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ANALYTIC ROOTS OF INVERTIBLE MATRIX FUNCTIONS∗
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Abstract. Various conditions are developed that guarantee existence of analytic roots of a given
analytic matrix function with invertible values defined on a simply connected domain.
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1. Introduction. Let G be a simply connected domain in the complex plain
C, or an open interval of the real line. By an analytic, resp., a meromorphic, matrix
function inG we mean a matrix whose entries are (scalar) analytic, resp., meromorphic
functions in G. Unless specified otherwise, G will denote a fixed simply connected
domain, or a fixed real interval.

Let A(z), z ∈ G be an n × n matrix function analytic and invertible in G. In
this paper we study analytic mth roots of A, that is, matrix functions B which are
analytic in G and satisfy the equation B(z)m = A(z) for all z ∈ G. Here m ≥ 2 is
positive integer. Of course, it is a well known fact from complex analysis that for
n = 1 there are exactly m analytic mth root functions.

However, in the matrix case not much is known. See, for example, [2]. This is
somewhat surprising, especially because the problem is a natural one.

To start with, consider an example.
Example 1.1. Let G be a simply connected domain such that −1, 0 ∈ G and

− 1
2 �∈ G. Consider the analytic matrix function

A(z) =
[
(z + 1

2 )
2 1

0 1
4

]
, z ∈ G.

Clearly A(z) is invertible on G. An easy algebraic computation shows that there are
only four meromorphic (in G) functions B(z) such that B(z)2 = A(z), given by the
formula

B(z) =

[
δ1(z + 1

2 ) (δ1(z + 1
2 ) +

1
2δ2)

−1

0 1
2δ2

]
, z ∈ G, (1.1)

where δ1 and δ2 are independent signs ±1. None of the four functions B(z) is analytic
in G. �

One can use functional calculus to compute square roots of an analytic invertible
n×n matrix function A(z), as follows. Fix z0 ∈ G. For z ∈ G sufficiently close to z0,
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use the formula

B(z) =
1
2πi

∫
Γ

(λI −A(z))−1(λ)1/mdλ, (1.2)

where Γ is a simple closed rectifiable contour such that all eigenvalues of A(z0) are
inside Γ, the origin is outside of Γ, and (λ)1/m is an analytic branch of the mth
root function. Clearly, B(z)m = A(z). Formula (1.2) shows that locally, i.e., in a
neighborhood of every given z0 ∈ G, an analytic mth root of A(z) always exists.

In the next section we treat the case of 2× 2 analytic matrix functions and their
analytic roots, using a direct approach. The general case of n × n matrix functions
requires some preliminary results which are presented in Sections 3 and 4. Our main
results are stated and proved in Section 5. Finally, in the last Section 6 we collect
several corollaries concerning analytic roots of analytic matrix functions.

2. 2 × 2 matrix functions. We start with triangular 2 × 2 matrix functions.
We say that the zeroes of a (scalar) analytic function a(z), z ∈ G, are majorized by
the zeroes of an analytic function b(z), z ∈ G, if every zero z0 of a(z) is also a zero of
b(z), and the multiplicity of z0 as a zero of a(z) does not exceed the multiplicity of
z0 as a zero of b(z), or in other words, if the quotient b(z)/a(z) is analytic in G.

Theorem 2.1. A 2× 2 analytic triangular matrix function

A(z) =
[
a11(z) a12(z)
0 a22(z)

]
, z ∈ G (2.1)

with diagonal entries non-zero everywhere in G admits an analytic square root if and
only if at least one of the functions

√
a11 +

√
a22 and

√
a11 −√

a22 has its zeroes in
G majorized by the zeroes of a12.

Here by
√
a11 and

√
a22 we understand either of the two branches of the analytic

square root scalar function; the statement of the theorem does not depend on this
choice.

Proof. The case when a12 is identically equal to zero is trivial: the condition on
the majorization of zeroes holds automatically, and the square roots of A are delivered
by the formula

B =
[±√

a11 0
0 ±√

a22

]

(this exhausts all the possibilities if the diagonal entries of A are not identical, and
many more analytic square roots exist otherwise). So, it remains to consider the case
of a12 not equal zero identically.

If B(z) = [bij ]2i,j=1 is the analytic square root of A(z) in G, then, in particular,

(b11 + b22)b12 = a12 and (b11 + b22)b21 = 0. (2.2)

Since a12 is not identically zero in G, neither is b11 + b22. From the analyticity of
functions involved it follows from the second equation in (2.2) that b21 is identically
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zero. In other words, the analytic quadratic roots of the triangular matrix under
consideration are triangular as well.

