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STRUCTURED CONDITION NUMBERS
AND BACKWARD ERRORS IN SCALAR PRODUCT SPACES∗

FRANÇOISE TISSEUR† AND STEF GRAILLAT‡

Abstract. The effect of structure-preserving perturbations on the solution to a linear sys-
tem, matrix inversion, and distance to singularity is investigated. Particular attention is paid to
linear and nonlinear structures that form Lie algebras, Jordan algebras and automorphism groups
of a scalar product. These include complex symmetric, pseudo-symmetric, persymmetric, skew-
symmetric, Hamiltonian, unitary, complex orthogonal and symplectic matrices. Under reasonable
assumptions on the scalar product, it is shown that there is little or no difference between structured
and unstructured condition numbers and distance to singularity for matrices in Lie and Jordan alge-
bras. Hence, for these classes of matrices, the usual unstructured perturbation analysis is sufficient.
It is shown that this is not true in general for structures in automorphism groups. Bounds and com-
putable expressions for the structured condition numbers for a linear system and matrix inversion
are derived for these nonlinear structures.

Structured backward errors for the approximate solution of linear systems are also considered.
Conditions are given for the structured backward error to be finite. For Lie and Jordan algebras
it is proved that, whenever the structured backward error is finite, it is within a small factor of or
equal to the unstructured one. The same conclusion holds for orthogonal and unitary structures but
cannot easily be extended to other matrix groups.

This work extends and unifies earlier analyses.

Key words. Structured matrices, Normwise structured perturbations, Structured linear sys-
tems, Condition number, Backward error, Distance to singularity, Lie algebra, Jordan algebra, Au-
tomorphism group, Scalar product, Bilinear form, Sesquilinear form, Orthosymmetric.
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1. Motivations. Condition numbers and backward errors play an important
role in numerical linear algebra. Condition numbers measure the sensitivity of the
solution of a problem to perturbation in the data whereas backward errors reveal
the stability of a numerical method. Also, when combined with a backward error
estimate, condition numbers provide an approximate upper bound on the error in a
computed solution.

There is a growing interest in structured perturbation analysis (see for example
[1], [6], [15] and the literature cited therein) due to the substantial development of
algorithms for structured problems. For these problems it is often more appropriate
to define condition numbers that measure the sensitivity to structured perturbations.

Structured perturbations are not always as easy to handle as unstructured ones
and the backward error analysis of an algorithm is generally more difficult when
structured perturbations are concerned. Our aim in this paper is to identify classes of
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matrices for which the ratio between the structured and the unstructured condition
number of a problem and the ratio between the structured and unstructured back-
ward error are close to one. For example, it is well-known that for symmetric linear
systems and for normwise distances it makes no difference to the backward error or
condition number whether matrix perturbations are restricted to be symmetric or
not [1], [5], [16]. Rump [15] recently showed that the same holds for skew-symmetric
and persymmetric structures. We unify and extend these results to a large class of
structured matrices.

The structured matrices we consider belong to Lie and Jordan algebras or group
automorphisms associated with unitary and orthosymmetric scalar products. These
include for example symmetric, complex symmetric and complex skew-symmetric
matrices, pseudo-symmetric, persymmetric and perskew-symmetric matrices, Hamil-
tonian and skew-Hamiltonian matrices, Hermitian, skew-Hermitian and J-Hermitian
matrices, but also nonlinear structures such as orthogonal, complex orthogonal, sym-
plectic, unitary and conjugate symplectic structures. Structures not in the scope
of our work include Toeplitz, Hankel and circulant structures, which are treated by
Rump [15].

The paper is organized as follows. In Section 2, we set up the notation and re-
call some necessary background material. In Section 3, we consider the condition
number for the matrix inverse and the condition number for linear systems as well
as the distance to singularity. We show that for matrices belonging to Lie or Jordan
algebras associated with a unitary and orthosymmetric scalar product and for pertur-
bations measured in the Frobenius norm or 2-norm, the structured and unstructured
condition numbers are equal or within a small factor of each other and that the dis-
tance to singularity is unchanged when the perturbations are forced to be structured.
Hence, for these classes of matrices the usual unstructured perturbation analysis is
sufficient. We show that this is false in general for nonlinear structures belonging to
automorphism groups. We give bounds and derive computable expressions for the
matrix inversion and linear system structured condition numbers. Structured back-
ward errors for linear systems are considered in Section 4. Unlike in the unstructured
case, the structured backward error may not exist and we say in this case that it is
infinite. We give conditions on b and the approximate solution x̂ to Ax = b for the
structured backward error to be finite. We show that for Lie and Jordan algebras of
orthosymmetric and unitary scalar products when the structured backward error is
finite it is within a small factor of the unstructured one. Unfortunately, there is no
general technique to derive explicit expressions for the structured backward error for
structures in automorphism groups. For orthogonal and unitary matrices, we show
that the Frobenius norm structured backward error when it exists differs from the
unstructured one by at most a factor

√
2.

2. Preliminaries. We begin with the basic definitions and properties of scalar
products and the structured classes of matrices associated with them. Then we give
auxiliary results for these structured matrices.

2.1. Structured matrices in scalar product spaces. The term scalar prod-
uct will be used to refer to any nondegenerate bilinear or sesquilinear form 〈·, ·〉 on
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Table 2.1
A sampling of structured matrices associated with scalar products 〈·, ·〉M , where M is the matrix

defining the scalar product.

Space M Automorphism Group Jordan Algebra Lie Algebra
G = {G : G� = G−1} J = {S : S� = S} L = {K : K� = −K}

Symmetric bilinear forms

Rn I Real orthogonals Symmetrics Skew-symmetrics

Cn I Complex orthogonals Complex symmetrics Cplx skew-symmetrics

Rn Σp,q Pseudo-orthogonals Pseudo symmetrics Pseudo skew-symmetrics

Cn Σp,q Cplx pseudo-orthogonals Cplx pseudo-symm. Cplx pseudo-skew-symm.

Rn R Real perplectics Persymmetrics Perskew-symmetrics

Skew-symmetric bilinear forms

R2n J Real symplectics Skew-Hamiltonians Hamiltonians

C2n J Complex symplectics Cplx J-skew-symm. Complex J-symmetrics

Hermitian sesquilinear forms

Cn I Unitaries Hermitian Skew-Hermitian

Cn Σp,q Pseudo-unitaries Pseudo Hermitian Pseudo skew-Hermitian

Skew-Hermitian sesquilinear forms

C2n J Conjugate symplectics J-skew-Hermitian J-Hermitian

Here, R =

"
1

. .
.

