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TOTALLY POSITIVE COMPLETIONS FOR MONOTONICALLY
LABELED BLOCK CLIQUE GRAPHS∗
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Abstract. It is shown that if the connected graph of the specified entries of a combinatorially

symmetric, partial totally positive matrix is monotonically labeled block clique, then there is a totally

positive completion. Necessarily the completion strategy is very different from and more complicated

than the known totally nonnegative one. The completion preserves symmetry and can be used to

solve some non-connected or rectangular, nonsymmetric completion problems.
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1. Introduction. An m-by-n matrix A is totally positive, TP (totally nonnega-
tive, TN), if all of its minors are positive (nonnegative) [FJ]. A is TPk (TNk), if all
of its minors of size less than or equal to k are positive (nonnegative) [FJ]. A partial
matrix is a rectangular array in which some entries are specified while the remaining,
unspecified, entries may be freely chosen. A completion of a partial matrix is a par-
ticular choice of values for the unspecified entries, resulting in a conventional matrix.
A matrix completion problem asks which partial matrices have a completion with a
desired property. Of course, in order for a partial matrix to have a TP (TN) comple-
tion, every submatrix, consisting entirely of specified entries, must be TP (TN). We
call such a partial matrix a partial TP (TN) matrix.

In the study of the combinatorially symmetric TN completion problem [JKL], it
is shown that for every partial TN matrix with specified entries corresponding to a
monotonically labeled block clique graph, there is a TN completion. (A combinatori-
ally symmetric partial matrix is square, has specified diagonal, and has specified i, j

entry iff it has specified j, i entry). Among connected graphs, these are the only ones
that assure that a partial TN matrix has a TN completion. Recall that the graph of
an n-by-n combinatorially symmetric partial matrix is a graph on n vertices with an
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edge between i and j iff the i, j entry is specified. A connected labeled graph is a
monotonically labeled block clique graph if it is a collection of ordered cliques in which
all the labels of one clique are less than or equal to all those in the next clique. Of
course, consecutive cliques overlap in exactly one vertex. Since TP and TN matrices
are not permutation similarity invariant it is especially important that these graphs
are labeled.

Since [JKL], it has been an open question as to whether a partial TP matrix
with specified entries corresponding to a monotonically labeled block clique graph
has a TP completion. Of course, there is a TN completion. That completion is quite
natural, but is only TN, not TP. Finding a TP completion of these partial matrices
has proven quite elusive. It would seem that there should be some TP completion
near the standard TN completion, but the problem has resisted numerous attempts
to show this is true in any simple explicit or implicit way. Here, we show that there
is a TP completion in this case, and the proof has several nice by-products, including
some non-combinatorially symmetric and some non-connected completion results for
TP.

A combinatorially symmetric completion problem, with monotonically labeled
block clique graph, easily reduces inductively to the case of two blocks (or cliques).
In that event the standard TN completion is easily described (though the verification
requires some effort). Let

A =


 A1,1 a1,2 ?

aT
2,1 a2,2 aT

2,3

? a3,2 A3,3


 (1.1)

in which A1,1 (A3,3) is an n1-by-n1 (n3-by-n3 ) matrix, a1,2, a2,1 ∈ R
n1 (a2,3, a3,2 ∈

R
n2), a2,2 > 0 is a scalar, n = n1 + 1 + n3, and

[
A1,1 a1,2

aT
2,1 a2,2

]
,

[
a2,2 aT

2,3

a3,2 A3,3

]

are TN. Then

Ã =




A1,1 a1,2
a1,2aT

2,3
a2,2

aT
2,1 a2,2 aT

2,3
a3,2aT

2,1
a2,2

a3,2 A3,3


 (1.2)

is a TN completion of A. In later work the assumption that a2,2 > 0 was relaxed to
a2,2 ≥ 0 [JKD]. Of course, Ã has relatively large rank 1 submatrices. As a result, Ã

