one-to-one. A similar argument as before shows that this is equivalent to

B∗(νG∗ −A∗)−1 : C
n → R(σ)

being one-to-one. Note that the realization (1.7) for W (λ) also has an inverse given
by

W (λ)−1 = D−1 − (α− λ)D−1C(λG× −A×)−1BD−1,(2.18)
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where G× = G−BD−1C and A× = A−αBD−1C. A minimal realization is essentially
unique, more precisely, let

W (λ) = Di + (α − λ)Ci(λGi −Ai)−1Bi, i = 1, 2(2.19)

be two minimal realizations for the same rational matrix function W (λ). Then D1 =
D2 and there exists unique invertible matrices E and F such that

E(λG1 −A1)F = λG2 −A2; C1F = C2; EB1 = B2.(2.20)

We shall say that the two realizations are strictly equivalent, by abuse of expression,
sometimes also that they are similar.

Next, we describe the form in which pole and zero data will be given. Let W (λ)
be an arbitrary regular (i.e., analytic and invertible at λ = α) rational matrix func-
tion. Then we know from the discussion above that W and its inverse W−1 may be
represented as (1.7) and (2.18), respectively. The pair of matrices (Cp, λGp − Ap) is
called a pole pair for W if there exists a B̃ such that

W (λ) = D + (α− λ)Cp(λGp −Ap)−1B̃(2.21)

is a minimal realization. For the zero structure we use W (·)−1. So, a pair of matrices
(λGz −Az, Bz) is called a null pair for W if there exists a C̃ such that

W (λ)−1 = D−1 − (α − λ)D−1C̃(λGz −Az)−1BzD
−1(2.22)

is a minimal realization. Suppose that (Cp, λGp − Ap) and (λGz − Az, Bz) are pole
and null pairs for an arbitrary rational matrix function W . Then we also have the
following minimal realization for W−1 :

W (λ)−1 = D−1 − (α − λ)D−1Cp(λG×
p −A×

p )
−1B̃D−1(2.23)

where G×
p = Gp−B̃D−1Cp and A×

p = Ap−αB̃D−1Cp. Since two minimal realizations
of the same function W (·)−1 are strictly equivalent (or similar), there exists unique
invertible matrices E and F such that

E(λGz −Az)F = λG×
p −A×

p ; C̃F = Cp; EBz = B̃;(2.24)

which implies that

E−1(λGp −Ap)− (λGz −Az)F = (λ− α)BzCp.(2.25)

In this case, we have that

W (λ) = D + (α− λ)Cp(λGp −Ap)−1EBz(2.26)

and

W (λ)−1 = D−1 − (α− λ)D−1CpF
−1(λGz −Az)−1BzD

−1.(2.27)
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Finally, the following identities will be useful in the sequel. Let W (λ) be as in
(1.7) where λG − A is γ-regular. Assume that detW (λ) = 0 for each λ ∈ γ and set
G× = G−BD−1C and A× = A− αBD−1C. Then for λ ∈ γ we have

W (λ)−1C(λG −A)−1 = D−1C(λG× −A×)−1;(2.28)
(λG −A)−1BW (λ)−1 = (λG× −A×)−1BD−1;(2.29)

(λG× −A×)−1 = (λG −A)−1 − (α− λ)(λG −A)−1BW (λ)−1C(λG −A)−1.(2.30)

3. Minimal J-Spectral Factorization for Arbitrary Rational Matrix
Functions. Let Φ be a rational matrix function with constant signature, for which
we assume the existence of a square minimal J-spectral factorization

Φ(λ) = W1(λ)JW1(−λ̄)∗.
Here we describe explicitly all minimal nonsquare J̃-spectral factors of the rational
matrix function Φ with constant signature matrix J̃ , and with the same pole pair as
a given minimal square J-spectral factor. The formulas for these J̃- spectral factors
are given in terms of the components of an algebraic Riccati equation and a given
minimal square J-spectral factor.