But an upper triangular B is a square root of A if and only if

b211 = a11, b222 = a22,

and the first equation of (2.2) holds. The analytic square root of A therefore exists if
and only if at least one of the equations

b12(
√
a11 +

√
a22) = a12

and

b12(
√
a11 −√

a22) = a12

has an analytic in G solution b12. This, in turn, is equivalent to the condition on
the zeroes of the functions a12 and

√
a11 ± √

a22 mentioned in the statement of the
theorem. �

Corollary 2.2. Let A(z) be a 2 × 2 analytic matrix function on G. Assume
that the eigenvalues λ1(z), λ2(z) of A(z), for every z ∈ G, can be enumerated so that
λ1(z) and λ2(z) become analytic functions on G. If for at least one branch of the
square root function we have

tr(A(z)) + 2
√
det (A(z)) �= 0

for every z ∈ G, then there exists an analytic square root of A(z).
For the proof use Theorem 2.1 and 4.1 (to be proved in a later section); the latter

theorem allows us to assume that A(z) is upper triangular.

3. Algebraic preliminaries.
Theorem 3.1. Let F be a field, and let A = [ai,j ]ni,j=1 be an n×n upper triangular

matrix over the field. Assume that

rank(A− λI) ≥ n− 1 ∀ λ ∈ F. (3.1)

Then every n × n matrix X over F such that Xm = A for some positive integer m
must be upper triangular.

Proof. Passing to the algebraic closure of F , we may assume that F is alge-
braically closed. Let X be such that Xm = A. By the spectral mapping theorem
(which is easily seen using the Jordan form of X)

{λm : λ ∈ σ(X)} = σ(A).

In particular, there exists λ0 ∈ σ(X) such that λm
0 = a1,1. If x is a corresponding

eigenvector of X , then

Ax = Xmx = λm
0 x = a1,1x.

Thus, x is an eigenvector of A corresponding to the eigenvalue a1,1. But the condition
(3.1) implies that A is nonderogatory: Only one eigenvector (up to a nonzero scalar
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multiple) for every eigenvalue. So x is a scalar multiple of [1 0 . . . 0]T , and therefore
the first column of X (except possibly for the top entry) consists of zeroes. Now use
induction on n to complete the proof. �

The same result holds for any polynomial equation

m∑
j=1

cjX
j = A,

rather than Xm = A.
Theorem 3.1 says nothing about existence of mth roots X of A. A necessary

condition (under the hypotheses of Theorem 3.1) is obviously that mth roots of the
diagonal elements of A exist in F . From now on we assume that F has characteristic
zero (or more precisely that the characteristic of F does not divide m). It turns out
that under this assumption, the necessary condition for existence of the mth roots of
invertible nonderogatory matrices is also sufficient.

We proceed by induction on the size n of matrices. Let X = [xi,j ]ni,j=1 be an n×n
upper triangular matrix: xi,j = 0 if i > j. Then (using induction on m for example)
one verifies that the (1, n) entry of Xm has the form

[Xm]1,n =


m−1∑

j=0

xj
1,1x

m−1−j
n,n


 x1,n

+ Pm,n(x1,1, x1,2, . . . , x1,n−1, x2,2, . . . , x2,n, . . . xn,n),

where

Pm,n = Pm,n(x1,1, x1,2, . . . , x1,n−1, x2,2, . . . , x2,n, . . . xn,n)

is a certain homogeneous polynomial of degree m with integer coefficients of the
(n2 + n− 2)/2 variables xi,j , 1 ≤ i ≤ j ≤ n, (i, j) �= (1, n). For example,

P3,3 = (x1,1x1,2 + x1,2x2,2)x2,3 + x1,2x2,3x3,3.