is not TP, even if A is partial TP.
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2. Main result and strategy. A key idea in the present work for the 2-block
TP case is to complete the partial matrix indirectly by choosing certain contiguous 2-
by-2 minors that involve unspecified entries. By the k-th contiguous compound of an
m-by-n matrix A, Ck(A) with k ≤ min{m, n}, we mean the (m−k+1)-by-(n−k+1)
matrix of k-by-k contiguous minors of A, with the index sets ordered lexicographically.
For the proof of our theorem we will be dealing only with contiguous compounds of
square matrices. We label the entries of Ck(A) as ci,j|k with i, j specifying the upper
left entry of the submatrix in A from which the minor is derived, and k specifying the
size of the minor. Note that A may be reconstructed from C2(A) if certain entries, for
example, the diagonal and superdiagonal entries of A, are known. This means that
in the 2-block TP case, the completion of A may be recovered from the completion of
C2(A). (The standard TN completion is just the one in which C2(A) is completed with
0’s). This is important because our strategy implicitly produces a TP completion via
targeting of minors in a particular order. We also note, and will use the fact that,
A is TP (TPk) iff all its contiguous compounds, from the 1-st to n-th (1-st to k-th),
are positive, i.e. if all contiguous minors are positive [FJ]. It is actually true that to
prove total positivity the initial minors will suffice [FJ], but we will not use this fact.
Our main result is the following.

Theorem 1. If A is a n-by-n combinatorially symmetric partial TP matrix,
with specified entries corresponding to a monotonically labeled block clique graph, then
there is a TP completion, Â, of A. Moreover, if the blocks of A are symmetric, the
completion Â may be taken to be symmetric.

As mentioned earlier, by induction on the number of cliques, the proof of this
theorem reduces to the case of just two cliques. In a graph of k cliques, completing
any two cliques reduces the total number of cliques to k − 1. So our proof simply
focuses on the 2-block case. The statement about symmetry will be clear from the
completion strategy. Nonetheless, the proof is rather lengthy (it seems necessarily so,
based upon a number of attempts at simple proofs). Before beginning, we mention a
number of background facts that are used in the proof.

The determinantal inequalities of Koteljanskii and the special case named after
Fischer are known to hold for TP matrices. In this case, the inequalities are strict
[FJ]. In particular, if B ∈ Mn(R) is TP and is partitioned as

B =




B1,1 B1,2 ... B1,k

...
...

Bk,1 ... Bk,k




with square diagonal blocks Bi,i, then

detB < detB1,1...detBk,k.
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In the event that B has diagonal entries no greater than 1, this means that, for any
diagonal block Bi,i,

detB < detBi,i.

If a partial matrix A of the form (1.1) is partial TP, we may assume without loss
of generality that the diagonal entries of A are all 1, by (symmetric, if necessary)
positive diagonal scaling. This changes neither the partial TP property nor whether
a completion is TP. In addition, since the specified entries of A are positive, we
may also assume without loss of generality, via positive diagonal similarity, that the
tridiagonal part of A is symmetric (i.e. ai,i+1 = ai+1,i, i = 1, ..., n − 1). We assume
both. Then, by the positivity of contiguous 2-by-2 minors, every off-diagonal entry
(and every completing entry as well) will be less than 1. This permits the sort of
(frequent) use of Koteljanskii/Fischer mentioned above.

Another fact we frequently use is the special case of Sylvester’s determinantal
identity [HJ1], which says the following. For matrix

A =


 a1,1 aT

1,2 a1,3

a2,1 A2,2 a2,3

a3,1 aT
3,2 a3,3




with A n-by-n, A2,2 (n − 2)-by-(n − 2) and nonsingular, a1,2, a2,1, a2,3, a3,2 ∈ R
n−2,

and a1,1, a1,3, a3,1, a3,3 scalars,

detA = det

"
a1,1 aT

1,2

a2,1 A2,2

#
det

"
A2,2 a2,3

aT
3,2 a3,3

#
− det

"
aT
1,2 a1,3

A2,2 a2,3

#
det

"
a2,1 A2,2

a3,1 aT
3,2

#

detA2,2

.

Note, by Sylvester, if A is TPn−2, then A is TPn iff Cn−1(A) is TP2. This allows us to
give a very simple proof of the case when n = 3. This observation is used repeatedly
in the general proof. The 3-by-3 case has also been thoroughly examined in [JKD].

3. Supporting results. From here on we will adopt the convention of labeling
unspecified entries ofA above and below the main diagonal as vi,j and uj,i respectively.
Also, we label all entries of the k-th contiguous compound involving any unspecified
entries as di,j|k with i, j specifying the upper left entry of the submatrix in A from
which the minor is derived, and k specifying the size of the minor.