Let Φ be a rational matrix function with constant signature, for which we assume
the existence of a square minimal J-spectral factorization Φ(λ) = W1(λ)JW1(−λ̄)∗.
The main problem that we wish to consider may be stated as follows. Given Φ in
realized form we wish to find all minimal spectral factorizations Φ = WJ̃W ∗, where
W is possibly nonsquare. Our aim is to obtain a minimal realization for W ’s of this
type. The approach that we will adopt in solving this problem is comparable to the
one in [16]. In particular, we explicitly describe all minimal nonsquare J̃-spectral
factors W of Φ, for which W (α) =

[
Im 0

]
and with the same pole pair as W1.

Throughout, we assume that J̃ is given by (1.2).
Theorem 3.1. Suppose that the rational matrix function Φ with constant signa-

ture matrix has a realization

Φ(λ) = J + (α− λ)C(λG −A)−1B

and a minimal square J-spectral factor W1 given by the minimal realization

W1(λ) = Im + (α− λ)C1(λG1 − A1)−1B̃1(3.1)

whenever α = −α. Set Y = G1− B̃1C1 and Z = A1 −αB̃1C1. For any X = X∗ form

Y X +XY ∗ −XC∗
1JC1X

and let X2 and J22 = J∗
22 invertible be such that

Y X +XY ∗ −XC∗
1JC1X = X2J22X

∗
2 .(3.2)

Then for any such X, X2 and J22 the function

W (λ) =
[
Im 0

]
+ (α− λ)C1(λG1 −A1)−1

[
XC∗

1J + B̃1 X2

]
(3.3)
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is a J̃-spectral factor of Φ, where J̃ is given by (1.2). Moreover, for any such X, the
matrix (Z − αY )X is selfadjoint as well.

Conversely, given J̃ as in (1.2) all J̃-spectral factors of Φ are given by (3.3) where
X and X22 satisfy (3.2).

Proof. (⇐) We consider a nonsquare rational matrix of the form

W (λ) =
[
Im 0

]
+ (α− λ)C1(λG1 −A1)−1

[
X1 + B̃1 X2

]
.(3.4)

We can rewrite (3.4) in terms of the square J-spectral factor (3.1) as

W (λ) =
[
W1(λ) +R1(λ) R2(λ)

]
,(3.5)

where R1(λ) = (α − λ)C1(λG1 − A1)−1X1 and R2(λ) = (α − λ)C1(λG1 − A1)−1X2.
If we form a J̃-spectral product with W (λ) in the form given by (3.5) we obtain

W (λ)J̃W (−λ)∗ =
[
W1(λ) +R1(λ) R2(λ)

]
J̃

[
W1(−λ)∗ +R1(−λ)∗

R2(−λ)∗
]

=
[
W1(λ) +R1(λ) R2(λ)

] [
J 0
0 J22

][
W1(−λ)∗ +R1(−λ)∗

R2(−λ)∗
]

= (W1(λ) +R1(λ))J(W1(−λ)∗ +R1(−λ)∗) +R2(λ)J22R2(−λ)∗

= W1(λ)JW1(−λ)∗ +R1(λ)JW1(−λ)∗ +W1(λ)JR1(−λ)∗
+R1(λ)JR1(−λ)∗ +R2(λ)J22R2(−λ)∗

= Φ(λ) +R1(λ)JW1(−λ)∗ +W1(λ)JR1(−λ)∗
+R1(λ)JR1(−λ)∗ +R2(λ)J22R2(−λ)∗.

Thus we have that Φ(λ) = W (λ)J̃W (−λ)∗ if and only if

R1(λ)JW1(−λ)∗ +W1(λ)JR1(−λ)∗ +R1(λ)JR1(−λ)∗
+R2(λ)J22R2(−λ)∗ = 0.(3.6)

Next, we multiply (3.6) on the left by W1(λ)−1 and on the right by W1(−λ)−∗

and use the fact that

W1(λ)−1C1(λG1 −A1)−1 = C1(λY − Z)−1,

where Y = G1 − B̃1C1 and Z = A1 − αB̃1C1. By a straightforward calculation we
find that (3.6) is equivalent to

(α− λ)C1(λY − Z)−1X1J − (α+ λ)JX∗
1 (λY

∗ + Z∗)−1C∗
1(3.7)