Theorem 3.2. Let A = [ai,j ]ni,j=1, ai,j ∈ F , be an upper triangular invertible
matrix, and assume that there exist mth roots m

√
aj,j ∈ F , for j = 1, 2, . . . , n. Then

there exist at least m distinct mth roots of A with entries in F .
Proof. Select m

√
aj,j so that

ai,i = aj,j =⇒ m
√
ai,i = m

√
aj,j . (3.2)

Construct the elements of the upper triangular n×n matrix X = [bi,j ]ni,j=1 such that
Xm = A by induction on j − i. For the base of induction, let

bi,i = m
√
ai,i �= 0, i = 1, 2, . . . , n. (3.3)
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If bi,j with j − i < k are already constructed, we let b1,k+1, b2,k+2, . . . , bn−k,n be
defined by the equalities

a1,k+1 =


m−1∑

j=0

bj
1,1b

m−1−j
k+1,k+1


 b1,k+1

+ Pm,k+1(b1,1, b1,2, . . . , b1,k, b2,2, . . . , b2,k+1, . . . bk+1,k+1), (3.4)

and so on, the last equality being

an−k,n =


m−1∑

j=0

bj
n−k,n−kb

m−1−j
n,n


 bn−k,n

+Pm,k+1(bn−k,n−k, bn−k,n−k+1, . . . , bn−k,n−1, bn−k+1,n−k+1, . . . , bn−k+1,n, . . . bn,n).
(3.5)

Condition (3.2) guarantees that

m−1∑
j=0

bj
i,ib

m−1−j
j,j �= 0, i, j = 1, . . . , n,

and therefore equalities (3.4)–(3.5) can be uniquely solved for b1,k+1, . . . , bn−k,n. The
proof is completed. �

Corollary 3.3. Let A = [ai,j ]ni,j=1, ai,j ∈ F , be an upper triangular invertible
matrix. Assume that there exist mth roots m

√
aj,j ∈ F , for j = 1, 2, . . . , n. Assume

furthermore that the condition (3.1) is satisfied. Then there exist not more than mn

distinct mth roots of A with entries in F .
For the proof combine Theorem 3.1 and (the proof of) Theorem 3.2.

4. Analytic preliminaries. It is well-known that eigenvalues of an analytic
matrix function need not be analytic. More precisely, there need not exist an enu-
meration of the eigenvalues at each point that yields analytic functions on the whole
domain, or even locally.

Under some additional hypotheses, the analyticity of eigenvalues can be guaran-
teed. For example, the well-known Rellich’s theorem [6], [7], also [4, Chapter S6]),
asserts that if G is a real interval and A(z), z ∈ G, is a Hermitian valued analytic
matrix function, then the eigenvalues of A(z) are analytic. Results on triangulariza-
tion of analytic matrix functions under certain additional conditions, see for example
[3], also yield as a by-product analyticity of eigenvalues.

We formulate a general result on analyticity of eigenvalues. The result may be
known, but we did not find a comparable statement in the literature. The simple
connectedness of G is not needed here.

Theorem 4.1. Let G be a domain in C, or an interval in R. Let A(z) be an
analytic n× n matrix function on G. The following statements are equivalent:
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(a) The eigenvalues λ1(z), . . . , λn(z) of A(z) can be enumerated so that, for every
z ∈ G, λ1(z), . . . , λn(z) are analytic functions of z ∈ G.

(b) There exists an invertible analytic matrix function S(z) such that
S(z)−1A(z)S(z) is upper triangular for every z ∈ G.

Proof. The implication (b) =⇒ (a) is obvious. Assume (a) holds. Let λ1(z)
be an analytic eigenvalue of A(z). Consider the analytic matrix function B(z) :=
A(z)− λ1(z)I.

At this point we use the property (proved in [9]) that the ring A (G) of analytic
functions on G is a Smith domain. Recall that a Smith domain is a commutative
unital ring R without divisors of zero such that every matrix X with entries in R can
be transformed via X −→ EXF , where E and F are invertible matrices over R, to
a diagonal form diag(x1, . . . , xp) (possibly bordered by zero rows and/or columns),
with x1, . . . , xp ∈ R\{0} such that xj is divisible by xj+1 in R, for j = 1, 2, . . . , p−1.
Therefore we have a representation of B(z) in the form

B(z) = E(z)(diag(x1, . . . , xn))F (z),

where E(z) and F (z) are invertible analytic (in G) n × n matrix functions, and
x1, . . . , xn are analytic scalar functions. Since detB(z) = 0 for all z ∈ G, we must
have that at least one of the functions x1, . . . , xn is identically zero. Say, x1 ≡ 0.
Then

F (z)A(z)F (z)−1 = F (z)B(z)F (z)−1 + λ1(z)I =
[

λ1(z) ∗

0 A1(z)

]
,

where A1(z) is an (n−1)× (n−1) analytic matrix function. It is easy to see that the
statement (a) holds for A1(z) (since it holds for A(z)). Now we complete the proof
by using induction on n, and by applying the induction hypothesis to A1(z). �

A sufficient condition for analyticity of eigenvalues is that the eigenvalues are
contained in a simple differentiable curve, such as the real line (if for example the
matrix function is Hermitian valued) or the unit circle (if for example the matrix
function is unitary valued). We quote a statement from [8] (Theorem 3.3 there).

