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Abstract. In this paper, it is shown that among connected graphs with maximum clique size ω,

the minimum value of the spectral radius of adjacency matrix is attained for a kite graph PKn−ω,ω ,

which consists of a complete graph Kω to a vertex of which a path Pn−ω is attached. For any

fixed ω, a small interval to which the spectral radii of kites PKm,ω , m ≥ 1, belong is exhibited.
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1. Introduction. All graphs in this note are simple and undirected. For a

graph G, let A(G) denote its adjacency matrix, ρ(G) the spectral radius of A(G), and

PG ≡ PG(λ) the characteristic polynomial of A(G). For other undefined notions, the

reader is referred to [2].

Brualdi and Solheid [3] proposed the following general problem, which became

one of the classic problems of spectral graph theory:

Given a set G of graphs, find an upper bound for the spectral radius

in this set and characterize the graphs in which the maximal spectral

radius is attained.

Such extremal graphs, for example, asymptotically have more closed walks of any

given length than the other graphs in the set. However, let us point out that it may be

of (practical) interest to characterize the graphs having the minimum spectral radius

as well: Wang et al. [15] recently proposed a new analytic model that accurately

models the propagation of computer viruses on arbitrary network graph G, which,

under reasonable approximations, has an epidemic threshold of 1/ρ(G), below which

the number of infected nodes in the network decays exponentially. Thus, the computer

networks with smaller spectral radii are more resistant to virus propagation.
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As expected, there are far less results on the minimum spectral radius than on

the maximum spectral radius of graphs: some recent results are given in [1, 8], while

the older results are presented in Section 3 of [6].

We study here the set Gn,ω, n ≥ ω ≥ 2, of connected graphs of order n with a

maximum clique size ω. Recently, Nikiforov [12] showed that the Turán graphs attain

the maximum spectral radius in Gn,ω. Experimenting with the computer system

AutoGraphiX [4], which is well suited to find extremal graphs and support conjecture

making, we observed that kite graphs attain the minimum spectral radius in Gn,ω.

Recall that the kite graph PKm,w is a graph on m + w vertices obtained from the

path Pm and the complete graph Kw by adding an edge between an end vertex of Pm

and a vertex of Kw. This observation turned out to be correct. Specifically,

Theorem 1.1. If G ∈ Gn,ω, n ≥ ω ≥ 2, then

ρ(G) ≥ ρ(PKn−ω,ω).

The equality holds if and only if G is isomorphic to PKn−ω,ω.

We are also interested to find a good estimate of ρ(PKm,ω). It is obvious that

ρ(PK0,ω) = ρ(Kω) = ω − 1.

However, the other values of ρ(PKm,ω) are not that straightforward to obtain. For any

m ≥ 0, PKm,ω is a proper subgraph of PKm+1,ω, so the sequence
(

ρ(PKm,ω)
)

m≥0
is

strictly increasing. Further, with ρ(PKm,ω) being bounded from above by ω (recall

that the spectral radius is at most the maximum vertex degree, see, e.g., [5, p. 85]),

we see that limm→∞ ρ(PKm,ω) exists with a value between ω − 1 and ω. Thus, the

values ρ(PK1,ω) and limm→∞ ρ(PKm,ω) represent the sharp lower and upper bound

on ρ(PKm,∞), m ≥ 1. These values turn out to be very close to each other.

Theorem 1.2. For any integers ω ≥ 3 and m ≥ 1,

ω − 1 +
1

ω2
+

1

ω3
< ρ(PKm,ω) < ω − 1 +

1

4ω
+

1

ω2 − 2ω
.

The proofs of these theorems are given in the next two sections.

2. Proof of Theorem 1.1. We will use the following auxiliary results in the

proof. The first lemma is by Li and Feng from [9], and is also found as Theorem 6.2.2

in [6].

Lemma 2.1. Let u and v be two adjacent vertices of the connected graph G and

for positive integers k and l, let G(k, l) denote the graph obtained from G by adding
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pendent paths of length k at u and length l at v. If k ≥ l ≥ 1, then ρ(G(k, l)) >

ρ(G(k + 1, l − 1)).

The next lemma is by Zhang, Zhang and Zhang [16], and is also found as Theo-

rem 6.2.3 of [6]. Let SvwT denote the graph obtained from disjoint graphs S, T by

adding an edge joining the vertex v of S to the vertex w of T . Further, let Sv denote

the graph obtained from S by adding a pendent edge at vertex v.

Lemma 2.2. If PSu
(λ) < PSv

(λ) for all λ > ρ(Su), then ρ(SvwT ) < ρ(SuwT )

for any vertex w of T .

Remark 2.3. Note that the formulation of previous lemma in [6] contains a typo:

instead of x > µ1(Hv) it should contain the condition x > µ1(Hu).

We may prove the following lemma on the basis of the previous two.

Lemma 2.4. Let vw be a bridge of a connected graph G and suppose that there

is a path of length k, k ≥ 1, attached at v, with u being the other end vertex of this

path. Then

ρ(G − vw + uw) ≤ ρ(G),

with equality if and only if the vertex v has degree two.

