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ON THE MINIMUM RANK OF NOT NECESSARILY SYMMETRIC
MATRICES: A PRELIMINARY STUDY∗
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Abstract. The minimum rank of a directed graph Γ is defined to be the smallest possible rank

over all real matrices whose ijth entry is nonzero whenever (i, j) is an arc in Γ and is zero otherwise.

The symmetric minimum rank of a simple graph G is defined to be the smallest possible rank over

all symmetric real matrices whose ijth entry (for i �= j) is nonzero whenever {i, j} is an edge in G

and is zero otherwise. Maximum nullity is equal to the difference between the order of the graph

and minimum rank in either case. Definitions of various graph parameters used to bound symmetric

maximum nullity, including path cover number and zero forcing number, are extended to digraphs,

and additional parameters related to minimum rank are introduced. It is shown that for directed

trees, maximum nullity, path cover number, and zero forcing number are equal, providing a method

to compute minimum rank for directed trees. It is shown that the minimum rank problem for any

given digraph or zero-nonzero pattern may be converted into a symmetric minimum rank problem.
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1. Introduction. The symmetric minimum rank problem for a simple graph
(the symmetric minimum rank problem for short) asks us to determine the minimum
rank among all real symmetric matrices whose zero-nonzero pattern of off-diagonal
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entries is described by a given simple graph G (the diagonal of the matrix is free).
Minimum rank has also been studied over fields other than the real numbers. This
problem arose from the study of possible eigenvalues of real symmetric matrices de-
scribed by a graph and has received considerable attention over the last ten years (see
[7] for a survey with an extensive bibliography).

For a not necessarily symmetric (square) matrix, the zero-nonzero pattern of
entries can be described by a directed graph (digraph). Here the absence or presence
of loops in the digraph describes the zero-nonzero pattern of the diagonal entries of
the matrix. The asymmetric minimum rank problem for a digraph (the asymmetric
minimum rank problem for short) asks us to determine the minimum rank among all
real matrices whose zero-nonzero pattern of entries is described by a given digraph Γ.

We adopt the convention that a graph is simple (no loops), is denoted G =
(VG, EG) where VG and EG are the sets of vertices and edges of G, and describes
a family of symmetric matrices with free diagonal, whereas a digraph allows loops
(but not multiple copies of the same arc), is denoted by Γ = (VΓ, EΓ) where VΓ and
EΓ are the sets of vertices and arcs of Γ, and describes a family of (not necessarily
symmetric) matrices with constrained diagonal. Occasionally we will refer to a graph
with loops that describes a family of symmetric matrices with constrained diagonal,
using the term ‘loop graph’ or ‘loop tree.’

For a symmetric matrix A ∈ Fn×n, the graph of A, denoted G(A), is the (simple)
graph with vertices {1, . . . , n} and edges {{i, j} : aij �= 0 and 1 ≤ i < j ≤ n}. Note
that a graph does not have loops and the main diagonal of A plays no role in the
determination of G(A). The minimum rank (over field F ) of a graph G is

mrF (G) = min{rank(A) : A ∈ Fn×n, AT = A, G(A) = G},
and the maximum nullity of a graph G (over F ) is defined to be

MF (G) = max{null(A) : A ∈ Fn×n, AT = A, G(A) = G}.
Clearly mrF (G) + MF (G) = |G|, where the order |G| is the number of vertices of G.
In case F = R, the superscript R may be omitted, so mr(G) = mrR(G), etc. The
positive semidefinite minimum rank of G is

mr+(G) = min{rank(A) : A ∈ R
n×n, A is positive semidefinite, G(A) = G}.

For B ∈ Fn×n, the digraph of B, denoted Γ(B), is the digraph with vertices
{1, . . . , n} and arcs {(i, j) : bij �= 0}. Note that a digraph may have loops and
the diagonal entries of B determine the presence or absence of loops in Γ(B). The
minimum rank (over F ) of a digraph Γ is

mrF (Γ) = min{rank(B) : B ∈ Fn×n,Γ(B) = Γ},
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and the maximum nullity of a digraph Γ (over F ) is defined to be

MF (Γ) = max{null(B) : B ∈ Fn×n,Γ(B) = Γ}.
Clearly mrF (Γ) +MF (Γ) = |Γ|.

Section 2 contains necessary graph, digraph, and pattern terminology. In Section
3 we show that any asymmetric minimum rank problem can be converted into a
(larger) symmetric minimum rank problem. This result gives added weight to the
importance of solving the symmetric minimum rank problem. However, until that
problem is solved, it is desirable to investigate the asymmetric minimum rank problem,
which has natural connections to minimum rank problems for sign patterns. At this
time the result of converting an asymmetric minimum rank problem to a symmetric
minimum rank problem is usually harder to solve, not only because the order is
increased but also because some important properties, such as being a directed tree,
are lost in the conversion.

A tree is a connected acyclic graph and a directed tree or ditree is a digraph whose
underlying simple graph (see Section 2) is a tree. For a tree T , two readily computable
parameters P (T ) and ∆(T ) were defined and shown to be equal to M(T ) in [9]. The
path cover number P (T ) is the minimum number of vertex disjoint paths that cover all
the vertices of T . In [5] a generalization of ∆ was used because the obvious extension of
the definition of path cover number, namely the minimum number of vertex disjoint
paths that cover all the vertices of T , need not be equal to maximum nullity for
a loop tree T . Here we introduce a different definition of path cover number, which
coincides with that in [9] for trees, and show in Section 5 that using our Definition 4.19,
path cover number, maximum nullity, and another readily computable parameter,
the zero forcing number, are equal for any ditree. Based on this result, software
currently available can compute the minimum rank of a ditree. Section 4 discusses
the parameters used to obtain the results in Section 5.