Lemma 3.1. For any partial TP matrix

A =


 a1,1 a1,2 ?

a2,1 a2,2 a2,3

? a3,2 a3,3




there exists a real number η > 0 such that for all d1,2|2 = d2,1|2 = d with d ∈ (0, η]

v1,3 = (a1,2a2,3 − d)/a2,2 and u3,1 = (a2,1a3,2 − d)/a2,2
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forms a TP completion of A.

Proof. We define η ≡ min{a1,2a2,3, a2,1a3,2, c1,1|2, c2,2|2}/2. Note that η is
positive. Then

v1,3 = (a1,2a2,3 − d)/a2,2 > (a1,2a2,3 − a1,2a2,3)/a2,2 = 0
u3,1 = (a2,1a3,2 − d)/a2,2 > (a2,1a3,2 − a2,1a3,2)/a2,2 = 0.

So A is TP1. Also

C2(A) =
[

c1,1|2 d

d c2,2|2

]

has all entries positive, and

detC2(A) = c1,1|2 c2,2|2 − d2 > c1,1|2 c2,2|2 − c1,1|2 c2,2|2 = 0.

So C2(A) is TP2. Then A is TP3, and, thus TP.

Lemma 3.2. For any partial TP matrix A or A′ with specified entries

A =


 a1,1 a1,2 ?

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3


 , A′ =


 a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

? a3,2 a3,3




there exist real numbers η1,2, η2,1 > 0 such that for all d1,2|2 ∈ (0, η1,2] and d2,1|2 ∈
(0, η2,1]

v1,3 = (a1,2a2,3 − d1,2|2)/a2,2 and u3,1 = (a2,1a3,2 − d2,1|2)/a2,2

form a TP completion of A and A′ respectively.

Proof. We define η1,2 ≡ min{a1,2a2,3, c1,1|2c2,2|2/c2,1|2}/2, which is positive.
Then

v1,3 = (a1,2a2,3 − d1,2|2)/a2,2 > (a1,2a2,3 − a1,2a2,3)/a2,2 = 0.

So A is TP1. Also

C2(A) =
[

c1,1|2 d1,2|2
c2,1|2 c2,2|2

]

has all entries positive, and

detC2(A) = c1,1|2 c2,2|2 − d1,2|2 c2,1|2 > c1,1|2 c2,2|2 − c1,1|2 c2,2|2 = 0.

So C2(A) is TP2. Then A is TP3, and, thus, TP. The case with A′, η2,1, and u3,1 is
proven via transposition.
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Note that in Lemmas 3.1 and 3.2 the values η1,2 and η2,1 are functions of the
specified entries (in Lemma 3.1 η1,2 = η2,1 = η). Subscripted η’s bounding corre-
sponding d’s will occur throughout. Along with these η’s, we will define one other
quantity of importance to the following proofs. We define ω1,1 as the value of d1,1|3
when d1,2|2 = η1,2 and/or d2,1|2 = η2,1. For example, when only v1,3 is unspecified,

ω1,1 = (c1,1|2 c2,2|2 − η1,2 c2,1|2)/a2,2.

If both v1,3 and u3,1 are unspecified, then

ω1,1 = (c1,1|2 c2,2|2 − η2)/a2,2.

Therefore, if we place d1,2|2 and d2,1|2 in the open intervals (0, η1,2) and (0, η2,1) it
is always true that 0 < ω1,1 < d1,1|3. In general, if a 3-by-3 submatrix A({i, ..., i +
2}, {j, ..., j+2}) of a partial TP matrix A has specified entries as described in Lemmas
3.1 or 3.2, we define ηi,j+1, ηi+1,j and ωi,j correspondingly, i.e. ηi,j+1 and ηi+1,j

represent the maximum allowed values of di,j+1|2 and di+1,j|2, and ωi,j represents
the corresponding minimum value of di,j|3. If di,j+1|2 ∈ (0, ηi,j+1) and/or di+1,j|2 ∈
(0, ηi+1,j) then 0 < ωi,j < di,j|3.