= (α− λ)(α + λ)C1(λY − Z)−1(X1JX
∗
1 +X2J22X

∗
2 )(λY

∗ + Z∗)−1C∗
1 .
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From the spectral decomposition of the associate pencil λY −Z of the pencil λG1−A1

we obtain

(λY − Z)−1 = E×
[

(λΩ×
1 − I×1 )−1 0

0 (λI×2 −Ω×
2 )

−1

]
.(3.8)

Hence, it follows that

(α− λ)(λY − Z)−1 = E×
[

(α− λ)(λΩ×
1 − I×1 )−1 0

0 (α− λ)(λI×2 −Ω×
2 )

−1

]
,(3.9)

where

(α− λ)(λΩ×
1 − I×1 )−1 = −

∞∑
ν=0

αλν(Ω×
1 )

ν +
∞∑

ν=0

λν+1(Ω×
1 )

ν

and

(α− λ)(λI×2 −Ω×
2 )

−1 =
∞∑

ν=0

αλ−ν−1(Ω×
2 )

ν −
∞∑

ν=0

λ−ν(Ω×
2 )

ν .

Similarly, we have that

− (α+ λ)(λY ∗ + Z∗)−1 =(3.10) [ −(α+ λ)(λΩ×∗
1 + I×1 )−1 0

0 −(α+ λ)(λI×2 +Ω×∗
2 )−1

]
E×∗,

where

−(α+ λ)(λΩ×∗
1 + I×1 )−1 = −

∞∑
ν=0

(−1)ναλν(Ω×∗
1 )ν −

∞∑
ν=0

(−1)νλν+1(Ω×∗
1 )ν

and

−(α+ λ)(λI×2 +Ω×∗
2 )−1 = −

∞∑
ν=0

(−1)ναλ−ν−1(Ω×∗
2 )ν −

∞∑
ν=0

(−1)νλν(Ω×∗
2 )ν .

Substituting (3.9) and (3.10) into formula (3.7) and comparing the coefficients of
λ−1 yields

C1E
×

[
0 0
0 αI×2 −Ω×

2

]
X1J − JX∗

1

[
0 0
0 αI×2 −Ω×∗

2

]
E×∗C∗

1 = 0.(3.11)

Notice that (3.7) also implies that

(α− λ)C1(λY − Z)−1X1Ju = 0 (u ∈ ker C∗
1 ).(3.12)

The pair (C1, λY − Z) is a null-kernel pair and hence (3.12) can be rewritten as

X1Ju = 0 (u ∈ ker C∗
1 ).(3.13)
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From (3.11) and (3.12) it follows that there exists a selfadjoint matrix X such
that

XC∗
1 = X1J.(3.14)

Indeed, we define X on im C∗
1 by setting

XC∗
1u = X1Ju (u ∈ Cm).

From (3.13) it follows that X is well-defined and uniquely defined on im C∗
1 .

Consider the orthogonal decomposition C
n = im C∗

1 ⊕ ker C1, and the following
partitioning of X

X =
[
X11

X21

]
: im C∗

1 →
[

im C∗
1

ker C1

]
.

Note that

C1E
×

[
0 0
0 αI×2 −Ω×

2

]
X1J = C1E

×
[

0 0
0 αI×2 −Ω×

2

]
XC∗

1

= C1E
×

[
0 0
0 αI×2 −Ω×

2

]
X11C

∗
1 .

Since C1E
×

[
0 0
0 αI×2 −Ω×

2

]
X1J is selfadjoint by (3.11), we conclude that

C1E
×

[
0 0
0 αI×2 −Ω×

2

]
X11C

∗
1 is selfadjoint. This implies that

E×
[

0 0
0 αI×2 −Ω×

2

]
X11

is selfadjoint.
Now define X on C

n by

X =
[
X11 X∗

21

X21 X22

]
on

[
im C∗

1

ker C1

]
,

where X22 is an arbitrary selfadjoint linear transformation on ker C1. We note that
this suggests that there is freedom in the choice for X .