Since many parameters will be discussed, we provide a list of parameter names,
symbols, and definition numbers in Table 1.1.

2. Graph, Digraph, and Pattern Terminology. A path is a graph or digraph
Pn = ({v1, . . . , vn}, E) such that E = {{vi, vi+1} : i = 1, . . . , n−1} or E = {(vi, vi+1) :
i = 1, . . . , n − 1}. A cycle is a graph or digraph Cn = ({v1, . . . , vn}, E) such that
E = {{vi, vi+1} : i = 1, . . . , n − 1} ∪ {{vn, v1}} or E = {(vi, vi+1) : i = 1, . . . , n −
1} ∪ {(vn, v1)}. The length of a path or cycle is the number of edges or arcs. Note
that ({v}, {(v, v)}) is a digraph cycle of length one and ({v, w}, {(v, w), (w, v)}) is a
digraph cycle of length two, whereas the minimum length of a graph cycle is three.

Let Γ be a digraph. To reverse arc (v, w) means to replace it by arc (w, v). The
digraph obtained from Γ by reversing all the arcs of Γ will be denoted by ΓT . Since
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Table 1.1

Summary of digraph parameter definitions

Parameter symbol Parameter name Definition # or Section #

mr(Γ) minimum rank §1
tri(Γ) triangle number §4.1

M(Γ) maximum nullity §1
δ(Γ) minimum degree §2
ED(Γ) edit distance to nonsingularity 4.7

Zo(Γ) zero forcing number 4.11

P(Γ) path cover number 4.19

for any B ∈ Fn×n, rank(BT ) = rank(B), mrF (ΓT ) = mrF (Γ). We say Γ is symmetric
if Γ = ΓT (note this is equality, not isomorphism).

For a digraph Γ, the underlying simple graph of Γ is the simple graph G ob-
tained from Γ by deleting loops and then replacing every arc (v, w) or pair of arcs
(v, w), (w, v) by the edge {v, w}. Even if Γ is a symmetric digraph there are two
significant differences between the family of matrices described by Γ and its under-
lying simple graph G: When we write Γ(B) = Γ, the diagonal of B is constrained
by the presence or absence of loops but B need not be symmetric (even though Γ is
symmetric), whereas when we write G(A) = G, the diagonal of A is free but A must
be symmetric.

A vertex w is an out-neighbor (in-neighbor) of vertex u in Γ if (u,w) ((w, u)) is
an arc of Γ. Note that v is an out-neighbor of itself if and only if the loop (v, v) is an
arc of Γ. The notation u→ w means that w is an out-neighbor of u. In a symmetric
digraph, an out-neighbor is called a neighbor. The out-degree dego(v) of a vertex v
of Γ is the number of distinct arcs (v, w); note that the arc (v, v) contributes one to
the out-degree of v. The minimum out-degree over all vertices of a digraph Γ will be
denoted by δo(Γ). The minimum degree of Γ is δ(Γ) = max{δo(Γ), δo(ΓT )}. For a
graph G, the minimum degree of G is denoted by δ(G).

A digraph Γ allows singularity (over a field F ) if mrF (Γ) < |Γ|; otherwise Γ
requires nonsingularity (over F ). A permutation digraph of a digraph Γ is a spanning
subdigraph that consists of a (vertex) disjoint union of cycles. A digraph Γ requires
nonsingularity if and only if Γ has a unique permutation digraph.

Note that a digraph is being used to describe the zero-nonzero pattern of a square
matrix. While the digraph has some visual advantages, there are also advantages to
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working with the pattern itself, and a pattern could be rectangular. A zero-nonzero
pattern matrix (a pattern for short) is an m× n matrix Y whose entries are elements
of {∗, 0}. For B = [bij ] ∈ Fm×n, the pattern of B, Y(B) = [yij ], is the m× n pattern
with

yij =
{ ∗ if bij �= 0;

0 if bij = 0.

An n × n pattern is called square. If Γ is a digraph, Y(Γ) = Y(B) where Γ(B) = Γ,
and if Y is a square pattern, Γ(Y ) = Γ(B) where Y(B) = Y . All terminology from
digraphs is applied to square patterns and vice versa. The definitions of minimum
rank and maximum nullity are also extended to a rectangular pattern Y (over a field
F ):

mrF (Y ) = min{rank(B) : B ∈ Fm×n,Y(B) = Y }.

MF (Y ) = max{null(B) : B ∈ Fm×n,Y(B) = Y }.

Note that the minimum rank of a pattern is invariant under an arbitrary permutation
of rows and/or columns of the pattern.

If R is a subset of row indices and C is a subset of column indices, the subpattern
Y [R|C] is the pattern consisting of the entries in rows indexed by R and columns
indexed by C. In the case that Y is square, Y [R|R] is called a principal subpattern
and is denoted by Y [R]. The subpattern Y [R|C] is also denoted by Y (R|C), and
Y [R|C] is also denoted by Y (R|C], etc. When R or C is {1, . . . , n}, it can be denoted
by a colon, e.g., Y [: | {j}] denotes the jth column of Y . We can abbreviate Y (R|R)
to Y (R), Y ({s}) to Y (s), or Y ({s}|{t}) to Y (s|t).

For a digraph Γ = (VΓ, EΓ) and R ⊆ VΓ, the induced subdigraph Γ[R] is the
digraph with vertex set R and arc set {(v, w) ∈ EΓ | v, w ∈ R}. The induced
subdigraph Γ[R] is naturally associated with the principal subpattern Y(Γ)[R]. The
subdigraph induced by R is also denoted by Γ−R, or in the case R is a single vertex
v, by Γ− v.