1

#
and Σp,q =

�
Ip 0
0 −Iq

�
∈ Rn×n are symmetric and J =

�
0 In

−In 0

�
is

skew-symmetric.

Kn. Here K denotes the field R or C. It is well known that any real or complex
bilinear form 〈·, ·〉 has a unique matrix representation given by 〈·, ·〉 = xTMy, while
a sesquilinear form can be represented by 〈·, ·〉 = x∗My, where the matrix M is
nonsingular. We will denote 〈·, ·〉 by 〈·, ·〉M as needed.

A bilinear form is symmetric if 〈x, y〉 = 〈y, x〉, and skew-symmetric if 〈x, y〉 =
−〈y, x〉. Hence for a symmetric form M = MT and for a skew-symmetric form
M = −MT . A sesquilinear form is Hermitian if 〈x, y〉 = 〈y, x〉 and skew-Hermitian if
〈x, y〉 = −〈y, x〉. The matrices associated with such forms are Hermitian and skew-
Hermitian, respectively.

To each scalar product there corresponds a notion of adjoint, generalizing the idea
of transpose T and conjugate transpose ∗, that is, for any matrix A ∈ Kn×n there is
a unique adjoint A� with respect to the form defined by 〈Ax, y〉M = 〈x,A�y〉M for all
x and y in Kn. In matrix terms the adjoint is given by

A� =
{

M−1ATM for bilinear forms,
M−1A∗M for sesquilinear forms.(2.1)

Associated with the scalar product 〈·, ·〉M are the Lie algebra L, the Jordan algebra
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J and the automorphism group G defined by

L =
{
L ∈ K

n×n : 〈Lx, y〉M = −〈x, Ly〉M
}

=
{
L ∈ K

n×n : L� = −L}
,

J =
{
S ∈ K

n×n : 〈Sx, y〉M = 〈x, Sy〉M
}

=
{
S ∈ K

n×n : S� = S
}
,

G =
{
G ∈ K

n×n : 〈Gx,Gy〉M = 〈x, y〉M
}

= {G ∈ K
n×n : G� = G−1}.

The sets L and J are linear subspaces. They are not closed under multiplication but
are closed under inversion: if A ∈ S is nonsingular, where S = L or S = J then
A−1 ∈ S. Matrices in G form a Lie group under multiplication.

There are two important classes of scalar products termed unitary and orthosym-
metric [13]. The scalar product 〈·, ·〉M is unitary if αM is unitary for some α > 0. A
scalar product is orthosymmetric if

M =
{

βMT , β = ±1, (bilinear forms),
βM∗, |β| = 1, (sesquilinear forms).

(See [13, Definitions A.4 and A.6] for a list of equivalent properties.) One can show
that up to a scalar multiple there are only three distinct types of orthosymmetric
scalar products: symmetric and skew-symmetric bilinear, and Hermitian sesquilinear
[14]. We will, however, continue to include separately stated results (without separate
proofs) for skew-Hermitian forms for convenience, as this is a commonly occurring
special case.

In the rest of this paper we concentrate on structured matrices in the Lie algebra,
the Jordan algebra or the automorphism group of a scalar product which is both
unitary and orthosymmetric. These include, but are not restricted to, the structured
matrices listed in Table 2.1, all of which correspond to a unitary and orthosymmetric
scalar product with α = 1 and β = ±1.

2.2. Auxiliary results. The characterization of various structured condition
numbers and backward errors for linear systems relies on the solution to the following
problem: Given a class of structured matrices S, for which vectors x, b does there exist
some A ∈ S such that Ax = b? Mackey, Mackey and Tisseur [14], [12] give a solution
for this problem when S is the Lie algebra, Jordan algebra or automorphism group of
an orthosymmetric scalar product. Here and below we write ı =

√−1.
Theorem 2.1 ([14, Thm. 3.2] and [12]). Let S be the Lie algebra L, Jordan

algebra J or automorphism group G of an orthosymmetric scalar product 〈·, ·〉
M

on
Kn. Then for any given pair of vectors x, b ∈ Kn with x �= 0, there exists A ∈ S such
that Ax = b if and only if the conditions given in the following table hold:

Bilinear forms Sesquilinear forms
S

Symmetric Skew-symmetric Hermitian Skew-Hermitian

J always bTMx = 0 b∗Mx ∈ R b∗Mx ∈ ıR

L bTMx = 0 always b∗Mx ∈ ıR b∗Mx ∈ R

G xTMx = bTMb x∗Mx = b∗Mb
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In what follows ‖ · ‖ν denotes as the 2-norm ‖ · ‖2 or the Frobenius norm ‖ · ‖F .
The next result will be useful.

Theorem 2.2. Let S be the Lie or Jordan algebra of a scalar product 〈·, ·〉M which
is both orthosymmetric and unitary and let x, b ∈ Kn of unit 2-norm be such that the
relevant condition in Theorem 2.1 is satisfied. Then,

min{‖A‖ν : A ∈ S, Ax = b} =
{

1 if ν = 2,√
2 − α2〈b, x〉2

M
if ν = F,

where α is such that αM is unitary.
Proof. See [14, Thms 5.6 and 5.10].
Note that when it exists, the minimal Frobenius norm solution Aopt to Ax = b

with A ∈ S is unique and is given by

Aopt =
bx∗

x∗x
+ ε

(
bx∗

x∗x

)� (
I − xx∗

x∗x

)
, ε =

{
1 if S = J,
−1 if S = L,

where � is the adjoint with respect to the scalar product 〈·, ·〉M associated with S.
The next lemma shows that when S is the Lie or Jordan algebra of an orthosym-

metric scalar product 〈·, ·〉M on Kn, left multiplication by M maps S to the sets
Skew(K) and Sym(K) for bilinear forms and, to a scalar multiple of Herm(C) for
sesquilinear forms, where

Sym(K) = {A ∈ K
n×n : AT = A},

Skew(K) = {A ∈ K
n×n : AT = −A},(2.2)

Herm(C) = {A ∈ C
n×n : A∗ = A}

are the sets of symmetric and skew-symmetric matrices on Kn×n and Hermitian matri-
ces, respectively. This is a key result for our unified treatment of structured condition
numbers and backward errors.

Lemma 2.3 ([14, Lem. 5.9]). Let S be the Lie or Jordan algebra of an orthosym-
metric scalar product 〈·, ·〉M . Suppose A ∈ S, so that A� = δA where δ = ±1.