Before turning to the general 2-block proof, we mention the case in which one
of the blocks is 2-by-2. Here, essentially because of the column/row linearity of the
determinant, there is a much simpler proof, in which the TP completion may be
viewed as a simple perturbation of the TN completion. Take the partial TP matrix
A in the form (1.1), with A1,1 1-by-1, and Ã in the form (1.2), the TN completion of
A. For any TP matrix, an exterior row or column may be added in a simple way so
that the result is TP [JS]. Suppose that b = (b1,2, bT

1,3) is a row and c = (c2,1, c3,1)
is a column such that

 b1,2 bT
1,3

a2,2 aT
2,3

a3,2 A3,3


 and

[
c2,1 a2,2 aT

2,3

c3,1 a3,2 A3,3

]

are TP. By positive diagonal scaling we may assume that b1,2 = a1,2 and c2,1 = a2,1.
Consider the completion

˜̃A =


 A1,1 a1,2 bT

1,3

a2,1 a2,2 aT
2,3

c3,1 a3,2 A3,3




of A. ˜̃A need not be TP. For ε > 0, consider the completion

Â = (1− ε)Ã + ε ˜̃A.

of A. Because the principal minors of Ã are positive, for sufficiently small ε all prin-
cipal minors of Â are positive. Also, all non-principal minors are positive in ˜̃A and
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nonnegative in Ã. Then by the coumn/row linearity of the determinant all non-
principal minors of Â are positive. Thus Â is a totally positive completion of A. This
seems to be the only situation in which such a proof works. Examples show that the
same proof does not apply when each block is at least 3-by-3.

Finally, to begin the general proof of the theorem, and make it easier to follow,
we describe the proof when A is 5-by-5 and the two cliques are composed of 3 vertices
each. This is the first case in which the above proof does not apply. Here we use
the following phrase “Â is TPk between diagonals ±r” to mean all minors of size less
than or equal to k and involving only entries in the i-th row and j-th column with
|i − j| ≤ r are positive.

Proposition 3.3. If A is a 5-by-5 partial TP matrix of form (1.1) with n1 =
n3 = 2, then there is a TP completion, Â, of A. Moreover, if the blocks of A are
symmetric, the completion Â may be taken to be symmetric.

Proof. Consider a matrix A as described and call the proposed completing entries
vi,j and uj,i. Without loss of generality assume A has 1’s on the diagonal and has
symmetric tridiagonal part. We define

η1 ≡ min{η2,3, η3,2}.
For specified d2,3|2, d3,2|2,

η2 ≡ min{η1,3, η3,1, η2,4, η4,2}.
For specified d2,3|2, d3,2|2, d1,3|2, d3,1|2, d2,4|2 d4,2|2,

η3 ≡ min{η1,4, η4,1}.

ω0 ≡ ω2,2.

For specified d2,3|2, d3,2|2,
ω1 ≡ min{ω1,2, ω2,3, ω2,1, ω3,2}.

For specified d2,3|2, d3,2|2, d1,3|2, d3,1|2, d2,4|2 d4,2|2,
ω2 ≡ min{ω1,3, ω3,1}.

Take

For specified d1,

For specified d1, d2,

d2,3|2 = d3,2|2 ≡ d1 ∈ (0, η1).
d1,3|2 = d3,1|2 = d2,4|2 = d4,2|2 ≡ d2 ∈ (0, η2).
d1,4|2 = d4,1|2 ≡ d3 ∈ (0, η3).

Then

Â =




1 a1,2 a1,3 v1,4 v1,5

a2,1 1 a2,3 v2,4 v2,5

a3,1 a3,2 1 a3,4 a3,5

u4,1 u4,2 a4,3 1 a4,5

u5,1 u5,2 a5,3 a5,4 1




, C2(Â) =




c1,1|2 c1,2|2 d2 d3

c2,1|2 c2,2|2 d1 d2

d2 d1 c3,3|2 c3,4|2
d3 d2 c4,3|2 c4,4|2


 .
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By Lemmas 3.1 and 3.2 this choice of d1, d2, and d3, will always make Â TP3.
With this structure in mind we seek to show that there exist scalars e0, dependent
on ω0, and e1, dependent on ω1, with 0 < e0, e1 < 1, such that if

d1 ∈ (0, e0ω0/2), d2 ∈ (0, e1ω1), d3 ∈ (0, η3)

then Â is TP.

Take

e0 = min{η1, c211|3ω0, c233|3ω0} and e1 = min{η2, ω1}.

Then

d1 ∈ (0, e0ω0/2) ⊂ (0, η1), d2 ∈ (0, e1ω1) ⊂ (0, η2), d3 ∈ (0, η3)

We will simply check all minors of size > 3 to prove Â is TP.