3. Conversion of Asymmetric Minimum Rank to Symmetric Minimum
Rank. There are substantial connections between the asymmetric diagonal con-
strained minimum rank problem (with matrices described by a digraph or pattern)
and the symmetric diagonal free minimum rank problem (with matrices described
by a graph). In fact, over the real numbers (or any infinite field), an asymmetric
minimum rank problem may be converted to a symmetric one.

Theorem 3.1. Suppose Y is an m× n pattern such that every row and column
of Y has a nonzero entry. Define ΓY to be the symmetric digraph having pattern
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[ ∗ Y

Y T ∗
]

(where ∗ denotes all-nonzero patterns of appropriate size), and GY to be

the underlying simple graph of ΓY . Then

mr(Y ) = mr(ΓY ) = mr(GY ) = mr+(GY ).

Proof. Clearly mr(ΓY ) ≥ mr(Y ) and mr+(GY ) ≥ mr(GY ) ≥ mr(Y ). We con-
struct a positive semidefinite matrix A such that Γ(A) = ΓY and rank(A) = mr(Y ).

Let k = mr(Y ) and letM be anm×nmatrix such that Y(M) = Y and rank(M) =
k. There exist k × m and k × n matrices S, T such that M = STT . There exists
an invertible k × k matrix P such that STP−1P−1TS and TTPTPT both have all
entries nonzero. Let C be the k × (m + n) matrix [P−1TS PT ]. Then CTC =[
STP−1P−1TS M

MT TTPTPT

]
, so Γ(CTC) = ΓY .

Remark 3.2. The only place where properties of the real numbers were used (in
addition to statements about positive semidefiniteness) was the assertion about the
existence of P such that STP−1P−1TS and TTPTPT both have all entries nonzero.
This statement is true for any infinite field, so over an infinite field any asymmetric
minimum rank problem can be converted a symmetric minimum rank problem.

In a special case, Theorem 3.1 can be used to convert a symmetric minimum
rank problem to a (smaller) asymmetric minimum rank problem. A bipartite graph
G having bipartition V (G) = U ∪W is undominated if no vertex of U is adjacent to
every vertex ofW and no vertex ofW is adjacent to every vertex of U ; the complement
of an undominated bipartite graph is exactly the type of graph GY in Theorem 3.1. In
[3] it was conjectured that for any graph G and any infinite field F , δ(G) ≤ MF (G).
Theorem 3.1 can be used to establish this for the complement of an undominated
bipartite graph.

Proposition 3.3 and the resulting direct consequences below originally appeared
in [3] in a slightly different form. They are included here because they represent
important tools for the asymmetric minimum rank problem.

Proposition 3.3. [3, Proposition 3.5] Let Y be an m×n pattern such that each
row has at least r nonzero entries. Then over any infinite field there exists B ∈ Fm×n

such that Y(B) = Y and null(B) ≥ r − 1 and thus rank(B) ≤ n− r + 1.

Using Proposition 3.3 it is evident that if Y is an m × n pattern such that each
row has at least r nonzero entries and if F is an infinite field, then

r − 1 ≤ MF (Y ) and mrF (Y ) ≤ n− r + 1. (3.1)
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Hence taking this further, by examining both Γ and ΓT , we see that for any
digraph Γ and infinite field F , we have

δ(Γ)− 1 ≤ MF (Γ) and mrF (Γ) ≤ |Γ| − δ(Γ) + 1. (3.2)

Proposition 3.4. Let G be the complement of an undominated bipartite graph
and let F be an infinite field. Then

δ(G) ≤ MF (G) and mrF (G) ≤ |G| − δ(G).

Proof. Let YG = [yuw] be the |U | × |W | pattern defined by

yuw =
{ ∗ if {u,w} ∈ EG;

0 if {u,w} �∈ EG.

By Theorem 3.1, mrF (YG) = mrF (G). Clearly YG has at least δ(G)−|U |+1 nonzero
entries in each row, so by (3.1), mrF (YG) ≤ |W | − (δ(G)− |U |+1)+1 = |G| − δ(G).

Remark 3.5. As was done in [3, Theorem 3.1], Proposition 3.4 can be improved
be noting that only δU (G), the minimum degree over vertices in U , has been used.
The result is also valid using a |W | × |U | pattern and δW (G). Thus mrF (G) ≤
|G| −max{δU (G), δW (G)}.

4. Parameters for Asymmetric Minimum Rank and Maximum Nullity.
In this section we establish relationships between several parameters related to min-
imum rank and maximum nullity. Here we focus on parameters that will be used in
Section 5 to establish a computational method for determining the minimum rank of
a directed tree.

4.1. Triangle Number. A t-triangle of an m×n pattern Y is a t×t subpattern
that is permutation similar to a pattern that is upper triangular with all diagonal
entries nonzero. The triangle number of pattern Y , denoted tri(Y ), is the maximum
size of a triangle in Y . For a digraph Γ, tri(Γ) = tri(Y(Γ)). The triangle number has
been used as a lower bound for minimum rank in both the symmetric and asymmetric
minimum rank problems, see e.g., [2], [4], [8].

Observation 4.1. For any pattern Y and field F , tri(Y ) ≤ mrF (Y ).

Triangles can sometimes be found through a sequence of eliminations, as described
in the next proposition.

Proposition 4.2. Let Y be a pattern having a row s (or column t) that has
exactly one nonzero entry, yst. Then for any field F ,

mrF (Y ) = mrF (Y (s|t)) + 1
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and

tri(Y ) = tri(Y (s|t)) + 1.

Proof. The statement about minimum rank is obvious. To find a triangle, if row
s has its only nonzero entry in column t, move both row s and column t to the last
position; for the only nonzero entry in the column being yst, move both row s and
column t to the first position.