Proof of Lemma 2.4. Let S and T be the subgraphs of G as indicated in Figure 2.1.

If v has degree two, then G − vw + uw ∼= G and the statement follows.

Fig. 2.1. The structure of G.

Suppose now that the degree of v is at least three, i.e., that S is a non-trivial

graph. Let S′ denote the subgraph formed by S and the path from v to u. In the

terms of Lemmas 2.1 and 2.2, we have that

S′
u = S(k + 1, 0), S′

v = S(k, 1).

From the proof of Lemma 2.1, it is evident that PS′

u
(λ) > PS′

v
(λ) for all λ > ρ(S′

v).

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 17, pp. 110-117, March 2008

http://math.technion.ac.il/iic/ela



ELA

The Minimum Spectral Radius of Graphs with a Given Clique Number 113

Thus, from Lemma 2.2 it follows that

ρ(G − vw + uw) = ρ(S′uwT ) < ρ(S′vwT ) = ρ(G).

Proof of Theorem 1.1. Suppose that n and ω, n ≥ ω ≥ 2, are given.

If n = ω, then Gn,ω consists of a single graph Kn, which is also a (degenerate)

kite graph PK0,n.

If ω = 2, then the path Pn has the minimum spectral radius among all connected

graphs of order n [5, p. 78], and thus also in Gn,2. Note that the path Pn is also a

(degenerate) kite graph PKn,0 = PKn−1,1 = PKn−2,2.

Thus, suppose that n > ω ≥ 3. We will transform an arbitrary graph G ∈ Gn,ω,

containing a clique K of size ω, into a kite graph PKn−ω,ω, in such a way that the

spectral radius of transformed graph decreases at each step.

i) It is known that deletion of an edge from a connected graph strictly decreases

its spectral radius [5]. In order to keep a graph within Gn,ω, we may delete from G

any edge not in K which belongs to a cycle. Let G1 be a subgraph of G obtained by

deleting such edges in an arbitrary order as long as they exist. G1 will then consist

of a clique K with a number of rooted trees attached to clique vertices.

ii) At this step, we will “flatten out” the trees attached to clique vertices. Let

T be a rooted tree of G1, attached to a clique vertex. Let u be the leaf of T farthest

from the clique K, and let v be the vertex of T of degree at least three, that is closest

to u. If T is not a path, then there is a neighbor w of v in T , which is not on the path

from v to u. Then in the tree T − vw + uw the distance from the farthest leaf to K

increases, while from Lemma 2.4 its spectral radius decreases. Processing further

with edge deletions and additions by always choosing farthest leaves in rooted trees,

we decrease the spectral radius at each iteration until we reach a graph G2 in which

every rooted tree, attached to a vertex of K, becomes a path.

iii) We may suppose that the graph G2 consists of clique K and the paths

Pk1
, Pk2

, . . . , Pkm
attached to m distinct vertices of K. With the repeated use of

Lemma 2.1 to paths Pk1
and Pki

, 2 ≤ i ≤ m, we may decrease the spectral radius

of G2 until the attached paths Pk2
, . . . , Pkm

disappear, and we finally arrive to the

kite graph PKn−ω,ω.

Since we have (strictly) decreased the spectral radius at each step, we may con-

clude that the kite graph PKn−ω,ω has smaller spectral radius than any other graph

in Gn,ω. This finishes the proof of Theorem 1.1.
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3. Proof of Theorem 1.2. To prove this theorem, we estimate the values of

ρ(PK1,ω) and limm→∞ ρ(PKm,ω) in the next two subsections.

3.1. Estimating ρ(PK1,ω). Let x be a principal eigenvector of PK1,ω, let u be

a leaf of PK1,ω and let v be the neighbor of u. All other vertices of PK1,ω are similar,

and since ρ(PK1,ω) is a simple eigenvalue, we have that x has the same value, name

it y, at these vertices. Now the eigenvalue equation at u, v and arbitrary other vertex

of PK1,ω reads (where we write just ρ for ρ(PK1,m)):

ρxu = xv,

ρxv = xu + (ω − 1)y,

ρy = (ω − 2)y + xv.

These equations, taken together, imply that

ρ3 − (ω − 2)ρ2 − ωρ + (ω − 2) = 0.

Introducing the variable change ρ = ω − 1 + σ, the above cubic equation transforms

into

σ3 + (2ω − 1)σ2 + (ω2 − ω − 1)σ − 1 = 0.