Consider, first, the principal 4-by-4 minors. By Fischer’s inequality d1,2|3 <

a1,2d1 < d1 < 1 and d2,1|3 < a2,1d1 < d1 < 1, and, for k > 1, all ci,j|k < ci,j|2 < 1.
Then, using Sylvester’s inequality,

d1,1|4 = (c1,1|3 d2,2|3 − d1,2|3 d2,1|3)/c2,2|2
> c1,1|3 d2,2|3 − d1,2|3 d2,1|3
> c1,1|3 ω0 − d1,2|3 d2,1|3
> c1,1|3 ω0 − d1d1

> c1,1|3 ω0 − d1

> c1,1|3 ω0 − c21,1|3 ω0 > 0.

(3.1)

Similarly

d2,2|4 = (c3,3|3 d2,2|3 − d2,3|3 d3,2|3)/c3,3|2
> c3,3|3 ω0 − d1

> c3,3|3 ω0 − c23,3|3 ω0 > 0.
(3.2)

Thus Â is TP4 between diagonals±3. We now proceed to show that between diagonals
±4 Â is TP5, or rather, Â is TP. We begin with the non-principal 4-by-4 minors, and
then verify the determinant, d1,1|5. By Fischer, d1,3|3 < d2d2 < d2 and d2,2|3 < 1.
Then

d1,2|4 = (d1,2|3 d2,3|3 − d1,3|3 d2,2|3)/d2,3|2
> d1,2|3 d2,3|3 − d1,3|3 d2,2|3
> ω1ω1 − d1,3|3 d2,2|3
> ω1ω1 − d1,3|3
> ω1ω1 − d2

≥ e1ω1 − d2 > 0.
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Similarly

d2,1|4 = (d2,1|3 d3,2|3 − d3,1|3 d2,2|3)/d3,2|2
> ω1ω1 − d3,1|3 d2,2|3
> ω1ω1 − d3,1|3
> ω1ω1 − d2

≥ e1ω1 − d2 > 0.

Thus Â is TP4. Now consider detÂ. Recall, from the inequalities (3.1) and (3.2),
d1,1|4 > c1,1|3 ω0 − d1 and d2,2|4 > c3,3|3 ω0 − d1. Therefore

d1,1|5 = (d1,1|4 d2,2|4 − d1,2|4 d2,1|4)/d2,2|3
> d1,1|4 d2,2|4 − d1,2|4 d2,1|4
> (c1,1|3 ω0 − d1)(c3,3|3 ω0 − d1)− d1,2|4 d2,1|4
= (c1,1|3 c3,3|3 ω0)ω0 − d1(c1,1|3 ω0 + c3,3|3 ω0) + d2

1 − d1,2|4 d2,1|4.

Also, d1,2|4 < a1,2d1a4,5 < d1 and d2,1|4 < a2,1d1a5,4 < d1. Then

d1,1|5 > (c1,1|3 c3,3|3 ω0)ω0 − d1(c1,1|3 ω0 + c3,3|3 ω0) + d2
1 − d2

1

= (c1,1|3 c3,3|3 ω0)ω0 − d1(c1,1|3 ω0 + c3,3|3 ω0)
> e0ω0 − d1(c1,1|3 ω0 + c3,3|3 ω0)
> e0ω0 − 2d1 > 0.

Therefore Â is TP.

It may be helpful at this point to consider an example. Suppose we are given the
following partial TP matrix:

A =




1 1/2 1/6
1/2 1 1/2
1/6 1/2 1 1/2 1/8

1/2 1 1/3
1/9 1/3 1




.

We may follow the proof of Proposition 3.3 directly to produce a totally positive
completion Â. We first consider entries v2,4 and u4,2. We have η1 = 1/8, c11|3 = 5/9,
c33|3 = 287/432, and ω0 = 35/64. Then

e0 = min{η1, c211|3ω0, c233|3ω0} = 1/8

and we must take d1 ∈ (0, e0ω0/2) = (0, 35/1024). We may certainly choose d1 =
e0ω0

2
4
5 = 7/256. Then v2,4 = u4,2 = 57/256.