Proposition 4.2. Let A(z) be an n × n matrix function, analytic on a real
interval G. If for every z ∈ G, the eigenvalues λ1(z), . . . , λn(z) of A(z) belong to a
fixed differentiable curve, then λ1(z), . . . , λn(z) can be enumerated so that they become
analytic functions of z ∈ G.

5. Main results. We state the main results of the paper.
Theorem 5.1. Let G be a domain in C, and let A(z), z ∈ G, be an invertible

analytic matrix function. Assume that the eigenvalues of A(z) can be enumerated so
that they form analytic functions in G. Fix an integer m ≥ 2. Then:

(a) There exist at least m distinct meromorphic n × n matrix functions Bj(z),
j = 1, 2, . . . ,m, such that Bj(z)m = A(z).

(b) If in addition, for every analytic function λ(z) at least one of the (n − 1)×
(n − 1) subdeterminants of A(z) − λ(z)I is not identically zero, then there
exist at most mn distinct matrix functions Bj(z) as in (a).
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Proof. Applying Theorem 4.1 if necessary, we may reduce the general case
to that of a triangular matrix function A. Letting the field of scalar meromorphic
functions play the role of F , we then derive part (a) from Theorem 3.2. Now observe
that for matrix functions A as in (b) condition (3.1) holds. Indeed, suppose that λ
is a meromorphic on G function for which A(z)− λ(z)I has rank smaller than n− 1
everywhere on G. Then all the (n − 1) × (n − 1) subdeterminants of A(z) − λ(z)I
vanish on G, and λ(z) (as an eigenvalue of A(z)) must be bounded together with A
(and therefore analytic) on all domains lying strictly inside G. Thus, λ is analytic on
G, which is not allowed by (b). It remains to invoke Corollary 3.3. �

The hypothesis in (b) is satisfied, for example, if A(z) is a lower Hessenberg
matrix with no identically zero elements on the superdiagonal.

We now turn our attention to analytic mth roots. First of all note that for
every invertible n× n analytic matrix function the existence of an mth analytic root
in neighborhood of every point z0 ∈ G is guaranteed (cf. Example 1.1). For the
existence of analytic (in G) mth roots, it is clear from Theorem 5.1 that, assuming
analyticity of eigenvalues, a sufficient condition would involve majorization relations
between zeroes of certain analytic functions. In general, these relations are not very
transparent; they are implicitly given in the proof of Theorem 3.2. We provide a full
description of these relations for 2×2 matrix functions, and an inductive construction
for the general n× n case.

Theorem 5.2. Let A(z) = [ai,j(z)]ni,j=1, ai,j(z) = 0 if i > j, be an upper
triangular invertible matrix function, analytic in G. Define inductively the analytic
functions bi,j(z), 1 ≤ i ≤ j ≤ n, by the properties (3.2)−(3.4), under the assumptions
that the zeroes of

m−1∑
j=0

bj
q,qb

m−1−j
q+k,q+k

are majorized by the zeroes of

aq,q+k − Pm,k+1(bq,q, bq,q+1, . . . , bq,q+k−1, bq+1,q+1, . . . , bq+1,q+k, . . . bq+k,q+k),

for q = 1, 2, . . . , n−k, and for k = 1, 2, . . . , n−1. Then the matrix B(z) := [bi,j(z)]ni,j=1,
where bi,j(z) = 0 if i > j, is an analytic mth root of A(z).

In particular:
Corollary 5.3. Let A(z) = [ai,j(z)]ni,j=1, ai,j(z) = 0 if i > j, be an upper

triangular invertible matrix function, analytic in G. If the analytic mth roots bj,j(z) =
m
√
aj,j(z), (j = 1, 2, . . . , n) can be chosen so that

ai,i = aj,j =⇒ m
√
ai,i = m

√
aj,j (5.1)

and

m−1∑
q=0

bq
i,i(z)b

m−1−q
j,j (z) �= 0 for all z ∈ G, 1 ≤ i < j ≤ n, (5.2)
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then A(z) has an analytic mth root.
For the proof, simply observe that (5.2) guarantees that the majorization of zeroes

as required in Theorem 5.2 is satisfied trivially.