It is known that triangle number can be strictly less than minimum rank for a
pattern (or for a digraph). The classic illustration is obtained from the Fano projective
plane, as in the next example.

c4

c2

c1c3
c5

c7

c6

r1

r2

r3

r4

r5

r6 r7

Fig. 4.1. The Fano projective plane

Example 4.3. Let

XF =




∗ 0 0 0 ∗ ∗ ∗
0 ∗ 0 ∗ 0 ∗ ∗
0 0 ∗ ∗ ∗ 0 ∗
0 ∗ ∗ 0 ∗ ∗ 0
∗ 0 ∗ ∗ 0 ∗ 0
∗ ∗ 0 ∗ ∗ 0 0
∗ ∗ ∗ 0 0 0 ∗




be the pattern constructed as the complement of the incidence pattern of the Fano
projective plane shown in Figure 4.1, where line ri represents row i and point cj
represents column j. Then tri(XF ) = 3 < 4 = mr(XF ). Note that XF is a square
pattern associated with a symmetric digraph.

It is possible to use this example to construct an acyclic digraph that has mr(T ) >
tri(T ).

Example 4.4. Let XF be the pattern in Example 4.3 that has triangle number
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3 and minimum rank 4 and let O be a 7 × 7 zero matrix. The digraph Γ that has

pattern Y(Γ) =
[
O XF

O O

]
is acyclic, and has tri(Γ) = 3 < 4 = mr(Γ).

Theorem 4.5. Let Y be a pattern and let F be an infinite field. If tri(Y ) ≤ 2,
then mrF (Y ) = tri(Y ).

Proof. If tri(Y ) = 0 then Y is an all-0 pattern and mrF (Y ) = 0 = tri(Y ). For
tri(Y ) > 0, delete any all-0 rows and all-0 columns from Y (this does not affect either
triangle number or minimum rank). If tri(Y ) = 1 then Y is an all-∗ pattern and
mrF (Y ) = 1 = tri(Y ).

Suppose tri(Y ) = 2. We show that Y can be permuted to the form

Y ′ =




O ∗ . . . ∗ ∗
∗ O . . . ∗ ∗
...

...
. . .

...
...

∗ ∗ . . . O ∗
∗ ∗ . . . ∗ ∗




(4.1)

where each O represents an all-0 block of any size (not necessarily square), each ∗
represents an all-∗ block whose size is determined by the diagonal blocks, and the last
row and column (of all-∗ blocks) are independently optional. To obtain such a form:

1. Permute the columns to put any all-∗ columns last.
2. Permute the rows to put all the 0s of column 1 at the top.
3. Permute the columns to put all columns having a 0 in row 1 first.

Observe that for distinct indices p, q, r, s, if ypq = yrq = yrs = 0, then yps = 0
(otherwise there is a nonzero entry yiq in column q and a nonzero entry yrj in row r,
so Y [{i, p, r}|{q, s, j}] would be a 3-triangle). Thus, the result of the permutations in

steps (1) – (3) above is a matrix of the form
[
O ∗
∗ Y22

]
. Repeat on Y22 as needed to

obtain a matrix in the form (4.1).

To complete the proof, we exhibit a rank 2 matrix having form (4.1), where Y ′

is a k × ' block pattern with u all-0 blocks (note k, ' ∈ {u, u+ 1}). Let α3, . . . , αu+1

be distinct elements of F that are different from 1. Let

M =
[
0 1 −α3 . . . −αu −1
1 0 1 . . . 1 1

]T [
0 1
1 0

] [
0 1 α3 . . . αu αu+1

1 0 1 . . . 1 1

]
,

where the last row of the transposed first matrix in the product (respectively, the
last column of the third matrix in the product) is omitted if k = u (if ' = u). Then
Y(M) = Y ′ and clearly rank(M) = 2. Let B be the block matrix conformal with Y ′

having all the entries in block Bij equal to mij .
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Proposition 4.6. Let Y be an m × n pattern and let F be an infinite field. If
mrF (Y ) = n, then mrF (Y ) = tri(Y ).

Proof. Note first that we can delete any all-0 rows without affecting minimum
rank. Since mrF (Y ) = n, there must be a row that has exactly one ∗ (otherwise, by
(3.1), mrF (Y ) ≤ n− 1). Apply Proposition 4.2 and induction.

4.2. Edit Distance. In this subsection we introduce a new parameter for the
study of maximum nullity and minimum rank.

Definition 4.7. Let Y be a square pattern. The (row) edit distance to non-
singularity, ED(Y ), of Y is the minimum number of rows that must be changed to
obtain a pattern that requires nonsingularity. The edit distance to nonsingularity of
a digraph Γ is by definition equal to ED(Y(Γ)) and will be denoted by ED(Γ).

Editing row v of Y(Γ) is equivalent to editing the out-neighborhood of v in Γ.

Observation 4.8. Let Y ′ be obtained from Y by deleting one row. Then
tri(Y ′) ≥ tri(Y )− 1.

Theorem 4.9. For any digraph Γ, tri(Γ) + ED(Γ) = |Γ|.
Proof. Observe that ED(Γ) ≤ |Γ| − tri(Γ), because we can edit the |Γ| − tri(Γ)

rows not in a tri(Γ)-triangle of Y(Γ) to get a pattern that requires nonsingularity.

To show tri(Γ) ≥ |Γ| − ED(Γ), let Y = Y(Γ) and e = ED(Y ). Perform edits on
rows r1, . . . , re to obtain a pattern Ỹ that requires nonsingularity. Note that Ỹ is a
|Γ|× |Γ| pattern that requires nonsingularity and thus is a |Γ|-triangle by Proposition
4.6. Let Y ′ be obtained from Y (or equivalently from Ỹ ) by deleting rows r1, . . . , re.
By applying Observation 4.8 repeatedly, Y ′ has a |Γ| − e triangle, so Y has a |Γ| − e
triangle.