Now that we have chosen appropriate values for the unspecified entries in diago-
nals ±2 we may proceed to diagonals ±3. Again, following the proof of Proposition
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3.3 we get η2 = 7/9216, ω1 = 7/6144, and e1 = 7/9216. Therefore we must take
d2 ∈ (0, e1ω1) = (0, 49/56623104). We choose d2 = e1ω1

32
49 = 1/1769472. Then

v1,4 = u4,1 = 65663/884736, v2,5 = 49247/884736, and u5,2 = 65663/884736.

Lastly, we wish to complete diagonals ±4. We find η3 = 1/171228266496 and
choose d3 = 1/171228271599 ∈ (0, η3). Then v1,5 = 759536142020577767

40936455195404009472 and u5,1 =
675141523566415751

40936455195404009472 . One may check to find that the resulting completion

Â =




1 1/2 1/6 65663
884736

759536142020577767
40936455195404009472

1/2 1 1/2 57
256

49247
884736

1/6 1/2 1 1/2 1/8
65663
884736

57
256 1/2 1 1/3

675141523566415751
40936455195404009472

43775
884736 1/9 1/3 1




is indeed totally positive.

4. Proof of main result. We now prove Theorem 1.

Proof. We need only prove the statement for a graph consisting of two cliques.
We seek to prove the theorem by induction on the number of incomplete diagonals of
matrix A. As described, A has the form (1.1).

Call A1 =
[

A1,1 a1,2

aT
2,1 a2,2

]
∈ Mk1,k1(R) and call A2 =

[
a2,2 aT

2,3

a3,2 A3,3

]
∈ Mk2,k2(R).

In our induction step we wish to complete a total of 2r diagonals (r above and r

below the main diagonal) from an existing completion of 2(r−1) diagonals. Since the
±1st diagonals are already specified, this is equivalent to completing the ±(r + 1)st
diagonals from the existing ±r diagonals. We assume A has 1′s on the diagonal and
has symmetric tridiagonal part. We also take k1 = k2 = (r+1). If k1 or k2 < (r+1)
then we can extend matrixA1 or A2 to an (r+1)-by-(r+1) TP matrix. The completion
Â of A will then be a submatrix of the completion of the extended matrix. We will
express vi,j , uj,i in the same manner as previously.

vi,j = (vi,j−1vi+1,j − di,j−1|2)/vi+1,j−1

uj,i = (uj−1,iuj,i+1 − dj−1,i|2)/uj−1,i+1.

Let us begin with some definitions. Take ηl as the minimum of all values ηi,i+l,
ηi+l,i (all ηi,j falling on diagonals ±l), take ωl as the minimum of all values ωi,i+l,
ωi+l,i, and normalize all values di,i+l|2 = di+l,i|2 ≡ dl ∈ (0, ηl). We have

ηl ≡ min{ηi,i+l, ηi+l,i|(r + 1)− l ≤ i ≤ r}
ωl ≡ min{ωi,i+l, ωi+l,i|r − l ≤ i ≤ r}
di,i+l|2 ≡ dl ∈ (0, ηl) for (r + 1)− l ≤ i ≤ r.
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By Fischer’s inequality we know 0 < ηl, ωl, dl < 1.

We wish to show there exists εl > 0, dependent on ωl, and ρl ∈ N, such that if

dl+1 ∈ (0, εlωl/ρl) for 1 ≤ l + 1 ≤ r,

then matrix Â, completed with corresponding vi,j , uj,i, is totally positive. For our
base case we take a completion of diagonals ±2 and ±3 similar to the one outlined in
the proof of Proposition 3.3. Take

e0 = min{cr−1,r−1|3, cr+1,r+1|3, η1}
p0 = 1

and

d1 ∈ (0, e0ω0/p0)
d2 ∈ (0, η2).

Then, from equations (3.1) and (3.2) we get

dr−1,r−1|4 > cr−1,r−1|3 ω0 − d1 ≥ e0 ω0 − p0 d1 > 0
dr,r|4 > cr+1,r+1|3 ω0 − d1 ≥ e0 ω0 − p0 d1 > 0.

Therefore Â, completed with corresponding vi,j , uj,i, is totally positive between di-
agonals ±3. As a formality, let e1 = 1 and p1 = 0.

For our induction hypothesis assume there exists el, dependent on ωl, and pl ∈ N

for 0 < l ≤ (r − 2) such that if

dl+1 ∈ (0, elωl/pl) ⊂ (0, ηl+1) for l + 1 ≤ r − 2
dr−1 ∈ (0, ηr−1)

then matrix Â is TP between diagonals ±r. Also, for all contiguous minors of size
b > 3

di,i+l|b
di+l,i|b

}
> el ωl − pl dl+1 > 0.