• For bilinear forms on Kn (K = R,C) write, by orthosymmetry, M = βMT

with β = ±1. Then

M · S =
{

Sym(K) if δ = β,
Skew(K) if δ �= β.

(2.3)

• For sesquilinear forms on Cn write, by orthosymmetry, M = βM∗ with |β| =
1. Then

M · S =
{

β1/2Herm(C) if δ = +1,
β1/2 ı Herm(C) if δ = −1.

(2.4)

In practice, when A ∈ J or L, Lemma 2.3 suggests to rewrite Ax = b as Ãx = Mb,
where Ã := MA belongs to one of the sets defined in (2.2). Then we can use a well
understood structure preserving algorithm to numerically solve the modified system
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with Ã. For instance, if A is pseudosymmetric then M = Σp,q =
[

Ip

0
0

−Iq

]
and

Ã = Σp,qA is symmetric. Then we can use a block LDLT factorization [8, Ch.11] to
solve the modified linear system Ãx = Σp,qb. However, since left multiplication of A
by M changes its spectrum, mapping A to Ã may not be appropriate when solving
large sparse systems of equations with an iterative method.

2.3. Nearest structured matrix. Suppose A has lost its structure, because of
errors in its construction for example. An interesting optimization problem is to find
the nearest structured matrix to A,

dS(A) := min{‖A− S‖ : S ∈ S}.(2.5)

This problem is easy to solve when S is the Jordan algebra J or Lie algebra L of an
orthosymmetric and unitary scalar product 〈·, ·〉M and ‖ · ‖ is any unitarily invariant
norm. Indeed, if 〈·, ·〉M is orthosymmetric then any A ∈ Kn×n can be expressed in
the form

A =
A + A�

2
+
A−A�

2
=: AJ + AL,

where AJ ∈ J and AL ∈ L. For any S ∈ J, so that, S = S� we have

‖A−AJ‖ = ‖AL‖ =
1
2
‖A−A�‖ =

1
2
‖(A− S) + (S� −A�)‖.

Since 〈·, ·〉M is unitary and the norm is unitarily invariant,

‖A−AJ‖ ≤ 1
2
‖A− S‖ +

1
2
‖(S −A)�‖ = ‖A− S‖ ∀ S ∈ J.

We find similarly that for Lie algebras L,

‖A−AL‖ ≤ ‖A− S‖ ∀ S ∈ L.

Hence, S = AS with S = J or L is the nearest structured matrix in S to A and

dJ(A) =
1
2
‖A−A�‖, dL(A) =

1
2
‖A+ A�‖.

Fan and Hoffman solved this problem for the class of symmetric matrices [3]. More
recently it was solved by Cardoso, Kenney and Leite [2, Thm. 5.3] for Lie and Jordan
algebras of bilinear scalar products 〈·, ·〉M for which MMT = I and M2 = ±I; these
scalar products are a subset of the unitary and orthosymmetric scalar products.

When S is the set of real orthogonal matrices or unitary matrices, the solution to
the nearness problem (2.5) is well-known for the Frobenius norm and is given by

dS(A) = ‖A− U‖F ,

where U is the orthogonal or unitary factor of the polar decomposition of A [4, p.
149], [7]. To our knowledge, (2.5) is an open problem for matrix groups other than
the orthogonal and unitary groups.
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3. Structured condition numbers. We consider normwise relative structured
condition numbers that measure the sensitivity of linear systems and of matrix inver-
sion, and investigate the structured distance to singularity.

3.1. Linear systems. Let S be a class of structured matrices, not necessarily
J, L or G. We define the structured normwise condition number for the linear system
Ax = b with x �= 0 by

cond(A, x; S) = lim
ε→0

sup
{‖∆x‖
ε‖x‖ : (A + ∆A)(x + ∆x) = b + ∆b,(3.1)

A + ∆A ∈ S, ‖∆A‖ ≤ ε‖A‖, ‖∆b‖ ≤ ε‖b‖
}
,

where ‖ · ‖ is an arbitrary matrix norm. Let cond(A, x) ≡ cond(A, x; Kn×n) denote
the unstructured condition number, where n is the dimension of A. Clearly,

cond(A, x; S) ≤ cond(A, x).

If this inequality is not always close to being attained then cond(A, x) may severely
overestimate the worst case effect of structured perturbations.

Let us define for nonsingular A ∈ S and nonzero x ∈ Kn,

φ(A, x; S) = lim
ε→0

sup
{‖A−1∆Ax‖

ε‖A‖ : ‖∆A‖ ≤ ε‖A‖, A + ∆A ∈ S

}
.(3.2)

We write φ(A, x) ≡ φ(A, x; Kn×n) when A + ∆A is unstructured and φ2(A, x) or
φF (A, x) to specify that the 2-norm or Frobenius norm is used in (3.2). Similarly,
cond2 and condF mean that ‖ · ‖ = ‖ · ‖2 or ‖ · ‖ = ‖ · ‖F in (3.1).

The next lemma is useful when comparing the structured and unstructured con-
dition numbers for linear systems. The result is due to Rump [15] and holds for any
class of structured matrices. The proof in [15, Thm. 3.2 and Thm. 33] for K = R and
the 2-norm extend trivially to K = C and ‖ · ‖ = ‖ · ‖F .

Lemma 3.1. Let A ∈ Kn×n be nonsingular and x ∈ Kn be nonzero. Then for
ν = 2, F ,

φν(A, x; S)
‖x‖2

(
‖A‖ν +

‖b‖2

‖x‖2

)
≤ condν(A, x; S) ≤ ‖A−1‖2

(
‖A‖ν +

‖b‖2

‖x‖2

)
.

and

condν(A, x, S) = c

(
φν(A, x; S)

‖A‖ν

‖x‖2
+

‖A−1‖2‖b‖2

‖x‖2

)
,

1√
2
≤ c ≤ 1.

The difficulty in obtaining an explicit expression for φ(A, x; S) in (3.2) depends
on the nature of S and the matrix norm ‖ · ‖. For example, for the Frobenius norm
or the 2-norm and for unstructured perturbations (i.e., S = Kn×n), the supremum
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in (3.2) is attained by ∆A = ε‖A‖νyx
∗/‖x‖2, where y is such that ‖y‖2 = 1 and

‖A−1y‖2 = ‖A−1‖2. This implies the well known formula

φ2(A, x) = φF (A, x) = ‖A−1‖2‖x‖2,(3.3)

so that from the first part of Lemma 3.1,

condν(A, x) = ‖A−1‖2‖A‖ν +
‖A−1‖2‖b‖2

‖x‖2
, ν = 2, F.(3.4)

The rest of this section is devoted to the study of φ(A, x; S) for the structured
matrices in L, J or G as defined in Section 2.1.

