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Abstract. This paper presents a parameterized lower bound for the smallest singular value of

a matrix based on a new Geršgorin-type inclusion region that has been established recently by these

authors. The comparison of the new lower bound with known ones is supplemented with a numerical

example.
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1. Introduction. To estimate matrix singular values is an attractive topic in
matrix theory and numerical analysis, especially to give a lower bound for the smallest
one. Let A = (aij) ∈ Cn×n and let A∗ be the conjugate transpose of A. Then the
singular values of A are the square roots of the eigenvalues of AA∗. Throughout
the paper we use σn(A) to denote the smallest singular value of A. Denote N :=
{1, 2, . . . , n}. Define, for all k ∈ N ,

rk(A) :=
∑

j∈N\{k}
|akj |, ck(A) :=

∑
j∈N\{k}

|ajk|, hk(A) :=
1
2
(rk(A) + ck(A)) .

In the past three decades, several useful lower bounds for the smallest singular
value of a matrix have been presented in the literature; see Varah [7] and Qi [6]. By
using Geršgorin’s theorem (see Chapter 6 of [1]), Johnson [4] obtained a lower bound
for σn(A):

(1.1) σn(A) ≥ min
k∈N

{|akk| − hk(A)} .

Recently, Johnson and Szulc [5] provided several further lower bounds for the
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smallest singular value. Two of them are

(1.2) σn(A) ≥ 1
2
min
k∈N

{(
4|akk|2 + [rk(A) − ck(A)]2

) 1
2 − 2hk(A)

}

and

(1.3) σn(A) ≥ 1
2
min
i�=k

{
|aii|+ |akk| −

[
(|aii| − |akk|)2 + 4hi(A)hk(A)

] 1
2
}
.

In this paper, after introducing a new inclusion region for eigenvalues of a matrix
in Section 2, we present a parameterized lower bound for the smallest singular value
in Section 3. In Section 4, a numerical example is given to compare our results with
the known ones.

2. Inclusion regions for eigenvalues. Recently, a new Geršgorin-type inclu-
sion region for eigenvalues of a matrix has been provided by Huang, Zhang, and Shen
in [3]. To introduce the result, we first present some notation. Let S be a nonempty
subset of N . Denote S̄ := N\S and let P(N) denote the power set of N . For
A = (aij) ∈ Cn×n, define, for all i ∈ N

rSi (A) :=
∑

k∈S\{i}
|aik|, rS̄i (A) :=

∑
k∈S̄\{i}

|aik|,

cSi (A) :=
∑

k∈S\{i}
|aki|, cS̄i (A) :=

∑
k∈S̄\{i}

|aki|.

If S contains a single element, say S = {i0}, then we let rSi0 (A) = 0. Similarly
rS̄i0(A) = 0 if S̄ = {i0}. We sometimes use rSi (cSi , rS̄i , cS̄i ) to denote rSi (A) (cSi (A),
rS̄i (A), c

S̄
i (A), respectively). Define, for all i ∈ S and j ∈ S̄,

GS
i (A) :=

{
z ∈ C : |z − aii| ≤ rSi

}
, GS̄

j (A) :=
{
z ∈ C : |z − ajj | ≤ rS̄j

}
and

GS
i,j(A) :=

{
z ∈ C : z /∈ GS

i (A) ∪GS̄
j (A),

(|z − aii| − rSi
) (|z − ajj | − rS̄j

)
≤ rS̄i rSj

}
.

Proposition 2.1. ([3]) Let A = (aij) ∈ Cn×n. Then all the eigenvalues of A
are located in

GS(A) :=

(⋃
i∈S

GS
i (A)

)
∪

⋃

j∈S̄

GS̄
j (A)


 ∪


 ⋃

i∈S,j∈S̄

GS
i,j(A)


 .
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This result is interesting, but it can not be applied directly to estimate σn(A). So
we must deduce other inclusion regions. Let α ∈ [0, 1] be given. For i ∈ S, j ∈ S̄,
define the following regions in the complex plane:

US
i,j(A) :=

{
z ∈ C : |z − aii| − rSi ≤

(
rS̄i r

S
j

)α}
,

V S
i,j(A) :=

{
z ∈ C : |z − ajj | − rS̄j ≤

(
rS̄i r

S
j

)1−α
}
,

Proposition 2.2. Let A = (aij) ∈ Cn×n. Then all the eigenvalues of A are
located in

KS(A) :=


 ⋃

i∈S,j∈S̄

US
i,j(A)


 ∪


 ⋃

i∈S,j∈S̄

V S
i,j(A)


 .

Proof. It is sufficient to show that GS(A) ⊂ KS(A). Note that GS
i (A) ⊆ US

i,j(A)
and GS̄

j (A) ⊆ V S
i,j(A). Therefore, for any z ∈ GS(A), if

z ∈
⋃
i∈S

GS
i (A) or z ∈

⋃
j∈S̄

GS̄
j (A),

then z ∈ KS(A). Otherwise, there exist i0 ∈ S and j0 ∈ S̄, such that
(|z − ai0i0 | − rSi0

) (|z − aj0j0 | − rS̄j0
)
≤ rS̄i0rSj0 =

(
rS̄i0r

S
j0

)α (
rS̄i0r

S
j0

)1−α

which leads to

|z − ai0i0 | − rSi0 ≤
(
rS̄i0r

S
j0

)α

or |z − aj0j0 | − rS̄j0 ≤
(
rS̄i0r

S
j0

)1−α

.