All contiguous submatrices of size b ≤ 3 are totally positive by our definition of the
intervals. As a formality, let er−2 = 1 and pr−2 = 0.

We seek similarly chosen e′l and p′l for l ≤ (r − 1) such that if

dl+1 ∈ (0, e′lωl/p′l) ⊂ (0, ηl+1) for l + 1 ≤ r − 1
dr ∈ (0, ηr)
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then, matrix Â is TP between diagonals ±(r + 1) and for contiguous minors of size
b > 3

di,i+l|b
di+l,i|b

}
> e′l ωl − p′l dl+1 > 0.

For l ≤ (r − 2), take

e′l =
min{ηl+1, c1,1+l|(r−l+1)el, c(r+1),(r+1)+l|(r−l+1)el,

c1+l,1|(r−l+1)el, c(r+1)+l,(r+1)|(r−l+1)el, e2
l ωl}

p′l = 2pl + 1.

Take e′r−1 = 1 and p′r−1 = 0.

If dl+1 ∈ (0, e′lωl/p′l) for l + 1 ≤ (r − 2) then dl+1 ∈ (0, elωl/pl). Therefore we
may apply the induction hypothesis. For contiguous minors of size b > 3 not involving
the ±(r + 1)st diagonals

di,i+l|b
di+l,i|b

}
> el ωl − pl dl+1 > 0.

We now wish to prove that for contiguous minors of size b > 3

di,i+l|b
di+l,i|b

}
> e′l ωl − p′l dl+1 > 0.

All minors independent of the±(r+1)st diagonals are positive by hypothesis, therefore
all that is left to check is the positivity of all minors involving the ±(r+1)st diagonals.
Minors of size b ≤ 3 are positive by choice. We seek to prove the positivity of all
remaining contiguous minors at once, but, to be explicit, let b run from 4 to (r + 2).
This will preserve the structure necessary to use Fischer’s inequality. In general, we
have two cases to consider.

case (i)
di,i+l|b
di+l,i|b

}
for i ∈ {2, ..., r − 1}

case (ii)
di,i+l|b
di+l,i|b

}
for i ∈ {1, r}.

For case (i)

di,i+l|b = (di,i+l|b−1 di+1,i+1+l|b−1 − di,i+(l+1)|b−1 di+1,i+l|b−1)/di+1,i+l+1|b−2.
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By induction hypothesis di,i+l|b−1, di+1,i+1+l|b−1 > el ωl − pl dl+1, and by Fischer’s
inequality di,i+(l+1)|b−1 < dl+1. Then

di,i+l|b > (el ωl − pl dl+1)2 − di,i+(l+1)|b−1 di+1,i+l|b−1

> e2
l ω2

l − 2el ωl pl dl+1 + p2
l d

2
l+1 − di,i+(l+1)|b−1 di+1,i+l|b−1

> e2
l ω2

l − 2pl dl+1 + p2
l d

2
l+1 − dl+1 di+1,i+l|b−1

> e2
l ω2

l − 2pl dl+1 − dl+1 di+1,i+l|b−1

> e2
l ω2

l − 2pl dl+1 − dl+1

> (e2
l ωl)ωl − dl+1(2pl + 1)

> e′l ωl − p′l dl+1 > 0.

Similarly for di+l,i|b,

di+l,i|b > di+l,i|b−1 di+l+1,i+1|b−1 − di+(l+1),i|b−1 di+l,i+1|b−1

> (el ωl − pl dl+1)2 − dl+1

> e2
l ω2

l − 2pl dl+1 − dl+1

> e′l ωl − p′l dl+1 > 0.

In case (ii) b = r − l + 2. Again, by Fischer’s inequality d1,1+(l+1)|b−1 < dl+1.

d1,1+l|b = (c1,1+l|b−1 d2,2+l|b−1 − d1,1+(l+1)|b−1 c2,1+l|b−1)/c2,2+l|b−2

> c1,1+l|b−1 d2,2+l|b−1 − d1,1+(l+1)|b−1 c2,1+l|b−1

> c1,1+l|b−1(el ωl − pl dl+1)− d1,1+(l+1)|b−1 c2,1+l|b−1

> c1,1+l|b−1(el ωl − pl dl+1)− dl+1

> c1,1+l|b−1 el ωl − c1,1+l|b−1 pl dl+1 − dl+1

> c1,1+l|b−1 el ωl − 2pl dl+1 − dl+1

> c1,1+l|b−1 el ωl − dl+1 (2pl + 1)
> e′l ωl − p′l dl+1 > 0.