Corollary 4.10. For any digraph Γ and any field F , MF (Γ) ≤ ED(Γ).

4.3. Zero Forcing Sets. Although the underlying concept had been used pre-
viously, zero forcing sets and the zero forcing number Z(G) were introduced in [1].
Here we extend Z and its properties from simple graphs to digraphs.

Definition 4.11.

• (out) color change rule: If Γ is a digraph with each vertex colored either white
or black, u is a vertex of Γ, and exactly one out-neighbor w of u is white,
then change the color of w to black.

• Given a coloring of digraph Γ, the (out) derived coloring is the result of
applying the color change rule until no more changes are possible. An (out)

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 18, pp. 126-145, February 2009

http://math.technion.ac.il/iic/ela



ELA

136 Francesco Barioli et al.

derived set is the set of black vertices in an (out) derived coloring.
• When in the process of obtaining the derived coloring we apply the color
change rule to u to change the color of w, we say u forces w.

• An (out) zero forcing set for a digraph Γ is a subset of vertices Z such that
if initially the vertices in Z are colored black and the remaining vertices are
colored white, the derived coloring of Γ is all black.

• The (out) zero forcing number Zo(Γ) is the minimum of |Z| over all zero
forcing sets Z ⊆ VΓ.

Note that the sequence of forces used in constructing the derived set of a given
zero forcing set is not unique, even though the derived set (of a specific coloring) is
unique, since any vertex that turns black under one sequence of applications of the
color change rule can always be turned black regardless of the order of color changes.
This can be proved by an induction on the number of color changes necessary to turn
the vertex black, but since for our purposes the uniqueness of the derived set is not
necessary, we do not supply the details.

Just as it is possible for the maximum nullity of a digraph to be zero, it is possible
for the empty set to be a zero forcing set for a digraph (note that both of these are
impossible for a graph).

Example 4.12. The digraph P shown in Figure 4.2 has the empty set as a zero
forcing set (since vertex 1 has out-degree one, 1 forces vertex 2; likewise vertex 2
forces vertex 1).

1 2

Fig. 4.2. A digraph P having the empty set as a zero forcing set

The proof given in [1] that for a graph G, MF (G) ≤ Z(G) can be extended in a
natural way to show MF (Γ) ≤ Zo(Γ), but here we give an alternate proof based on
the relationship with the triangle number.

Theorem 4.13. For any digraph Γ, tri(Γ) + Zo(Γ) = |Γ| and Zo(Γ) = ED(Γ).

Proof. Let Z be a zero forcing set that has Zo(Γ) elements. Let Y be the pattern
obtained from Y(Γ) by deleting the columns whose indices are in Z. Vertex v forcing
vertex w implies that the v, w-entry of Y is nonzero, and it is the only nonzero entry
in row v of Y . By Proposition 4.2, tri(Y ) = tri(Y (v|w)) + 1. Proceeding in in this
manner, since Z is a a zero forcing set, we see that |Γ| − Zo(Γ) = tri(Y ) ≤ tri(Y(Γ)).

Now suppose Y(Γ) has a t-triangle. Then vertices of Γ corresponding to the
columns not in the t triangle constitute a zero forcing set. So Zo(Γ) ≤ |Γ| − tri(Γ).
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Corollary 4.14. For any digraph Γ and any field F , MF (Γ) ≤ Zo(Γ).

Remark 4.15. For a pattern Y , columns can be colored black or white, analogous
definitions can be given for color change rule, derived coloring, zero forcing set, and
zero forcing number, and Theorem 4.13 and Corollary 4.14 remain valid for Y with
|Γ| replaced by the number of columns of Y .

Definition 4.16. Let Z be a zero forcing set of a digraph Γ. Construct the
derived set, recording the forces.

• A forcing chain (for this particular choice of forces) is a sequence of vertices
(v1, v2, . . . , vk) such that for i = 1, . . . , k − 1, vi forces vi+1.

• The forcing chain digraph of the forcing chain C = (v1, v2, . . . , vk) is the
digraph ΓC = (VΓC

, EΓC
) where VΓC

= {v1, v2, . . . , vk} and
EΓC

= {(v1, v2), (v2, v3), . . . , (vk−1, vk)}.
• A maximal forcing chain is a forcing chain that is not a proper subsequence
of another forcing chain.

• A maximal forcing chain digraph is the forcing chain digraph of a maximal
forcing chain.

The order of the vertices in a forcing chain need not be the order in which the
forces happen, as in the next example.

1

2

4

3

Fig. 4.3. The digraph for Examples 4.17 and 4.23.

Example 4.17. For the digraph shown in Figure 4.3, {1} is a zero forcing set,
with the following list of forces: 3 forces 4, 2 forces 3, 1 forces 2. Note that 1 cannot
force 2 until after 2 has forced 3, but the maximal forcing chain is (1, 2, 3, 4).

Lemma 4.18. Any forcing chain digraph is a path or a cycle. Given a zero forcing
set Z and a particular set of forces that produces the derived set (of all vertices), the
maximal forcing chain digraphs are disjoint and the elements of the set Z are in
one-to-one correspondence with the paths.

Proof. To see that a forcing chain is a path or a cycle, it suffices to note from
the definition of forcing that a vertex can force at most one vertex and can be forced
by at most one vertex, i.e., the out-degree and the in-degree are each at most one.
Thus a forcing chain does not contain any repeated vertex, except that possibly the
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first and the last vertices are identical, and two maximal forcing chain digraphs have
disjoint vertices.