For 2 × 2 matrices, the result of Theorem 5.2 simplifies considerably, and yields
the following generalization of Theorem 2.1:

Theorem 5.4. Let

A(z) =
[
a1,1(z) a1,2(z)
0 a2,2(z)

]
, z ∈ G (5.3)

be an analytic 2 × 2 upper triangular matrix function with diagonal entries non-zero
everywhere in G. Then A(z) has an analytic mth root if and only if at least one of
the m2 functions

m−1∑
j=0

(
m
√
a1,1

)j (
m
√
a2,2

)m−1−j
,

where any of the m values of the mth root may be chosen independently for m
√
a1,1

and for m
√
a2,2, has its zeroes in G majorized by the zeroes of a1,2.

6. Deductions from the main theorems. We collect in this section several
results that can be proved using the main theorems of Section 5.

Theorem 6.1. Let A(z), z ∈ G, be an invertible analytic n × n matrix, and
assume that the number r of distinct eigenvalues of the matrix A(z) is independent of
z ∈ G. Then A(z) has at least mr distinct analytic mth roots.

Proof. Since the number of distinct eigenvalues is constant, the eigenvalues may
be enumerated so that they become analytic functions (indeed, at a branch point
several generally distinct eigenvalues must coalesce). By Theorem 4.1 we may assume
that A(z) is upper triangular: A(z) = [ai,j(z)]ni,j=1, where ai,j(z) = 0 if i > j.
Moreover, the proof of Theorem 4.1 shows that the diagonal elements aj,j (actually,
the eigenvalues of A(z)) may be arranged in clusters:

a1,1(z) ≡ a2,2(z) ≡ · · · ≡ ak1,k1(z), . . . ,
...

akr−1+1,kr−1+1(z) ≡ akr−1+2,kr−1+2(z) ≡ · · · ≡ akr ,kr(z).

Here k1 < k2 < · · · < kr = n, and akj ,kj (z) �= akp,kp(z) for j �= p and for all z ∈ G.
Next, we use the well-known property that a linear transformation of a rectangular

matrix X defined by X �→ QX−XR, is invertible provided the square size matrices
Q and R have no eigenvalues in common. We apply a suitable transformation of the
form

A(z) �→ S(z)−1A(z)S(z), (6.1)
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where

S(z) =




Ik1×k1 S1,2(z) S1,3(z) · · · S1,r(z)
0 I(k2−k1)×(k2−k1) S2,3(z) · · · S2,r(z)
...

...
...

. . .
...

0 0 0 · · · I(kr−kr−1)×(kr−kr−1)


 ,

with a (kj − kj−1) × (kq − kq−1) analytic matrix function Sj,q(z) (1 ≤ j < q ≤ r).
(We formally put k0 = 0.) A transformation (6.1) can be chosen in such a way that
the resulting analytic matrix function

B(z) := S(z)−1A(z)S(z)

is block diagonal:

B(z) = diag(B1(z), B2(z), . . . , Br(z)),

where Bj(z) is a (kj − kj−1)× (kj − kj−1) analytic upper triangular matrix function
with akj−1+1(z), . . . , akj (z) on the main diagonal. Since the functions on the main
diagonal of Bj(z) are identical, Corollary 5.3 is applicable, and the result follows. �

It is well-known that if A(z) is an analytic invertible matrix function on a real
interval G, then A(z) has an analytic polar decomposition and an analytic singular
value decomposition (see, for example, [1], [5]). Both properties follow easily from the
fact (which can be deduced from Rellich’s theorem, [6], [7]) that the positive definite
analytic matrix function A(z)∗A(z) has a positive definite analytic square root. Using
Theorem 5.2, a more general statement can be obtained:

Theorem 6.2. Let A(z) be n × n analytic invertible matrix function on a real
interval G. If the eigenvalues of A(z) are positive for every z ∈ G, then A(z) has
analytic mth roots for every positive integer m.

Proof. By Proposition 4.2, the eigenvalues of A(z) can be chosen analytic. By
Theorem 4.1, we may assume that A(z) is upper triangular. Taking positive mth
roots of the diagonal entries of A(z), we see that the hypotheses of Corollary 5.3 are
satisfied. An application of Corollary 5.3 completes the proof. �
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