3.1.1. Lie and Jordan algebras. D. J. Higham [5] proves that for real sym-
metric structures,

condν(A, x; Sym(R)) = condν(A, x), ν = 2, F

and Rump [15] shows that equality also holds in the 2-norm for persymmetric and
skew-symmetric structures. These are examples of Lie and Jordan algebras (see Table
2.1). We extend these results to all Lie and Jordan algebras of orthosymmetric and
unitary scalar products. Unlike the proofs in [15], our unifying proof does not need
to consider each algebra individually.

Theorem 3.2. Let S be the Lie algebra or Jordan algebra of a unitary and
orthosymmetric scalar product 〈·, ·〉M on Kn. For nonsingular A ∈ S and nonzero
x ∈ Kn, we have

φ2(A, x; S) = φ2(A, x),
1√
2
φF (A, x) ≤ φF (A, x; S) ≤ φF (A, x).

Proof. Clearly φν(A, x; S) ≤ φν(A, x). Since Lie and Jordan algebras are linear
subspaces of Kn×n, φν(A, x, S) can be rewritten as

φν(A, x; S) = sup
{‖A−1∆Ax‖2 : ‖∆A‖ν ≤ 1, ∆A ∈ S

}
.

Suppose that there exists u ∈ Kn of unit 2-norm such that ‖A−1u‖2 = ‖A−1‖2 and
such that the pair (x/‖x‖2, u) satisfies the relevant condition in Theorem 2.1. Then
Theorem 2.2 tells us that there exist E2, EF ∈ S such that Eνx = ‖x‖2u, ν = 2, F
and ‖E2‖2 = 1, ‖EF ‖F ≤ √

2. Thus

φν(A, x) = ‖A−1‖2‖x‖2 = ‖A−1u‖2‖x‖2 = ‖A−1Eνx‖2 ≤ cνφν(A, x; S),

with c2 = 1 and cF =
√

2 and the statement of the Theorem follows.
To complete the proof we need to show that there is always a vector u such

that ‖A−1u‖2 = ‖A−1‖2 and such that x/‖x‖2, u satisfy the relevant condition in
Theorem 2.1. First we note that A ∈ S ⇒ A� = δA, δ = ±1.
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(i) For bilinear forms, orthosymmetry of the scalar product implies that MT =
βM , β = ±1. If δ = β, Theorem 2.1 says that there is no condition on x and u for the
existence of a structured matrix mapping x to ‖x‖2u, so u can be any singular vector
of A−1 associated with the largest singular value. If δ �= β then x and u must satisfy
〈u, x〉M = 0. But [13, Thm. 8.4] says that the singular values of A and therefore A−1

all have even multiplicity. Hence there exits orthogonal vectors u1 and u2 in Kn such
that ‖u1‖2 = ‖u2‖2 = 1 and ‖A−1u1‖2 = ‖A−1u2‖2 = ‖A−1‖2. Let u ∈ span{u1, u2}
such that 〈u, x〉M = uTMx = 0 and ‖u‖2 = 1. Then necessarily, ‖A−1u‖2 = ‖A−1‖2.

(ii) For sesquilinear forms, since singular vectors u are defined up to a nonzero
scalar multiple, we choose u to be the singular vector associated with the largest
singular value of A−1 and such that the condition in Theorem 2.1 is satisfied.

Lemma 3.1 and Theorem 3.2 together yield the following result.
Theorem 3.3. Let S be the Lie or Jordan algebra of a unitary and orthosym-

metric scalar product 〈·, ·〉M on Kn. Let A ∈ S be nonsingular and x ∈ Kn with x �= 0
be given. Then

cond2(A, x; S) = cond2(A, x),
1√
2

condF (A, x) ≤ condF (A, x; S) ≤ condF (A, x).

We conclude from Theorem 3.3 that for many Lie and Jordan algebras, the con-
straint A + ∆A ∈ S has little or no effect on the condition number. This is certainly
true for all the examples in Table 2.1.

3.1.2. Automorphism groups. When S is a smooth manifold the task of com-
puting the supremum (3.2) simplifies to a linearly constrained optimization problem.
This was already observed by Karow, Kressner and Tisseur in [10] for a different
supremum.

Lemma 3.4. Let S be a smooth real or complex manifold. Then for A ∈ S

nonsingular we have

φ(A, x; S) = sup
{‖A−1Ex‖ : ‖E‖ = 1, E ∈ TAS

}
,(3.5)

where TAS is the tangent space at A.
Proof. Let E ∈ TAS with ‖E‖ = 1. Then there is a smooth curve gE : (−ε, ε) →

Kn×n satisfying gE(0) = 0, g′E(0) = E and A+ gE(t) ∈ S for all t. We have

lim
t→0

gE(t)
‖gE(t)‖ = lim

t→0

Et + O(|t|2)
‖Et + O(|t|2)‖ = E.

Hence

lim
t→0

‖A−1gE(t)x‖
‖gE(t)‖ = ‖A−1Ex‖.

This implies φ(A, x; S) ≥ sup
{‖A−1Ex‖ : ‖E‖ = 1, E ∈ TAS

}
. Equality holds since

the union of the curves A+ gE contains an open neighborhood in S of A (see [10] for
details).
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An automorphism group G forms a smooth manifold. Define F (A) = A�A− I so
that A ∈ G is equivalent to F (A) = 0. The tangent space TAG at A ∈ G is given by
the kernel of the Fréchet derivative JA of F at A:

TAG = {X ∈ K
n×n : JA(X) = 0}

= {X ∈ K
n×n : A�X + XA = 0}

= {AH ∈ K
n×n : H� = −H}

= A· L,(3.6)

where L is the Lie algebra of 〈·, ·〉M .
For S = G, the supremum (3.5) can then be rewritten as

φ(A, x; G) = sup {‖Hx‖ : ‖AH‖ = 1, H ∈ L} .(3.7)

In a similar way to [6] and [10], an explicit expression for φ(A, x; G) can be
obtained for the Frobenius norm. Let us rewrite

Hx = (xT ⊗ In)vec(H),

where ⊗ denotes the Kronecker product and vec is the operator that stacks the
columns of a matrix into one long vector. We refer to Lancaster and Tismenetsky
[11, Chap. 12] for properties of the vec operator and the Kronecker product. Since L

is a linear vector space of dimension m ≤ n2, there is an n2 ×m matrix B such that
for every H ∈ L there exists a uniquely defined parameter vector q with

vec(H) = Bq.(3.8)

Let (I ⊗A)B = QR be a reduced QR factorization of (I ⊗A)B, i.e., Q ∈ Kn2×m, R ∈
Km×m, and let p = Rq. Then,

vec(AH) = (I ⊗A)vec(H) = (I ⊗A)Bq = Qp

so that ‖AH‖F = ‖vec(AH)‖2 = ‖p‖2 and

Hx = (xT ⊗ In)vec(H) = (xT ⊗ In)(I ⊗A)−1vec(AH) = (xT ⊗A−1)Qp.