The vertices in Z are exactly the vertices that are never forced by any other
vertex, i.e., exactly the initial vertices of the paths.

4.4. Path Cover Number. The next definition extends the definition of path
cover number to digraphs in a more useful way (than the obvious one mentioned in
Section 1).

Definition 4.19. Let Γ be a digraph. The path cover number P(Γ) of Γ is
the minimum number of vertex disjoint paths whose deletion leaves a digraph that
requires nonsingularity (or the empty set).

Theorem 4.20. For any digraph Γ, P(Γ) ≤ Zo(Γ).

Proof. Let Z be a zero forcing set of order Zo(Γ). Construct the derived set
recording the forces and for this set of forces, construct the maximal forcing chain
digraphs. Let P be the set of all maximal forcing chain digraphs that are paths.
Delete those paths from Γ and the rest of the digraph can force itself, so Γ − VP

requires nonsingularity.

It is possible to construct examples that have the path cover number strictly less
than the zero forcing number, as the next example shows.

Example 4.21. Consider the complete digraph on n ≥ 3 vertices Kn = (V, V ×V )
with |V | = n.

P(Kn) = 1 < n− 1 = M(Kn) = Zo(Kn).

To better understand if there is any sort of a relationship between P(Γ) and
M(Γ), we pose the following question for investigation. A negative answer would
yield Theorem 5.8 below as a corollary to Theorem 5.1.

Question 4.22. Does there exist a digraph Γ for which P(Γ) > M(Γ)?

Note that in [9], the definition of path cover number states that the paths occur
as induced paths, and this definition has been adopted by many subsequent papers
(see [7] and the references therein). However, this distinction is irrelevant for trees
or ditrees, so Definition 4.19 is a valid generalization of P (T ). Theorem 4.20 would
be false if the definition of path cover number required the paths to be induced
subdigraphs of Γ, as the next example shows.
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Example 4.23. Let Γ be the digraph shown in Figure 4.3. Zo(Γ) = 1 because
{1} is a zero forcing set. Since Γ has no cycles, all vertices must be covered by the
paths in a path cover. Since Γ is not a path, at least two paths must be used to cover
Γ by induced paths.

5. Directed Trees (Ditrees).

Theorem 5.1. For any ditree T , ED(T ) ≤ P(T ).
Proof. Let P = {P1, . . . , Pk} be a set of vertex-disjoint paths such that T − VP

requires nonsingularity (where VP = ∪k
i=1VPi

). Let vi be the first vertex and wi the
last vertex of Pi. Edit row wi (i.e., edit the out-neighborhood of wi) so that the only
out-neighbor of wi is vi. This involves at most k row edits and produces a digraph Γ.
We show that Γ requires nonsingularity, which implies ED(T ) ≤ k = P(T ).

Since T − VP requires nonsingularity, it has a unique permutation digraph H,
and H together with the union of the disjoint cycles Pi ∪ (wi, vi), i = 1 . . . , k is a
permutation digraph of Γ. We show that this is the only permutation digraph of Γ. A
permutation digraph must include wi in a cycle, and the only arc out of wi is (wi, vi).
If the arc (wi, vi) were included in a cycle other than Pi∪(wi, vi), there would be a path
from vi to wi in T that is different from Pi, and so T would not be a ditree. So the only
cycle of Γ that includes wi is Pi ∪ (wi, vi). Once all the cycles Pi ∪ (wi, vi), i = 1 . . . , k
are removed, H is the only permutation digraph of Γ− VP = T − VP . Since Γ has a
unique permutation digraph, Γ requires nonsingularity.

Using Theorems 4.20, 5.1, and 4.13 we have the following corollary.

Corollary 5.2. If T is a ditree, then

P(T ) = ED(T ) = Zo(T ).

Observe that Theorem 5.1 is false if ditree is replaced by digraph having no cycles
of length greater than one.

Example 5.3. Let Γ be the digraph in Figure 5.1, whose only cycle is the loop

at 2. Since Y(Γ) =

0 ∗ ∗
0 ∗ ∗
0 0 0


, tri(Γ) = mrF (Γ) = 1 and Zo(Γ) = ED(Γ) = 2. But

P(Γ) = 1, because deletion of the path (1, 2, 3) leaves the empty set.

A loop tree is graph allowing loops whose associated simple graph (the one ob-
tained by deleting any loops) is a tree, with the presence or absence of the loop at
v constraining the v, v-diagonal entry of a symmetric matrix associated with T to be
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1

2

3

Fig. 5.1. A digraph Γ having no cycles of length greater than one such that P(Γ) < Zo(Γ)

nonzero or zero. In [9], for a simple tree T the parameter ∆(T ) was defined to be
the maximum of p − q such that there is a set of q vertices whose deletion leaves p
paths, and it was shown that M(T ) = ∆(T ) = P (T ). In [5] the definition of ∆ was
extended to the parameter C0(T ) defined for a loop tree T , and it was shown that
C0(T ) = M(T ). In [10] Mikkelson extended the applicability of this result by showing
that MF (T ) = M(T ) for every field F of order greater than two.

A loop tree can be viewed as a symmetric ditree, since for computing the minimum
rank of trees, symmetry is not an issue (cf. [5]). For convenience and completeness,
we reproduce and translate the necessary terminology and the algorithm into the
language of ditrees and minimum rank (in [5] it is stated more generally to include
sign patterns and nonzero eigenvalues).

Let T be a symmetric ditree. For Q ⊆ VT , define c0(Q) to be the number of
components of T −Q that allow singularity. Then

C0(T ) = max{c0(Q)− |Q| : Q ⊆ VT }.