Using (3.11) and (3.12) and the fact that there exists an X such that (3.14) holds
we can rewrite (3.7) in the following equivalent form

C1(λY − Z)−1 {(α− λ)X(λY ∗ + Z∗)− (α+ λ)(λY − Z)X
−(α− λ)(α + λ)XC∗

1JC1X − (α− λ)(α + λ)X2J22X
∗
2}

× (λY ∗ + Z∗)−1C∗
1 = 0.(3.15)

By using the fact that (C1, λY − Z) is a null-kernel pair, we see that (3.15) is
equivalent to

{(α − λ)X(λY ∗ + Z∗)− (α+ λ)(λY − Z)X − (α− λ)(α + λ)XC∗
1JC1X

−(α− λ)(α + λ)X2J22X
∗
2} (λY ∗ + Z∗)−1C∗

1 = 0.
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Taking adjoints we see that the above formula is equivalent to

C1(λY − Z)−1 {(α− λ)X(λY ∗ + Z∗)− (α+ λ)(λY − Z)X
−(α− λ)(α+ λ)XC∗

1JC1X − (α− λ)(α + λ)X2J22X
∗
2} = 0.

Finally, by again using the fact that (C1, λY −Z) is a null-kernel pair, we notice
that (3.15) is equivalent to

(α+ λ)(λY − Z)X − (α− λ)X(λY ∗ + Z∗) + (α− λ)(α + λ)XC∗
1JC1X

+ (α− λ)(α + λ)X2J22X
∗
2 = 0.(3.16)

Next, note that (3.16) is an equality between two matrix polynomials of degree
two. Since like coefficients are equal we obtain the following equations:

Y X +XY ∗ −XC∗
1JC1X = X2J22X

∗
2 ;(3.17)

1
α− α

{(XZ∗ − ZX) + (αYX − αXY ∗)} −XC∗
1JC1X = X2J22X

∗
2 ;(3.18)

1
α
ZX +

1
α
XZ∗ −XC∗

1JC1X = X2J22X
∗
2 .(3.19)

Now we show that (Z − αY )X is selfadjoint whenever α = −α. Indeed, since
α = −α, (3.16) becomes

(−λY + Z)X −X(λY ∗ + Z∗) + (λ− α)XC∗
1JC1X = −(λ− α)X2J22X

∗
2 .(3.20)

Setting λ = α in (3.20) leads to

(−αY + Z)X −X(αY ∗ + Z∗) = 0.(3.21)

Again, since α = −α and by using (3.21) we get that (Z−αY )X must be selfadjoint.
Finally, by using the selfadjointness of (Z−αY )X and because α = −α we observe

that both (3.18) and (3.19) are equal to (3.17). So we can choose X2 and J22 such
that (3.2) holds whenever α = −α and (Z − αY )X is selfadjoint.

We observe that the above proof suggests that there is some freedom in the choice
of X . However, X is in fact unique (also compare with [14]). Suppose that

C1(λG1 −A1)−1XC∗
1J = C1(λG1 −A1)−1X

′
C∗

1J

for some selfadjoint matrix X
′
, and also that

(α+ λ)(λY − Z)X − (α− λ)X(λY ∗ + Z∗) + (α− λ)(α + λ)XC∗
1JC1X

= (α+ λ)(λY − Z)X
′ − (α− λ)X

′
(λY ∗ + Z∗) + (α − λ)(α + λ)X

′
C∗

1JC1X
′
.

Then the observability of (C1, λG1 −A1) implies that XC∗
1 = X

′
C∗

1 . Thus

im (X −X
′
) ⊂ kerC1.
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But then

XC∗
1JC1X = X

′
C∗

1JC1X,

and thus

(α− λ)(X −X
′
)(λY ∗ + Z∗)− (α+ λ)(λY − Z)(X −X

′
) = 0.

From this we deduce that im (X−X ′
) is (λY −Z)- invariant. As it is also contained

in kerC1, and as (C1, λY −Z) is observable, we obtain that (λY −Z)im (X−X ′
) = (0).

It then follows that im (X −X
′
) = (0), i.e., X = X

′
.