Hence (3.7) becomes

φF (A, x; G) = sup
{‖(xT ⊗A−1)Qp‖2 : ‖p‖2 = 1, p ∈ K

m
}

= ‖(xT ⊗A−1)Q‖2.

Using the last part of Lemma 3.1 we then have, up to a small scalar multiple, a
directly computable expression for the structured condition number.

Theorem 3.5. Let G be the automorphism group of any scalar product and let
L be the associated Lie algebra. Then

condF (A, x,G) = c

(
‖(xT ⊗A−1)Q‖2

‖A‖F

‖x‖2
+

‖A−1‖2‖b‖2

‖x‖2

)
,

1√
2
≤ c ≤ 1,
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where (I ⊗A)B = QR is a reduced QR factorization of (I ⊗A)B and B is a pattern
matrix for L in the sense of (3.8).

The expression for condF (A, x; G) in Theorem 3.5 has two disadvantages. First,
it is expensive to compute, since it requires the QR factorization of an n2×m matrix.
Note that since A ∈ G, A−1 = A� with A� given in (2.1) so that we do not necessarily
need to invert A. Second, it is difficult to compare with the unstructured condition
number condF (A, x) in (3.4). However, when 〈·, ·〉M is unitary and orthosymmetric,
we can bound the ratio φν(A, x; G)/φν(A, x) from below.

Lemma 3.6. Let G be the automorphism group of a unitary and orthosymmetric
scalar product on Kn. Let A ∈ G and x ∈ Kn with x �= 0 be given. Then

cν
φν(A, x)

‖A‖2‖A−1‖2
≤ φν(A, x; G) ≤ φν(A, x), cν =

{ 1 if ν = 2,
1√
2

if ν = F .

Proof. We just need to prove the lower bound. Let u ∈ Kn be of unit 2-norm and
such that x and u satisfy the relevant condition in Theorem 2.1. From Theorem 2.2,
there exists S2 ∈ S and SF ∈ S such that Sν(x/‖x‖2) = u, ν = 2, F and ‖S2‖2 = 1,
‖SF‖F ≤ √

2. Let Hν = ξSν ∈ S with ξ > 0 such that ‖AHν‖ν = 1, ν = 2, F . This
implies ξ ≥ 1

‖A‖2‖Sν‖ν
. Hence from (3.7), we have

φν(A, x; G) ≥ ‖Hνx‖2 = ξ‖x‖2 ≥ φν(A, x)
‖A‖2‖A−1‖2‖Sν‖ν

.

Lemma 3.6, together with Lemma 3.1 and the explicit expression for condν(A, x)
in (3.4), yield bounds for cond(A, x; G).

Theorem 3.7. Let G be the automorphism group of a unitary and orthosymmet-
ric scalar product on Kn. Let A ∈ G and x ∈ Kn with x �= 0 be given. Then

cν
condν(A, x)
‖A‖2‖A−1‖2

≤ condν(A, x; G) ≤ condν(A, x), cν =

{ 1 if ν = 2,
1√
2

if ν = F .

Theorem 3.7 shows that when A is well-conditioned (i.e., ‖A‖2‖A−1‖2 ≈ 1),
the structured and unstructured condition numbers for Ax = b are equal or nearly
equal. This is the case for the real orthogonal group and the unitary group. For ill-
conditioned A, the bounds may not be sharp, as illustrated by the following example.
Suppose that M = J and that 〈·, ·〉J is a real bilinear form. Then G is the set of real
symplectic matrices (see Table 2.1). Consider the symplectic matrix

A =
[
D D
0 D−1

]
, D = diag(10−6, 102, 2)(3.9)

and define the ratio

ρ = condF (A, x; G)/condF (A, x)

between the structured and unstructured condition numbers. For this particular
example, Theorem 3.7 provides the non-sharp bounds 7× 10−13 ≤ ρ ≤ 1. We use the
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computable expression in Theorem 3.5 with cF = 1 to approximate condF (A, x; G).
For x = [1, 0, 0.1, 0, 0.1,−1]T we obtain ρ ≈ 8 × 10−5 showing that condF (A, x; G) �
condF (A, x) may happen.

3.2. Matrix inversion. Let S be a class of structured matrices. The structured
condition number for the matrix inverse can be defined by

κ(A; S) = lim
ε→0

sup
{‖(A + ∆A)−1 −A−1‖

ε‖A−1‖ : A + ∆A ∈ S, ‖∆A‖ ≤ ε‖A‖
}
.(3.10)

When ∆A is unstructured we write κ(A) ≡ κ(A; Kn×n). It is well-known that for the
2- and Frobenius norms κ(A) has the characterization

κ2(A) = ‖A‖2‖A−1‖2, κF (A) =
‖A‖F‖A−1‖2

2

‖A−1‖F
.(3.11)

See [8, Thm. 6.4] for κ2 and [5] for κF . Again, when S is a smooth manifold (3.10)
simplifies to a linearly constrained optimization problem.

Lemma 3.8. Let S be a smooth real or complex manifold. Then for A ∈ S

nonsingular we have

κ(A; S) =
‖A‖

‖A−1‖ sup{‖A−1EA−1‖ : ‖E‖ = 1, E ∈ TAS},(3.12)

where TAS is the tangent space at A.
Proof. The proof is similar to that of Lemma 3.4 and makes use of the expansion

(A + ∆A)−1 −A−1 = −A−1∆AA−1 + O(‖∆A‖2),

in the definition of κ(A; S) in (3.10).
When S is the Lie algebra or Jordan algebra of a scalar product, the tangent

space at S is S itself: TAS = S. If we restrict 〈·, ·〉M to be orthosymmetric and unitary
then there is equality between the structured and unstructured condition numbers for
both the 2-norm and Frobenius norm.