While solving this cubic equation explicitly is possible, the obtained solution is cum-

bersome and sports at least the square root of a sixth degree polynomial in ω (which

itself is not a square). However, if we denote

f(σ) = σ3 + (2ω − 1)σ2 + (ω2 − ω − 1)σ − 1,

we can see that, for ω ≥ 3,

f

(

1

ω2

(

1 +
1

ω

))

=
1

ω6

(

1 +
1

ω

)3

+ (2ω − 1)
1

ω4

(

1 +
1

ω

)2

+ (ω2 − ω − 1)
1

ω2

(

1 +
1

ω

)

− 1

= − 2

ω2
+

1

ω3
+ Θ

(

1

ω4

)

< 0,

while

f

(

1

ω2

(

1 +
2

ω

))

=
1

ω6

(

1 +
2

ω

)3

+ (2ω − 1)
1

ω4

(

1 +
2

ω

)2

+ (ω2 − ω − 1)
1

ω2

(

1 +
2

ω

)

− 1

=
1

ω
− 3

ω2
+ Θ

(

1

ω4

)

> 0.
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Thus, a root of f(σ) belongs to the interval
(

1

ω2 (1 + 1

ω
), 1

ω2 (1 + 2

ω
)
)

of length 1

ω3 , and

we conclude that, for m ≥ 1,

ρ(PKm,ω) ≥ ρ(PK1,ω) > ω − 1 +
1

ω2

(

1 +
1

ω

)

is a simple, yet rather good lower bound.

3.2. Estimating limm→∞ ρ(PKm,ω). Let PK∞,ω denote the infinite kite graph

which consists of a clique Kω, to one vertex of which an infinite path is attached. A

textbook introduction to infinite graphs may be found in Chapter 8 of [7], while the

more specific results on the spectra of infinite graphs appear in [10, 11].

In particular, for an infinite graph G with bounded vertex degrees, let ρ(G)

denote the spectral radius of the adjacency matrix of G. We say that a sequence of

subgraphs Gn converges to G, if each edge of G is contained in all but finitely many

of the Gn. From Theorem 4.13 of [11] we have that the sequence ρ(Gn) converges to

ρ(G) from below. In particular,

ρ(PK∞,ω) = lim
m→∞

ρ(PKm,ω).

We are set to determine the value of ρ(PK∞,ω) by finding a value µ and a positive

vector x such that

A(PK∞,ω)x = µx(3.1)

holds. In general, we may not say that µ is an eigenvalue of PK∞,ω as it may happen

that the vector x does not belong to the space on which A(PK∞,ω) acts as a linear

operator. Nevertheless, the equality µ = ρ(PK∞,ω) is ensured from Theorem 6.2

of [11] (see [13, 14] for further details), which states that, for real µ and an infinite,

connected and locally finite graph G, the inequality A(G)x ≤ µx has a nonnegative

solution x 6= 0 if and only if µ ≥ ρ(G), and if the equality A(G)x = µx holds, then

µ = ρ(G). Moreover, the vector x is unique in such case (up to constant multiples).

The rest of this subsection is devoted to finding a pair (µ, x) which satisfies (3.1).

Let us denote the common component of x at the clique vertices by x−1, the com-

ponent at a clique vertex to which the path is attached by x0, and the components at

path vertices by x1, x2, x3, . . . , respectively. The equation (3.1) yields the following:

µx−1 = (ω − 2)x−1 + x0(3.2)

µx0 = (ω − 1)x−1 + x1(3.3)

µxi = xi−1 + xi+1, i ≥ 1.(3.4)
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The equation (3.4) represents a familiar linear recurrence equation. For µ = 2, the

positivity of xi implies that ω = 2 and, in such case, the solution is given by

xi = i + 2, i ≥ −1.

For µ > 2, (3.4) has the solution in the form

xi = ati1 + bti2, i ≥ 0,

where a and b are constants, and

t1 =
µ −

√

µ2 − 4

2
, t2 =

µ +
√

µ2 − 4

2

are the distinct solutions of the characteristic equation µt = 1 + t2.

When ω ≥ 3, the components of the positive unit eigenvector of any finite PKm,ω

decrease along the path from the clique towards its leaf. Besides the fact that

ρ(PK∞,ω) = limm→∞ ρ(PKm,ω) and as we would also like x to be a limit of these

eigenvectors, we may impose additional condition that limi→∞ xi = 0. This translates

into b = 0 and, with appropriate scaling, we may suppose that

x0 = 1, x1 = t1.

The equations (3.2, 3.3) then lead to

1

µ − ω + 2
=

µ − t1
ω − 1

.

After replacing the value of t1 and simplifying yields the quadratic equation

µ2 − (ω − 3)µ −
(

2ω − 2 +
1

ω − 2

)

= 0,

whose positive solution is

µ =
ω − 3 +

√

(ω + 1)2 + 4

ω−2

2
.

It is straightforward to see that µ and x satisfy (3.1), and therefore, for every finite m,

it follows that

ρ(PKm,ω) < ρ(PK∞,ω) =
ω − 3 +

√

(ω + 1)2 + 4

ω−2

2
.

Finally, from the simple inequality
√

1 + x ≤ 1 + x
2
, we get

ρ(PK∞,ω) =
ω

2

(

1 − 3

ω
+

√

1 +
2

ω
+

1

ω2
+

4

ω2(ω − 2)

)

≤ ω − 1 +
1

4ω
+

1

ω2 − 2ω
.
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