(⇒) We still have to establish the proof of the direct statement. Given the formula
for W (λ) one derives that

W (λ)J̃W (−λ̄)∗ = J + (α− λ)C1(λG1 −A1)−1(X1J + B̃1J)

− (α+ λ)(JX∗
1 + JB̃∗

1)(λG
∗
1 +A∗

1)
−1C∗

1

− (α− λ)(α + λ)C1(λG1 −A1)−1
{
(XC∗

1 + B̃1J)(B̃∗
1 + JC1X) +X2J22X

∗
2 )

}
× (λG∗

1 +A∗
1)

−1C∗
1 .

Employing (3.2) we see that

(α− λ)(α + λ)
{
(XC∗

1 + B̃1J)(B̃∗
1 + JC1X) +X2J22X

∗
2

}
= (α− λ)X

{
(λY ∗ + Z∗) + (α + λ)C∗

1 B̃
∗
1

}
+ (α+ λ)

{
(α− λ)B̃1C1 − (λY − Z)

}
X + (α − λ)(α+ λ)B̃1JB̃

∗
1

= (α− λ)X(λG∗
1 +A∗

1)− (α+ λ)(λG1 −A1)X + (α− λ)(α + λ)B̃1JB̃
∗
1 .

Inserting this in the formula above easily leads to

W (λ)J̃W (−λ̄)∗ =W1(λ)JW1(−λ̄)∗ = Φ(λ).

In the following corollary we consider the relationship between special choices of
J̃ and J̃-spectral factors of Φ.

Corollary 3.2. Let J̃ be given by (1.2). Under the assumptions of Theorem
3.1 the following hold.

(a) Let Π+(J) = Π+(J̃), where Π+(J) (resp.,Π+(J̃)) denotes the number of
positive eigenvalues of J (resp., J̃). There is a one-to-one correspondence
between J̃-spectral factors of Φ with pole pair (C1, λG1 −A1) and with value[
Im 0

]
at α, and pairs of matrices (X,X2) satisfying

Y X +XY ∗ −XC∗
1JC1X ≤ 0

and

Y X +XY ∗ −XC∗
1JC1X = X2J22X

∗
2 .

This one-to-one correspondence is given by (3.3).
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(b) Let Π−(J) = Π−(J̃), where Π−(J) (resp.,Π−(J̃)) denotes the number of
negative eigenvalues of J (resp., J̃). There is a one-to-one correspondence
between J̃-spectral factors of Φ with pole pair (C1, λG1 −A1) and with value[
Im 0

]
at α, and pairs of matrices (X,X2) satisfying

Y X +XY ∗ −XC∗
1JC1X ≥ 0

and

Y X +XY ∗ −XC∗
1JC1X = X2J22X

∗
2 .

This one-to-one correspondence is given by (3.3).
(c) Let Π+(J) = Π+(J̃) and Π−(J) = Π−(J̃). There is a one-to-one correspon-

dence between J̃-spectral factors of Φ with pole pair (C1, λG1 −A1) and with
value

[
Im 0

]
at α, and matrices X satisfying

Y X +XY ∗ −XC∗
1JC1X = 0.

This one-to-one correspondence is given by (3.3).
Part (c) of the above corollary corresponds to an analogue of the square case

which, for instance, is discussed in [9].

We note from the J̃-spectral factorization in (1.1) and the proof of Theorem 3.1
that

W (λ)J̃W (−λ)∗(3.22)
= (W1(λ) +R1(λ))J(W1(−λ)∗ +R1(−λ)∗) +R2(λ)J22R2(−λ)∗,

where we have that W1 + R1 has a fixed pole pair (C1, λG1 − A1). If we make
the assumption that J22 is positive semidefinite, i.e., J22 ≥ 0, then it follows that
(W1 + R1)J(W1 + R1)∗ ≥ Φ. On the other hand, if we suppose that J22 is negative
semidefinite, i.e., J22 ≤ 0, then it follows that (W1 +R1)J(W1 +R1)∗ ≤ Φ.

Remark 3.3. Our next remark represents a much weaker analogue of Corollary
2.3 of [16]. It may be formulated and proved as follows. Assume Φ has a minimal
square J-spectral factor

W1(λ) = Im + (α− λ)C1(λG1 −A1)−1B̃1.