Theorem 3.9. Let S be the Lie algebra or Jordan algebra of a unitary and
orthosymmetric scalar product 〈·, ·〉

M
on Kn. For nonsingular A ∈ S we have

κν(A; S) = κν(A), ν = 2, F.

Proof. Using the inequality ‖ABC‖ν ≤ ‖A‖2‖B‖ν‖C‖2 in (3.12) gives

κν(A; S) ≤ ‖A‖ν‖A−1‖2
2/‖A−1‖ν = κν(A).

Since αM is unitary for some α > 0, we have κν(A; S) = κν(Ã;M·S) with Ã = αMA.
Now assume that there exists E ∈ M · S such that

‖E‖ν = 1, ‖Ã−1EÃ−1‖ν = ‖A−1‖2
2.(3.13)
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Then (3.12) implies

κ(Ã,M · S) ≥ ‖Ã‖ν

‖Ã−1‖ν

‖Ã−1EÃ−1‖ν =
‖A‖ν

‖A−1‖ν
‖A−1‖2

2 = κν(A).

Hence to complete the proof we just need to construct E ∈ M · S satisfying (3.13).
Since the scalar product is orthosymmetric, we have from Lemma 2.3 that M · S is
one of Sym(K), Skew(K) and Herm(C).

(i) M · S = Sym(K). Let Ã−1 = UΣUT be the Takagi factorization of Ã−1 ∈
Sym(K), where U is unitary and Σ = diag(σ1, σ2, . . . , σn) with ‖A−1‖2 = σ1 ≥ σ2 ≥
· · · ≥ σn ≥ 0 [9, Cor. 4.4.4]. When K = R, U is orthogonal and Ã−1 = UΣUT is the
singular value decomposition of Ã−1. Take E = Ūe1e

T
1 U

∗.
(ii) M · S = Skew(K). We consider the skew-symmetric analog of the Takagi

factorization (Problems 25 and 26 in [9, Sec. 4.4]). Since Ã−1 ∈ Skew(K), there
exists a unitary matrix U such that Ã−1 = UDUT where D = D1 ⊕ · · · ⊕ Dn/2,

with Dj =
[

0
−zj

+zj

0

]
, 0 �= zj ∈ C, j = 1:n/2. When K = R, U is orthogonal.

Assume that the zj are ordered such that ‖A−1‖2 = |z1| ≥ |z2| ≥ · · · ≥ |zk|. Take
E = cνŪ(e1e

T
2 − e2e

T
1 )U∗, ν = 2, F with c2 = 1 and cF = 1/

√
2.

(iii) M · S = Herm(C). Take E = Ue1e
∗
1U

∗ where U is the unitary factor in the
singular value decomposition of Ã−1.

When S is the automorphism group G of a scalar product there is a directly
computable expression for κF(A; G). Its derivation is similar to that of cond(A, x; G)
described in section 3.1.2.

Theorem 3.10. Let G be the automorphism group of any scalar product and let
L be the associated Lie algebra. Then

κF(A; G) =
‖A‖F

‖A−1‖F
‖(AT ⊗A)−1Q‖2.

where (I ⊗A)B = QR is a reduced QR factorization of (I ⊗A)B and B is a pattern
matrix for L in the sense of (3.8).

It is well-known that κ2(A) ≥ 1. This is also true for κ2(A; G) when G is the
automorphism group of a unitary and orthosymmetric scalar product. Indeed let
u, v ∈ Kn be such that A−1u = ‖A−1‖2v with ‖u‖2 = ‖v‖2 = 1. Then, from (3.12),
(3.6) and (3.7),

κ2(A; G) =
‖A‖2

‖A−1‖2
sup{‖HA−1‖2 : ‖AH‖2 = 1, H ∈ L}

≥ ‖A‖2

‖A−1‖2
‖A−1‖2 sup{‖Hv‖2 : ‖AH‖2 = 1, H ∈ L}

= ‖A‖2φ2(A, v; G).

But from Lemma 3.6, φ2(A, v; G) ≥ 1/‖A‖2 so that

1 ≤ κ2(A; G) ≤ κ2(A).
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Clearly, if A is well conditioned then κ2(A; G) ≈ κ2(A). This is certainly true for
the orthogonal and unitary groups. For the symplectic matrix A defined in (3.9), we
find that κF(A; G) ≈ κ2(A; G) = 1.0001 but that κ2(A) = 1 × 1012, showing that
κ2(A; G) � κ2(A) may happen.

3.3. Nearness to singularity. The structured distance to singularity of a ma-
trix is defined by

δ(A; S) = min
{
ε : ‖∆A‖ ≤ ε‖A‖, A+ ∆A singular, A+ ∆A ∈ S

}
.(3.14)

D. J. Higham [5] showed that for symmetric perturbations,

δν(A; Sym(R)) = δν(A), ν = 2, F,

so that the constraint ∆A = ∆AT has no effect on the distance. This is a special case
of the following more general result.

Theorem 3.11. Let S be the Lie or Jordan algebra of a unitary and orthosym-
metric scalar product. Let nonsingular A ∈ S be given. Then

δ2(A; S) = δ2(A),
1√
2
δF (A) ≤ δF (A; S) ≤ δF (A).

Proof. It is well-known that the relative distance to singularity is the reciprocal
of the condition number κ(A) or a scalar multiple of it [8, p.111]. Clearly, δν(A; S) ≥
δν(A).

Since the scalar product 〈·, ·〉M is unitary, αM is unitary for some α > 0 and
we have δν(A; S) = δν(Ã, S̃), where Ã = αMA and S̃ = M · S. Since the scalar
product is orthosymmetric we have from Lemma 2.3 that S̃ is one of Sym(K), Skew(K)
and βHerm(C) with |β| = 1. Without loss of generality, assume that ‖Ã‖ν = 1.
Since (Ã + ∆Ã)−1 = (I + Ã−1∆Ã)−1Ã−1 we just need to find ∆Ã ∈ M · S such
that I + Ã−1∆Ã is singular and ‖∆Ã‖ν ≤ 1/‖A−1‖2. This is achieved by taking
∆Ã = −E/‖A−1‖2, where E is the perturbation used in the proof of Theorem 3.9.

Matrices in automorphism groups are nonsingular so δ(A; G) = ∞. This ends our
treatment of various structured condition numbers.