A symmetric path is a symmetric ditree whose underlying graph is a path. A high
degree vertex of T is a vertex v that has at least three neighbors other than v. Clearly
a symmetric ditree is a symmetric path if and only if it does not have any high degree
vertices. For H ⊆ VT , an H-vertex is a vertex in H. For R ⊆ VT , a component of
T −R is H-free if it does not contain any H-vertex.

Any digraph Γ can be tested to determine whether it allows singularity by de-
termining the number of permutation digraphs. Alternatively, Γ can be tested by
evaluating the determinant of a pattern matrix of variables (Γ allows singularity if
and only if there is not exactly one term in the determinant). A symmetric path has
maximum nullity 0 or 1, which is distinguished by testing whether it allows singularity.

Algorithm 5.4. Let T be a symmetric ditree that has at least one high degree
vertex. This algorithm produces a set Q ⊆ VT such that c0(Q)−|Q| = C0(T ) = M(T ).
Initialize: Set H1 = the set of all high degree vertices of T , Q = ∅, and i = 1.
While Hi �= ∅:
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1. Set Ti = the unique component of T −Q that contains an Hi-vertex.
2. Set Qi = ∅.
3. Set Wi = {w ∈ Hi: at most one component of Ti − w is not Hi-free}.
4. For each vertex w ∈Wi,

if there are at least two Hi-free components of Ti − w that allow singularity,
then Qi = Qi ∪ {w}.

5. Q = Q ∪Qi.
6. Hi+1 = Hi\Wi.
7. For each v ∈ Hi+1,

if v is not a high degree vertex in Ti −Q, remove v from Hi+1.
8. i = i+ 1.

Lemma 5.5. Let T be a symmetric ditree and v ∈ VT . Suppose that:

• S is a component of T − v.
• S allows singularity.
• If x ∈ VS, then T −x has at most one component that is a subgraph of S and

allows singularity.

Then there is a path P from v to a vertex u ∈ S such that every component of T −VP

that is a subgraph of S requires nonsingularity.

Proof. Let w be the neighbor of v in S. Start with path (v, w) and continue adding
adjacent vertices one at a time until every component of T − VP that is a subgraph
of S requires nonsingularity. After vertex x is added to the path, if it is not yet the
case that every component of T − VP that is a subgraph of S requires nonsingularity,
the next vertex to add to the path is the neighbor of x in the component that allows
singularity.

Theorem 5.6. If T is a symmetric ditree and F is a field of order greater than
2, then

MF (T ) = P(T ) = Zo(T ) and mrF (T ) = tri(T ).

Proof. We show P(T ) ≤ M(T ) by induction on M(T ), and the result over R then
follows from Corollaries 4.14 and 5.2 and Theorem 4.13. The extension to other fields
follows from [10, Theorem 3.2]. If M(T ) = 0, then T requires nonsingularity and
P(T ) = 0.

Now suppose the result is established for all symmetric ditrees such that M(T ) < k
and let M(T ) = k ≥ 1. Note first that if T is a path, then M(T ) = 1 and the deletion
of all vertices shows that P(T ) = 1. Therefore we may assume T has at least one
high degree vertex. Apply Algorithm 5.4, and use the notation from that algorithm
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for Ti,Hi,Wi, Qi, and Q. If w ∈ Wi and an Hi-free component S of Ti − w allows
singularity, then S satisfies the hypotheses of Lemma 5.5, because any vertex x of S
that violated the third hypothesis would have been added to Q (and thus deleted) at
an earlier stage of the algorithm.

If Q = ∅, then we exhibit a path whose deletion leaves a digraph that requires
nonsingularity, establishing P(T ) = 1 ≤ M(T ). Select any high degree vertex v. If
no component of T − v allows singularity, then v itself is the required path. If one
component allows singularity, apply Lemma 5.5 to obtain the required path.

So suppose that Q �= ∅. Let w be a vertex in Qm where m is the least index such
that Qm �= ∅; note that Tm = T . Let Si, i = 1, . . . , ' be the components of T −w that
are Hm-free and allow singularity. Note that ' ≥ 2. Apply Lemma 5.5 to find paths
Pi from w to ui ∈ Si such that the components of T −VPi

in Si require nonsingularity.
Since T is symmetric, we can reverse path P�−1 and join it to P� at w to form P ′

�−1,
and let P ′

i = Pi −w, for i = 1, . . . , '− 2. Let VS = ∪�
i=1VSi

, VP = ∪�−1
i=1VP ′

i
and let T o

be the component of T −VP that allows singularity (if there is such; if not T o = ∅ and
M(T o) = 0). Note that T o is playing a role analogous to Tm+1, except that the only
vertex in Qm that is deleted is w. Thus C0(T ) = C0(T o) + ' − 1. By the induction
hypothesis, M(T o) = P(T o), so we can find paths P ′′

1 , . . . , P
′′
M(T o) whose deletion

from T o leaves a digraph that requires nonsingularity. Thus the deletion from T of
the paths P ′′

1 , . . . , P
′′
M(T o), P

′
1, . . . , P

′
�−1 leaves a digraph that requires nonsingularity

(note it is possible that M(T o) = 0 and the only paths deleted are P ′
1, . . . , P

′
�−1).

Thus

P(T ) ≤ M(T o) + '− 1 = C0(T o) + '− 1 = C0(T ) = M(T ).

The following lemma will be used to establish Theorem 5.8 below.

Lemma 5.7. Let F be any field and let Y be a pattern of the form

Y =
[
X O

U W

]
,

where U is k ×m. Let X ′ be obtained from X by replacing the last column of X by
0s and W ′ be obtained from W by replacing the first row of W by 0s. If mrF (X) =
tri(X), mrF (W ) = tri(W ), mrF (X ′) = tri(X ′), mrF (W ′) = tri(W ′), and U has
exactly one nonzero entry in the 1,m position, then mrF (Y ) = tri(Y ).