All square rational matrix functions V such that V JV ∗ ≤ Φ, V has a pole pair
of the form (C1, λG1 −A1) and V (α) = Im are given by

V (λ) = Im + (α− λ)C1(λG1 −A1)−1(XC∗
1J + B̃1),(3.23)

where X solves

Y X +XY ∗ −XC∗
1JC1X = X2X

∗
2 .(3.24)
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Here Y = G1 − B̃1C1 and Z = A1 − αB̃1C1. Indeed, we write
V (λ) = I+(α−λ)C1(λG1−A1)−1(X1+ B̃1) and R2(λ) = (α−λ)C1(λG1−A1)−1X2

and consider

Φ(λ) =
[
V (λ) R2(λ)

] [
J 0
0 I

][
V (−λ)∗
R2(−λ)∗

]

where[
V (λ) R2(λ)

]
=

[
Im 0

]
+ (α − λ)C1(λG1 − A1)−1

[
X∗

1J + B̃1 X2

]
. It

follows from the proof of Theorem 3.1 that X1 = XC∗
1J with X = X∗ satisfying

Y X +XY ∗ −XC∗
1JC1X = X2X

∗
2 ≥ 0.

The converse is proved by taking a V as in (3.23) and then forming Φ(λ) as
above with J22 = I and R2(λ) = (α − λ)C1(λG1 − A1)−1X2. Then it follows that
V JV ∗ ≤ Φ, V has a pole pair of the form (C1, λG1−A1), V (α) = I and R2(α) = 0.

The following result explains the square case.
Corollary 3.4. Suppose that the rational matrix function Φ with constant

signature matrix J has a realization

Φ(λ) = J + (α− λ)C(λG −A)−1B

and a minimal square J-spectral factor W1 given by the minimal realization

W1(λ) = Im + (α − λ)C1(λG1 −A1)−1B̃1(3.25)

whenever α = −α. Set Y = G1 − B̃1C1 and Z = A1 − αB̃1C1. Let X = X∗ be such
that

Y X +XY ∗ −XC∗
1JC1X = 0.(3.26)

Then for any such X, the function

W (λ) = Im + (α− λ)C1(λG1 −A1)−1(XC∗
1J + B̃1)(3.27)

is a J-spectral factor of Φ. Moreover, for any such X, the matrix (Z − αY )X is
selfadjoint.

Conversely, all J-spectral factors of Φ are given by (3.27) where X satisfies
(3.26).

The proof of this corollary is almost exactly the same as for the nonsquare case
in Theorem 3.1.

4. Conclusions and Future Directions. The problem that we solve in this
paper is to give a full parametrization of all J̃-spectral factors that have the same pole
pair as a given square J-spectral factor of a rational matrix function with constant
signature and with special realization of the type given by (1.7), i.e.,

W (λ) = D + (α− λ)C(λG −A)−1B.
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Explicit formulas for these J̃-spectral factors are given in terms of a solution
of a particular algebraic Riccati equation. Also, it is possible to recover most of
the formulas in [16] by applying an inverse Möbius transformation and using other
heuristic tools.

Some work can still be done in the case of analytic rational matrix functions given
as in (1.6), in other words

W (λ) = D + C(λI −A)−1B.

For instance, in [10] it was proved that although minimal J-spectral square factors
may not always exist, there always is a possibly nonsquare minimal J̃-spectral factor.
The following open question may be posed; what is the smallest possible size of such
a nonsquare factor?

Another fertile area of research is the further characterization of the null-pole
structure of rational matrix functions ([1, 2, 3, 4, 11]) with alternative realization. In
this regard, it would be an interesting exercise to follow the lead taken in [16] and
discuss the common null structure of rational matrix functions (see also [11]) that
arises from the analysis of J-spectral factors with more general realization. Another
question would be whether this zero structure can be obtained in terms of the kernel
of a generalized Bezoutian. A prerequisite for this is of course that an appropriate
notion of a Bezoutian ([8, 12, 13, 16]) should be unearthed for spectral factors with
alternative realization.
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