4. Normwise structured backward errors. When solving a linear system
Ax = b with A ∈ S ⊂ Kn×n, one is interested in whether a computed solution x̂
solves a nearby structured system: for example whether the particular structured
backward error

µ(x̂; S) = min{‖∆A‖ : (A + ∆A)x̂ = b, A + ∆A ∈ S}(4.1)

is relatively small. Note that in (4.1), only the coefficient matrix A is perturbed. Let
∆Aopt be an optimal solution defined by ‖∆Aopt‖ = µ(x̂; S) and let r = b − Ax̂ be
the residual vector. It is well known that for unstructured perturbations,

µν(x̂) ≡ µν(x̂; K
n×n) = ‖r‖2/‖x̂‖2, ν = 2, F
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and this is achieved by ∆Aopt = rx̂∗/(x̂∗x̂). Unlike the unstructured case, there may
not be any solution ∆A to (A + ∆A)x̂ = b with A + ∆A ∈ S. In this case we write
that µ(x̂; S) = ∞. If one uses a structure preserving algorithm to solve the linear
system then A+∆A is structured and the backward error is guaranteed to be finite.
This may not be the case if the system is solved using a linear solver that does not
take advantage of the structure even if it is backward stable.

When both A and b are perturbed we define the corresponding structured back-
ward error by

η(x̂; S) = min{ε : (A + ∆A)x̂ = b + ∆b, A + ∆A ∈ S,(4.2)
‖∆A‖ ≤ ε‖A‖, ‖∆b‖ ≤ ε‖b‖}.

Again, for unstructured perturbations we have the well-known explicit expression [8,
Thm. 7.1],

ην(x̂) ≡ η(x̂; K
n×n) =

‖r‖2

‖A‖ν‖x̂‖2 + ‖b‖2
, ν = 2, F.(4.3)

The structured backward error η(x̂; S) is harder to analyze than µ(x̂; S). The con-
straint A + ∆A ∈ S generally implies an extra constraint on the perturbation ∆b.
For example, if S = Skew(R) then for there to exist ∆A skew-symmetric such that
(A+∆A)x̂ = b+∆b one needs x̂T (b+∆b) = 0 (see Theorem 2.1). On the other hand
one may have η(x̂; S) finite but µ(x̂; S) = ∞. The next theorem shows that when
the particular backward error µ(x̂; S) exists, its study provides useful information on
η(x̂; S).

Theorem 4.1. Let A ∈ S, where S is a class of structured matrices and let x̂ �= 0
be an approximate solution to Ax = b. If µν(x̂; S) is finite with µν(x̂; S) ≤ cνµν(x̂)
then for ην(x̂) < 1,

ην(x̂) ≤ ην(x̂; S) ≤ 2cν ην(x̂)
1 − ην(x̂)

, ν = 2, F.(4.4)

Proof. The proof is modelled from the solution to [8, Exercise 7.7] concerning the
unstructured case. Clearly, from the definitions of ην(x̂; S) and µν(x̂; S),

ην(x̂) ≤ ην(x̂; S) ≤ µν(x̂; S)
‖A‖ν

≤ cν
µν(x̂)
‖A‖ν

= cν
‖r‖2

‖A‖ν‖x̂‖2
.(4.5)

Let ε = ην(x̂). Then from (4.3) we have that ‖r‖2 ≤ ε(‖A‖ν‖x̂‖2 + ‖b‖2) with ‖b‖2 =
‖(A+∆A)x̂−∆b‖2 ≤ (1+ε)‖A‖ν‖x̂‖2+ε‖b‖2 yielding ‖b‖2 ≤ (1−ε)−1(1+ε)‖A‖ν‖x̂‖2.
Thus

‖r‖2 ≤ 2ε
1 − ε

‖A‖ν‖x̂‖2

and (4.5) yields the required bounds.
Theorem 4.1 shows that when ην(x̂) and cν are small, the structured relative

backward error is small. In the rest of this section, we concentrate on the study of
µ(x̂; S) and particular structures S.
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4.1. Lie and Jordan algebras. For Lie or Jordan algebras (S = L or J) of a
scalar product 〈·, ·〉M the structured backward error µ(x̂; S) can be rewritten as

µ(x̂; S) = min{‖∆A‖ : ∆Ax̂ = r, ∆A ∈ S},

where r = b−Ax̂. When the scalar product is orthosymmetric and unitary (i.e., αM
is unitary for some α > 0), Theorem 2.2 implies that for x̂, b satisfying the relevant
condition in Theorem 2.1,

µν(x̂; S) =


‖r‖2

‖x̂‖2
if ν = 2,√

2
‖r‖2

2

‖x̂‖2
2

− α2
|〈r, x̂〉M |2
‖x̂‖4

2

if ν = F .

Since α|〈r, x̂〉M | ≤ ‖r‖2‖αMx̂‖2 = ‖x̂‖2‖r‖2 the next result follows.
Theorem 4.2. Let S be the Lie algebra or Jordan algebra of an orthosymmetric

and unitary scalar product. Let A ∈ S be nonsingular and x̂ ∈ Kn be an approximate
nonzero solution to Ax = b. If x̂ and b satisfy the conditions in Theorem 2.1 then,
for ν = 2, F ,

µ2(x̂; S) = µ2(x̂),

µF (x̂) ≤ µF (x̂; S) ≤
√

2µF (x̂),

otherwise µν(x̂; S) = ∞, ν = 2, F .
Theorem 4.2 shows that forcing the backward error matrix to have the structure

of S has either little effect or a drastic effect on its norm. Not all structures require
conditions on x̂ and b for µ(x̂; S) to be finite. For example, for symmetric, complex
symmetric, pseudo-symmetric, persymmetric and Hamiltonian structures the struc-
tured backward error always exists and is equal to or within a small factor of the
unstructured one.

4.2. Automorphism groups. Structured backward errors are difficult to an-
alyze for nonlinear structures. Some progress is made in this section for specific
automorphism groups. For that we need a characterization of the set of all matrices
in the automorphism group G of an orthosymmetric scalar product mapping x to b.