Hence

z ∈ US
i0,j0(A) ∪ V S

i0,j0(A).

And then z ∈ KS(A).

3. Main results. In this section we use the inclusions derived in Section 2 to
estimate σn(A). Denote the Hermitian part of A by

H(A) := 1
2 (A+A

∗).
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Let λmin(H(A)) be the smallest eigenvalue of H(A). It is known that λmin(H(A)) is a
lower bound for σn(A) [2, p.227]. Moreover, define for all i ∈ S, j ∈ S̄, and α ∈ [0, 1],
PS

i,j(A) : = |aii| − 1
2

[
rSi (A) + c

S
i (A)

]− [1
4

(
rS̄i (A) + c

S̄
i (A)

) (
rSj (A) + c

S
j (A)

)]α
,

QS
i,j(A) : = |ajj | − 1

2

[
rS̄j (A) + c

S̄
j (A)

]
−
[

1
4

(
rS̄i (A) + c

S̄
i (A)

) (
rSj (A) + c

S
j (A)

)]1−α

.

Theorem 3.1. Let A = (aij) ∈ Cn×n. Then

(3.1) σn(A) ≥ min
i∈S,j∈S̄

{
PS

i,j(A), Q
S
i,j(A)

}
.

Proof. We first define a diagonal matrixD = diag(eiθ1 , . . . , eiθn), where eiθkakk =
|akk| if akk 
= 0 and θk = 0 if akk = 0, k ∈ N . Since D is unitary, the singular values
of DA are the same as those of A. Consequently, we have

(3.2) σn(A) = σn(DA) ≥ λmin(H(DA)).

Denote B = (bkl) := H(DA) = 1
2 (DA+A

∗D∗). Thus, bkk = |akk|, for k ∈ N , and

bkl =
1
2
(
ekθkakl + ālke

−kθk
)
, for all k 
= l, k, l ∈ N.

Since B is a Hermitian matrix, its eigenvalues are all real. Let λmin(B) denote
the smallest eigenvalue of B. Then, by using Proposition 2.2, λmin(B) must satisfy
at least one of the following conditions

λmin(B) ≥ |bii| − rSi (B)−
[
rS̄i (B)r

S
j (B)

]α
, i ∈ S, j ∈ S̄,

λmin(B) ≥ |bjj | − rS̄j (B)−
[
rS̄i (B)r

S
j (B)

]1−α

, i ∈ S, j ∈ S̄.
It follows that

λmin(B) ≥ min
i∈S,j∈S̄

{
|bii| − rSi (B)−

[
rS̄i (B)r

S
j (B)

]α
,

|bjj | − rS̄j (B)−
[
rS̄i (B)r

S
j (B)

]1−α
}
.

By applying the triangle inequality, we have

|bii| − rSi (B)−
[
rS̄i (B)r

S
j (B)

]α
= |aii| − rSi (H(DA))−

[
rS̄i (H(DA)) r

S
j (H(DA))

]α
≥ |aii| − 1

2

(
rSi (A) + c

S
i (A)

)− [ 1
4

(
rS̄i (A) + c

S̄
i (A)

) (
rSj (A) + c

S
j (A)

)]α
= PS

i,j(A).
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Similarly, one can obtain

|bii| − rS̄i (B)−
[
rS̄i (B)r

S
j (B)

]1−α

≥ QS
i,j(A).

Then from (3.2), we have

σn(A) ≥ min
i∈S,j∈S̄

{
PS

i,j(A), Q
S
i,j(A)

}
.

Since the bound (3.1) holds for any nonempty S ∈ P(N) and any α ∈ [0, 1], we
have obtain the following corollaries:

Corollary 3.2. σn(A) ≥ max
S∈P(N)

max
α∈[0,1]

min
i∈S,j∈S̄

{
PS

i,j(A), Q
S
i,j(A)

}
.

Corollary 3.3. ([4]) σn(A) ≥ min
i∈N

{|aii| − 1
2 (ri(A) + ci(A))

}
.

4. Numerical example. In this section, we give a numerical example to com-
pare our bound (3.1) with known ones.

Example 4.1. Consider the following matrices

A1 =


11 5 6
4 12 −5
3 4 13


 , A2 =


18 2 −5
6 15 8
−6 −3 17


 , A3 =


6 2 −1
2 9 1
2 −2 −13


 .

Table 1. Comparison of lower bounds for σn(A)

Matrix σn(Ai) S α (1.1) (1.2) (1.3) (3.1)

A1 5.8446 {1} 0.57 2.0000 2.1803 2.4861 2.5886
A2 9.6861 {2} 0.56 5.5000 6.1172 5.7827 5.7989
A3 4.5433 {3} 0.10 2.5000 3.6921 2.3028 2.8377

From Table 1, we can see that bounds (1.2), (1.3), (3.1) are not comparable.
Note that the tightness of our bounds depend on the choice of S and α in which,
unfortunately, we do not find a method such that the derived bounds are optimal.
However, these parameters offer the possibility to optimize the estimation. We hope
that future research will propose a method to determine the parameters S and α that
can give tighter lower bounds.
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