Similarly

d1+l,1|b > c1+l,1|b−1(el ωl − pl dl+1)− d1+(l+1),1|b−1 c1+l,2|b−1

> e′lωl − 2pl dl+1 − dl+1

> e′lωl − p′l dl+1 > 0

dr,r+l|b > c(r+1),(r+1)+l|b−1(el ωl − pl dl+1)− dr,r+(l+1)|b−1 c(r+1),(r+l)|b−1

> e′l ωl − 2pl dl+1 − dl+1

> e′l ωl − p′l dl+1 > 0

dr+l,r|b > c(r+1)+l,(r+1)|b−1(el ωl − pl dl+1)− dr+(l+1),r|b−1 cr+l,r+1|b−1

> e′l ωl − 2pl dl+1 − dl+1

> e′l ωl − p′l dl+1 > 0.
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Thus, we arrive at our desired result.

There exists e′l, dependent on ωl, and p′l ∈ N for l ≤ (r − 1) such that if

dl+1 ∈ (0, e′lωl/pl) ⊂ (0, ηl+1) for l + 1 ≤ r − 1
dr ∈ (0, ηr).

Matrix Â is totally positive between diagonals ±(r + 1) and for contiguous minors of
size b > 3

di,i+l|b
di+l,i|b

}
> e′l ωl − p′l dl+1 > 0.




dr

C2(A1)
...

. . .

d2
. . .

d1 d2 ... dr

dr ... d2 d1

. . . d2

. . .
... C2(A2)

dr




.

Then, by induction, there exists εl > 0, dependent on ωl, and ρl ∈ N, such that if

dl+1 ∈ (0, εlωl/ρl) for 1 ≤ l + 1 ≤ n − 2

then matrix Â, completed with corresponding vi,j , uj,i, is totally positive. Since all
di’s were chosen symmetrically we see that if A is symmetric then Â is symmetric.

5. Additional remarks. Given the theorem and its proof, it is worth noting
that several TP matrix completion results follow from it. First, consider the case of
combinatorially symmetric partial TP matrices in which the graph is not connected,
but each component is monotonically labeled block clique and the components are
ordered so that all the labels in any component are greater than all the labels in
all following components. Completability to TP, using the theorem, comes down to
completion when there are two non-overlapping cliques.

[
A1 ?
? A2

]

In this case there is a TP completion.
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Begin the completion by exterior bordering of A1 with one column on the right
and one row below to produce a TP matrix A′

1 and a new matrix of the form (1.1).
This new matrix is partial TP and therefore has a TP completion. Thus we may
imagine extending the idea of monotonically labeled block clique graphs to those that
are not connected. The completion theory remains the same.

The theorem also implies the solvability of a class of non-combinatorially-sym-
metric, rectangular, TP completion problems. Suppose that the specified entries of a
rectangular partial TP matrix comprise exactly two contiguous, possibly overlapping,
rectangular submatrices (blocks).

.

If the two blocks have, at most, one row index and one column index in common,
then there is a TP completion. If the overlap is not one in both directions, it may
be made so by bordering, as discussed above. Then, if one block is northwest of the
other, the matrix may be embedded in one of the form (1.1) via exterior bordering
and completed to TP, using the theorem. Of course, the appropriate submatrix of
this completion is the TP completion for the original, asymmetric problem.

If, on the other hand, one block is northeast of the other, simply using exterior
bordering on each block leads to a TP completion. Start in the upper left corner of
the lower right, unspecified portion and work outward (say, all the way down, then
back to the top of the next column, etc.). Each time, choose the new entry large
enough so that every minor it completes is positive. In the upper left unspecified
portion, start in the lower right and work outward via a similar strategy.

Lemma 3.2 (and the above strategy) shows that, in some cases, TP completion
may still be possible when the overlaps are greater than one index. If there are more
overlapping blocks, as long as they do not overlap by more than one in either direc-
tion and are ordered so that they proceed in one direction (southwest or southeast)
completion is possible, inductively.
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