Theorem 4.3 ([12]). Suppose G is the automorphism group of an orthosymmet-
ric scalar product 〈·, ·〉M , and let x, b, v ∈ Kn such that 〈x, x〉M = 〈b, b〉M = 〈v, v〉M .
Let Gx, Gb be any fixed elements of G such that Gxx = v and Gbb = v, and let
Gv = {Q ∈ G : Qv = v }. Then

{A ∈ G : Ax = b } = {G�bQGx : Q ∈ Gv }.(4.6)

The proof in [12] is short and we recall it.
Proof. Let S1 = {A ∈ G : Ax = b } and S2 = {A = G�bQGx : Q ∈ Gv }. Suppose

A ∈ S1, and consider Q := GbAG
−1
x ∈ G. Clearly GbAG

−1
x v = v, so Q ∈ Gv. Hence

A = G−1
b QGx = G�bQGx for some Q ∈ Gv, so A ∈ S2.
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Conversely, suppose A ∈ S2, so A = G−1
b QGx where Q ∈ Gv. Because G is a

group, A ∈ G. Also Ax = G−1
b QGxx = G−1

b Qv = G−1
b v = b, so A ∈ S1.

As a consequence of Theorem 4.3, if 〈x̂, x̂〉M = 〈b, b〉M we can rewrite the struc-
tured backward error in (4.1) as

µ(x̂; G) = min
Q∈Gv

‖G�bQGbx −A‖,(4.7)

where G
bx, Gb are fixed elements of G satisfying G

bxx̂ = Gbb = v for some vector
v ∈ Kn, and Gv = {Q ∈ G : Qv = v }. For many of the groups listed in Table
2.1 it is possible to determine explicitly the set Gv for some suitably chosen vectors
v. For example when G is the real orthogonal or unitary group, there exist G

bx, Gb

unitary such that G
bxx̂ = ‖x̂‖2e1 and Gbb = ‖b‖2e1. Since ‖x̂‖2 = ‖b‖2 we can choose

v = ‖x‖2e1 giving

Gv = {Q ∈ G : Qe1 = e1 } =
{[

1 0
0 V

]
: V ∗ = V −1 ∈ K

(n−1)×(n−1)

}
.

For these two groups we derive an explicit expression for the structured backward
error and show that it is within a small factor of the unstructured one.

In what follows G denotes either the real orthogonal group or the unitary group.
Without loss of generality we assume that ‖x‖2 = ‖b‖2 = 1. Let G

bx be any element
of G such that G

bxx̂ = e1 and write G∗
bx =

[
x̂ X̃

]
. Let G ∈ G be the unitary

Householder reflector mapping x̂ to b. Then Gb := G
bxG

∗ ∈ G satisfies Gbb = e1 and
G∗

b =
[
b GX̃

]
. For any Q ∈ Gv with v = e1 the quantity whose norm needs to be

minimized in (4.7) can be rewritten as

G�bQGbx −A = G∗
b

[
1

V

]
G
bx −AG∗

bxGbx, V ∗ = V −1 ∈ K
(n−1)×(n−1)

= bx̂∗ + GX̃V X̃∗ −A
[
x̂ X̃

]
G
bx

=
[
b−Ax GX̃V −AX̃

]
G
bx

so that, for the Frobenius norm, µ(x̂; G) in (4.7) becomes

µF (x̂; G)2 = ‖r‖2
2 + min

V ∗V =I
‖GX̃V −AX̃‖2

F .

The minimization problem above is a well-known Procrustes problem whose solution
is given by ‖GX̃U −AX̃‖F , where U is the unitary factor of the polar decomposition
of X̃∗G∗AX̃ [4, p. 601]. Hence, since G is unitary, we obtain an explicit expression
for the structured backward error,

µF (x̂; G)2 = ‖r‖2
2 + ‖X̃U −G∗AX̃‖2

F .(4.8)

We now compare the size of ‖X̃U−G∗AX̃‖F to that of ‖r‖2 using a technique similar
to that of Sun in [17]. Because

[
x̂ X̃

]
is unitary, x̂x̂∗ + X̃X̃∗ = I and

X̃U −G∗AX̃ = X

[ −x̂∗G∗AX̃
U − X̃∗G∗AX̃

]
.
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Hence

‖X̃U −G∗AX̃‖2
F = ‖U − X̃∗G∗AX̃‖2

F + ‖x̂∗G∗AX̃‖2
2

= ‖I −H2‖2
F + ‖x̂∗G∗AX̃‖2

2,(4.9)

where H2 is the Hermitian polar factor of X̃∗G∗AX̃ . We now need the following
Lemma.

Lemma 4.4 ([17, Lem. 2.4] and [18, Lem. 2.2]). Let A ∈ Cm×m be unitary,
X1 ∈ Cm×k with 2k ≤ m, X = [X1, X2] be unitary, and let H1 and H2 be the
Hermitian polar factors of X∗

1AX1 and X∗
2AX2 respectively. Then, for any unitarily

invariant norm,

‖I −H1‖ = ‖I −H2‖ and ‖X∗
1AX2‖ = ‖X∗

2AX1‖.

Applying Lemma 4.4 to (4.9) with X1 = x̂, X2 = X̃ and G∗A in place of A yields

‖I −H2‖2
F + ‖x̂∗G∗AX̃‖2

2 = ‖eıθ − x̂∗G∗Ax̂‖2
2 + ‖X̃∗G∗Ax̂‖2

2,(4.10)

where θ = arg(x̂∗B∗Ax̂). Finally, since
[
x̂ X̃

]
is unitary,

[
x̂ X̃

] [
eıθ − x̂∗G∗Ax̂
−X̃∗G∗Ax̂

]
= x̂eıθ −G∗Ax̂

so that

‖eıθ − x̂∗G∗Ax̂‖2
2 + ‖X̃∗G∗Ax̂‖2

2 = ‖x̂eıθ −G∗Ax̂‖2
2(4.11)

Hence combining (4.8)–(4.11) gives ‖B̃U −AX̃‖F = ‖x̂eıθ −G∗Ax̂‖2. But

‖x̂eıθ −G∗Ax̂‖2 = min
|ρ|=1

‖x̂ρ−B∗Ax̂‖F ≤ ‖x̂−B∗Ax̂‖F = ‖b−Ax̂‖2 = ‖r‖2.

We have just proved the following result.
Theorem 4.5. Let G be the real orthogonal or unitary matrix group. Let A ∈ G

and x̂ ∈ Kn be a nonzero approximate solution to Ax = b. If ‖x̂‖2 = ‖b‖2 then

µF (x̂) ≤ µF (x̂; G) ≤ √
2µF (x̂),

otherwise µF (x̂; G) = ∞.
This generalizes Sun’s result on backward errors for the unitary eigenvalue prob-

lem, for which b has the special form b = eıθx.

For automorphism groups other than the unitary or real orthogonal groups, de-
riving an explicit expression for the structured backward error in (4.7) is an open
problem.
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