Proof. Observe that

mrF (X) + mrF (W ) ≤ mrF (Y ) ≤ mrF (X) + mrF (W ) + 1.

If mrF (Y ) = mrF (X)+mrF (W ), then Y has a triangle of order mrF (Y ), because
X has a triangle of order mrF (X) and W has a triangle of order mrF (W ).
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So henceforth we consider the more difficult case:

mrF (Y ) = mrF (X) + mrF (W ) + 1.

For any matrix having pattern Y , without loss of generality, we may assume the
nonzero entry associated with U is 1, i.e., ifM is a matrix such that Y(M) = Y , then
M has the form [

A O

E1m B

]

where Y(A) = X and Y(B) = W . If rank(A) = mrF (X) and rank(B) = mrF (W ),
then rank(M) = mrF (X) + mrF (W ) + 1. If eTm is in the row space RS(A) or e1 is in
the column space CS(B), then we have the contradiction that rank(M) = rank(A) +
rank(B) < mrF (Y ). Thus eTm /∈ RS(A) and e1 /∈ CS(B). This implies that the last
column of A is in the span of the remaining columns of A, and similarly the first row
of B is in the span of the remaining rows of B.

We claim that mrF (X[: | {m})) = mrF (X). If not, we can construct a matrix
A of rank mrF (X) by starting with a minimum rank realization of X[: | {m}) and
appending a (necessarily) independent column whose pattern is that of the last column
of X. Such an A would have rank mrF (X), and yet its last column would not be in
the span of the remaining columns of A. Similarly, mrF (W ({1} | :]) = mrF (W ).

Now replace the last column of X by 0’s and the first row of W by 0’s to get
the patterns X ′ and W ′. By hypothesis, X ′ has a triangle T1 of order tri(X ′) =
mrF (X ′) = mrF (X) and W ′ has a triangle T2 of order tri(W ′) = mrF (W ′) =
mrF (W ). Thus, after rearranging rows and columns, Y has a subpattern of the
form 

T1 ? O

O 1 ?
O O T2


 ,

which is a triangle of order mrF (X) + mrF (W ) + 1 = mrF (Y ).

A forest is a simple acyclic graph and a directed forest or diforest is a digraph
whose underlying simple graph is a forest.

Theorem 5.8. If T is a ditree and F is a field of order greater than 2, then

MF (T ) = Zo(T ) = P(T ) = ED(T ) and mrF (T ) = tri(T ).
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Proof. We prove MF (T ) = Zo(T ) for diforests. Note first that the theorem is
true for any symmetric diforest by Theorem 5.6, and for any diforest of order at
most 2 by direct examination of cases. Assume it is true for every diforest of order
less than |T |. If T is symmetric we are done; if not T has two vertices x,w such
that (w, x) is an arc and (x,w) is not. Let X be the induced subdigraph containing
x in T − w and let W be the induced subdigraph containing w in T − x. Let X ′

be the diforest obtained from X by deleting all in-neighbors of x, and let W ′ be
obtained from W by deleting all out-neighbors of w. Note that |X|, |W | < |T |, so
by the induction hypothesis mrF (Y(X)) = tri(Y(X)), mrF (Y(W )) = tri(Y(W )) and
mrF (Y(X ′)) = tri(Y(X ′)), mrF (Y(W ′)) = tri(Y(W ′)). Apply Lemma 5.7 to Y(T )
to conclude tri(T ) = mrF (T ).

By Theorem 5.8, computing Zo(T ) determines MF (T ) and thus mrF (T ) for a
ditree T and any field F �= Z2. A program for the computation of Zo(Γ) is available
[6] using the free open-source computer mathematics software system Sage [11].

The hypotheses about X ′ and W ′ are necessary for Lemma 5.7, as the next
example shows.

Example 5.9. Let

Y =




∗ 0 0 0 ∗ ∗ ∗ 0 0
0 ∗ 0 ∗ 0 ∗ ∗ 0 0
0 0 ∗ ∗ ∗ 0 ∗ 0 0
0 ∗ ∗ 0 ∗ ∗ 0 0 0
∗ 0 ∗ ∗ 0 ∗ 0 0 0
∗ ∗ 0 ∗ ∗ 0 0 0 0
∗ ∗ ∗ 0 0 0 ∗ ∗ 0
∗ ∗ ∗ 0 0 0 ∗ ∗ 0
0 0 0 0 0 0 0 ∗ 0



.

Note that Y is of the form
[
X 0
U W

]
with X = Y (9),W = [0], and

U =
[
0 0 0 0 0 0 0 ∗]. The pattern Y ({8, 9}) = X(8) is the pattern XF in

Example 4.3, so tri(X(8)) = 3 and mr(X(8)) = 4. Note that row 8 duplicates row 7,
so tri(X) = tri(X({8} | :]) and mr(X) = mr(X({8} | :]). Since tri(X({7, 8} | {8})) =
3 = mr(X({7, 8} | {8})), by elimination (Proposition 4.2), tri(X({8} | :]) = 4 =
mr(X({8} | :]). Thus tri(X) = 4 = mr(X). Clearly tri(W ) = 0 = mr(W ). Thus
Y satisfies the all hypotheses of Lemma 5.7 except the hypothesis tri(X ′) = mr(X ′).
By elimination and the fact that row 8 duplicates row 7, tri(Y ) = 1+tri(Y ({8, 9})) = 4
and mr(Y ) = 1 +mr(Y ({8, 9})) = 5.
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